Ток через мощность: Мощность электрического тока — Основы электроники
Мощность электрического тока — Основы электроники
Обычно электрический ток сравнивают с течением жидкости по трубке, а напряжение или разность потенциалов — с разностью уровней жидкости.
В этом случае поток воды, падающий сверху вниз, несет с собой определенное количество энергии. В условиях свободного падения эта энергия растрачивается бесполезно для человека. Если же направить падающий поток воды на лопасти турбины, то последняя начнет вращаться и сможет производить полезную работу.
Работа, производимая потоком воды в течение определенного промежутка времени, например, в течение одной секунды, будет тем больше, чем с большей высоты падает поток и чем больше масса падающей воды.
Точно так же и электрический ток, протекая по цепи от высшего потенциала к низшему, совершает работу. В каждую данную секунду времени будет совершаться тем больше работы, чем больше разность потенциалов и чем большее количество электричества ежесекундно проходит через поперечное сечение цепи.
Мощность электрического тока это количество работы, совершаемой за одну секунду времени, или скорость совершения работы.
Количество электричества, проходящего через поперечное сечение цепи в течение одной секунды, есть не что иное, как сила тока в цепи. Следовательно, мощность электрического тока будет прямо пропорциональна разности потенциалов (напряжению) и силе тока в цепи.
Для измерения мощности электрического тока принята единица, называемая ватт (Вт).
Мощностью в 1 Вт обладает ток силой в 1 А при разности потенциалов, равной 1 В.
Для вычисления мощности постоянного тока в ваттах нужно силу тока в амперах умножить на напряжение в вольтах.
Если обозначить мощность электрического тока буквой P, то приведенное выше правило можно записать в виде формулы
P = I*U. (1)
Воспользуемся этой формулой для решения числового примера. Требуется определить, какая мощность электрического тока необходима для накала нити радиолампы, если напряжение накала равно 4 в, а ток накала 75 мА
Определим мощность электрического тока, поглощаемую нитью лампы:
Р= 0,075 А*4 В = 0,3 Вт.
Мощность электрического тока можно вычислить и другим путем. Предположим, что нам известны сила тока в цепи и сопротивление цепи, а напряжение неизвестно.
В этом случае мы воспользуемся знакомым нам соотношением из закона Ома:
U=IR
и подставим правую часть этого равенства (IR) в формулу (1) вместо напряжения U.
Тогда формула (1) примет вид:
P = I*U =I*IR
или
Р = I2*R. (2)
Например, требуется узнать, какая мощность теряется в реостате сопротивлением в 5 Ом, если через него проходит ток, силой 0,5 А. Пользуясь формулой (2), найдем:
P= I2*R = (0,5)2*5 =0,25*5 = 1,25 Вт.
Наконец, мощность электрического тока может быть вычислена и в том случае, когда известны напряжение и сопротивление, а сила тока неизвестна. Для этого вместо силы тока I в формулу (1) подставляется известное из закона Ома отношение U/R и тогда формула (1) приобретает следующий вид:
Р = I*U=U2/R (3)
Например, при 2,5 В падения напряжения на реостате сопротивлением в 5 Ом поглощаемая реостатом мощность будет равна:
Р = U2/R=(2,5)2/5=1,25 Вт
Таким образом, для вычисления мощности требуется знать любые две из величин, входящих в формулу закона Ома.
Мощность электрического тока равна работе электрического тока, производимой в течение одной секунды.
P = A/t
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Похожие материалы:
Добавить комментарий
формула, онлайн расчет, выбор автомата
Проектируя электропроводку в помещении, начинать надо с расчета силы тока в цепях. Ошибка в этом расчете может потом дорого обойтись. Электрическая розетка может расплавиться под действием слишком сильного для нее тока. Если ток в кабеле больше расчетного для данного материала и сечения жилы, проводка будет перегреваться, что может привести к расплавлению провода, обрыва или короткого замыкания в сети с неприятными последствиями, среди которых необходимость полной замены электропроводки – еще не самое плохое.
Знать силу тока в цепи надо и для подбора автоматических выключателей, которые должны обеспечивать адекватную защиту от перегрузки сети. Если автомат стоит с большим запасом по номиналу, к моменту его срабатывания оборудование может уже выйти из строя. Но если номинальный ток автоматического выключателя меньше тока, возникающего в сети при пиковых нагрузках, автомат будет доводить до бешенства, постоянно обесточивая помещение при включении утюга или чайника.
Формула расчета мощности электрического тока
Согласно закону Ома, сила тока(I) пропорциональна напряжению(U) и обратно пропорциональна сопротивлению(R), а мощность(P) рассчитывается как произведение напряжения и силы тока. Исходя из этого, ток в участке сети рассчитывается: I = P/U.
В реальных условиях в формулу добавляется еще одна составляющая и формула для однофазной сети приобретает вид:
I = P/(U*cos φ),
а для трехфазной сети: I = P/(1,73*U*cos φ),
где U для трехфазной сети принимается 380 В, cos φ – это коэффициент мощности, отражающий соотношение активной и реактивной составляющих сопротивления нагрузки.
Для современных блоков питания реактивная компонента незначительна, величину cos φ можно принимать равной 0,95. Исключение составляют мощные трансформаторы (например, сварочные аппараты) и электродвигатели, они имеют большое индуктивное сопротивление. В сетях, где планируется подключение подобных устройств, максимальную силу тока следует рассчитывать с использованием коэффициента cos φ, равного 0,8 или рассчитать силу тока по стандартной методике, а потом применить повышающий коэффициент 0,95/0,8 = 1,19.Подставив действующие значения напряжения 220 В/380 В и коэффициента мощности 0,95, получаем I = P/209 для однофазной сети и I = P/624 для трехфазной сети, то есть в трехфазной сети при одинаковой нагрузке ток втрое меньше. Никакого парадокса тут нет, так как трехфазная проводка предусматривает три фазных провода, и при равномерной нагрузке на каждую из фаз она делится натрое.
Подбираем номинал автоматического выключателя
Применив формулу I = P/209, получим, что при нагрузке с мощностью 1 кВт ток в однофазной сети будет 4,78 А. Напряжение в наших сетях не всегда равно в точности 220 В, поэтому не будет большой ошибкой силу тока считать с небольшим запасом как 5 А на каждый киловатт нагрузки. Сразу же видно, что в удлинитель, промаркированный «5 А», утюг мощностью 1,5 кВт включать не рекомендуется, так как ток будет в полтора раза превышать паспортную величину. А еще сразу можно «проградуировать» стандартные номиналы автоматов и определить, на какую нагрузку они рассчитаны:
- 6 А – 1,2 кВт;
- 8 А – 1,6 кВт;
- 10 А – 2 кВт;
- 16 А – 3,2 кВт;
- 20 А – 4 кВт;
- 25 А – 5 кВт;
- 32 А – 6,4 кВт;
- 40 А – 8 кВт;
- 50 А – 10 кВт;
- 63 А – 12,6 кВт;
- 80 А – 16 кВт;
- 100 А – 20 кВт.
С помощью методики «5 ампер на киловатт» можно оценить силу тока, возникающую в сети при подключении бытовых устройств. Интересуют пиковые нагрузки на сеть, поэтому для расчета следует использовать максимальную потребляемую мощность, а не среднюю. Эта информация содержится в документации на изделия. Вряд ли стоит самому рассчитывать этот показатель, суммируя паспортные мощности компрессоров, электродвигателей и нагревательных элементов, входящих в устройство, так как есть еще такой показатель, как коэффициент полезного действия, который придется оценивать умозрительно с риском сильно ошибиться.
При проектировании электропроводки в квартире или загородном доме не всегда доподлинно известны состав и паспортные данные электрооборудования, которое будет подключаться, но можно воспользоваться ориентировочными данными обычных для нашего быта электроприборов:
- электросауна (12 кВт) — 60 А;
- электроплита (10 кВт) — 50 А;
- варочная панель (8 кВт) — 40 А;
- электроводонагреватель проточный (6 кВт) — 30 А;
- посудомоечная машина (2,5 кВт) — 12,5 А;
- стиральная машина (2,5 кВт) — 12,5 А;
- джакузи (2,5 кВт) — 12,5 А;
- кондиционер (2,4 кВт) — 12 А;
- СВЧ-печь (2,2 кВт) — 11 А;
- электроводонагреватель накопительный (2 кВт) — 10 А;
- электрочайник (1,8 кВт) — 9 А;
- утюг (1,6 кВт) — 8 А;
- солярий (1,5 кВт) — 7,5 А;
- пылесос (1,4 кВт) — 7 А;
- мясорубка (1,1 кВт) — 5,5 А;
- тостер (1 кВт) — 5 А;
- кофеварка (1 кВт) — 5 А;
- фен (1 кВт) — 5 А;
- настольный компьютер (0,5 кВт) — 2,5 А;
- холодильник (0,4 кВт) — 2 А.
Потребляемая мощность осветительных приборов и бытовой электроники невелика, в целом суммарную мощность осветительных приборов можно оценить в 1,5 кВт и автомата на 10 А на группу освещения достаточно. Бытовая электроника подключается к тем же розеткам, что и утюги, дополнительные мощности резервировать для нее нецелесообразно.
Если просуммировать все эти токи, цифра получается внушительная. На практике, возможности подключения нагрузки ограничивает величина выделенной электрической мощности, для квартир с электрической плитой в современных домах она составляет 10 -12 кВт и на квартирном вводе стоит автомат номиналом 50 А. И эти 12 кВт надо распределить, учитывая то, что самые мощные потребители сосредоточены на кухне и в ванной комнате. Проводка будет доставлять меньше поводов для беспокойства, если разбить ее на достаточное количество групп, каждая со своим автоматом.
На расчет мощностей и токов придется потратить некоторое время, но можно быть уверенным, что труды не пропадут даром. Грамотно спроектированная и качественно смонтированная электропроводка – залог комфорта и безопасности вашего жилища.
Онлайн расчет мощности тока для однофазной и трехфазной сети
Онлайн калькулятор — закон Ома (ток, напряжение, сопротивление) + Мощность :: АвтоМотоГараж
Причиной написания данной статьи явилась не сложность этих формул, а то, что в ходе проектирования и разработки каких-либо схем часто приходится перебирать ряд значений чтобы выйти на требуемые параметры или сбалансировать схему. Данная статья и калькулятор в ней позволит упростить этот подбор и ускорить процесс реализации задуманного. Также в конце статьи приведу несколько методик для запоминания основной формулы закона Ома. Эта информация будет полезна начинающим. Формула хоть и простая, но иногда есть замешательство, где и какой параметр должен стоять, особенно это бывает поначалу.
В радиоэлектронике и электротехнике закон Ома и формула расчёта мощности используются чаше чем какие-либо из всех остальных формул. Они определяют жесткую взаимосвязь между четырьмя самыми ходовыми электрическими величинами: током, напряжением, сопротивлением и мощностью.
Закон Ома. Эту взаимосвязь выявил и доказал Георг Симон Ом в 1826 году. Для участка цепи она звучит так: сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению
Так записывается основная формула:
Путем преобразования основной формулы можно найти и другие две величины:
Мощность. Её определение звучит так: мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.
Формула мгновенной электрической мощности:
Ниже приведён онлайн калькулятор для расчёта закона Ома и Мощности. Данный калькулятор позволяет определить взаимосвязь между четырьмя электрическими величинами: током, напряжением, сопротивлением и мощностью. Для этого достаточно ввести любые две величины. Стрелками «вверх-вниз» можно с шагом в единицу менять введённое значение. Размерность величин тоже можно выбрать. Также для удобства подбора параметров, калькулятор позволяет фиксировать до десяти ранее выполненных расчётов с теми размерностями с которыми выполнялись сами расчёты.
Когда мы учились в радиотехническом техникуме, то приходилось запоминать очень много всякой всячины. И чтобы проще было запомнить, для закона Ома есть три шпаргалки. Вот какими методиками мы пользовались.
Первая — мнемоническое правило. Если из формулы закона Ома выразить сопротивление, то R = рюмка.
Вторая — метод треугольника. Его ещё называют магический треугольник закона Ома.
Если оторвать величину, которую требуется найти, то в оставшейся части мы получим формулу для её нахождения.
Третья. Она больше является шпаргалкой, в которой объединены все основные формулы для четырёх электрических величин.
Пользоваться ею также просто, как и треугольником. Выбираем тот параметр, который хотим рассчитать, он находиться в малом кругу в центре и получаем по три формулы для его расчёта. Далее выбираем нужную.
Этот круг также, как и треугольник можно назвать магическим.
Работа и мощность тока — урок. Физика, 8 класс.
При прохождении тока в цепи электрическое поле совершает работу по перемещению заряда. В этом случае работу электрического поля называют работой электрического тока.
При прохождении заряда \(q\) по участку цепи электрическое поле будет совершать работу: \(A=q\cdot U\), где \(U\) — напряжение электрического поля, \(A\) — работа, совершаемая силами электрического поля по перемещению заряда \(q\) из одной точки в другую.
Для выражения любой из этих величин можно использовать приведённый ниже рисунок.
Рис. \(1\). Зависимость между работой, напряжением и зарядом
Количество заряда, прошедшее по участку цепи, пропорционально силе тока и времени прохождения заряда: q=I⋅t.
Работа электрического тока на участке цепи пропорциональна напряжению на её концах и количеству заряда, проходящего по этому участку: A=U⋅q.
Работа электрического тока на участке цепи пропорциональна силе тока, времени прохождения заряда и напряжению на концах участка цепи: A=U⋅I⋅t.
Чтобы выразить любую из величин из данной формулы, можно воспользоваться рисунком.
Рис. \(2\). Зависимость между работой, силой тока и временем прохождения заряда
Единицы измерения величин:
работа электрического тока \([A]=1\) Дж;
напряжение на участке цепи \([U]=1\) В;
сила тока, проходящего по участку \([I]=1\) А;
время прохождения заряда (тока) \([t]=1\) с.
Для измерения работы электрического тока нужны вольтметр, амперметр и часы. Например, для определения работы, которую совершает электрический ток, проходя по спирали лампы накаливания, необходимо собрать цепь, изображённую на рисунке. Вольтметром измеряется напряжение на лампе, амперметром — сила тока в ней. А при помощи часов (секундомера) засекается время горения лампы.
Рис. \(3\). Схема и часы для измерения
Например:
I = 1,2 АU = 5 Вt = 1,5 мин = 90 сА = U⋅I⋅t = 5⋅1,2⋅90 = 540 Дж
Обрати внимание!
Работа чаще всего выражается в килоджоулях или мегаджоулях.\(1\) кДж = 1000 Дж или \(1\) Дж = \(0,001\) кДж;
\(1\) МДж = 1000000 Дж или \(1\) Дж = \(0,000001\) МДж.
Для потребителей электрической энергии существуют приборы, позволяющие в пределах ошибки измерения получать числовые данные о ее расходе в единицу времени.
Рис. \(4\). Электросчетчик
Механическая мощность численно равна работе, совершённой телом в единицу времени: N = Аt. Чтобы найти мощность электрического тока, надо поступить точно также, т.е. работу тока, A=U⋅I⋅t, разделить на время.
Мощность электрического тока обозначают буквой \(Р\):
P=At=U⋅I⋅tt=U⋅I. Таким образом:Мощность электрического тока равна произведению напряжения на силу тока: P=U⋅I.
Из этой формулы можно определить и другие физические величины.
Для удобства можно использовать приведённый ниже рисунок.
Рис. \(5\). Зависимость между мощностью, напряжением и силой тока
За единицу мощности принят ватт: \(1\) Вт = \(1\) Дж/с.
Из формулы P=U⋅I следует, что
\(1\) ватт = \(1\) вольт ∙ \(1\) ампер, или \(1\) Вт = \(1\) В ∙ А.
Обрати внимание!
Используют также единицы мощности, кратные ватту: гектоватт (гВт), киловатт (кВт), мегаватт (МВт).
\(1\) гВт = \(100\) Вт или \(1\) Вт = \(0,01\) гВт;
\(1\) кВт = \(1000\) Вт или \(1\) Вт = \(0,001\) кВт;
\(1\) МВт = \(1 000 000\) Вт или \(1\) Вт = \(0,000001\) МВт.
Пример:
Измерим силу тока в цепи с помощью амперметра, а напряжение на участке — с помощью вольтметра.
Рис. \(6\). Схема
Так как мощность тока прямо пропорциональна напряжению и силе тока, протекающего через лампочку, то перемножим их значения:
I=1,2АU=5ВP =U⋅I=5⋅1,2=6Вт.
Ваттметры измеряют мощность электрического тока, протекающего через прибор. По своему назначению и техническим характеристикам ваттметры разнообразны.
В зависимости от сферы применения у них различаются пределы измерения.
Аналоговый ваттметр | Аналоговый ваттметр | Аналоговый ваттметр | Цифровой ваттметр |
Рис. \(7\). Приборы для измерения
Подключим к цепи по очереди две лампочки накаливания, сначала одну, затем другую и измерим силу тока в каждой из них. Она будет разной.
Рис. \(8\). Лампы различной мощности в цепи
Сила тока в лампочке мощностью \(25\) ватт будет составлять \(0,1\) А. Лампочка мощностью \(100\) ватт потребляет ток в четыре раза больше — \(0,4\) А. Напряжение в этом эксперименте неизменно и равно \(220\) В. Легко можно заметить, что лампочка в \(100\) ватт светится гораздо ярче, чем \(25\)-ваттовая лампочка. Это происходит оттого, что её мощность больше. Лампочка, мощность которой в \(4\) раза больше, потребляет в \(4\) раза больше тока. Значит:
Обрати внимание!
Мощность прямо пропорциональна силе тока.
Что произойдёт, если одну и ту же лампочку подсоединить к источникам различного напряжения? В данном случае используется напряжение \(110\) В и \(220\) В.
Рис. \(8\). Лампа, подключенная к источнику тока с различным напряжением
Можно заметить, что при большем напряжении лампочка светится ярче, значит, в этом случае её мощность будет больше. Следовательно:
Обрати внимание!
Мощность зависит от напряжения.
Рассчитаем мощность лампочки в каждом случае:
I=0,2АU=110ВP=U⋅I=110⋅0,2=22Вт | I=0,4АU=220ВP=U⋅I=220⋅0,4=88Вт. |
Можно сделать вывод о том, что при увеличении напряжения в \(2\) раза мощность увеличивается в \(4\) раза.
Не следует путать эту мощность с номинальной мощностью лампы (мощность, на которую рассчитана лампа). Номинальная мощность лампы (а соответственно, ток через нить накала и её расчётное сопротивление) указывается только для номинального напряжения лампы (указано на баллоне, цоколе или упаковке).
Рис. \(9\). Маркировка
В таблице дана мощность, потребляемая различными приборами и устройствами:
Таблица \(1\). Мощность различных приборов
Название | Рисунок | Мощность |
Калькулятор | \(0,001\) Вт | |
Лампы дневного света | \(15 — 80\) Вт | |
Лампы накаливания | \(25 — 5000\) Вт | |
Компьютер | \(200 — 450\) Вт | |
Электрический чайник | \(650 — 3100\) Вт | |
Пылесос | \(1500 — 3000\) Вт | |
Стиральная машина | \(2000 — 4000\) Вт | |
Трамвай | \(150 000 — 240000\) Вт |
Источники:
Рис. 1. Зависимость между работой, напряжением и зарядом. © ЯКласс.
Рис. 3. Схема и часы для измерения. © ЯКласс.
Рис. 5. Зависимость между мощностью, напряжением и силой тока. © ЯКласс.
Рис. 6. Схема. © ЯКласс.
Таблица 1. Мощность различных приборов. Компьютер. Указание авторства не требуется, 2021-08-14, Pixabay License, https://pixabay.com/ru/photos/яблоко-стул-компьютер-1834328/.
НЕ ЗАБЫВАЕМ: Законы Кирхгофа они же Правила Кирхгофа для тока и напряжения.Цепь переменного синусоидального тока c частотой ω.Применимость формул: пренебрегаем зависимостью сопротивлений от силы тока и частоты.Напомним, что любой сигнал, может быть с любой точностью разложен в ряд Фурье, т.е. в предположении, что параметры сети Закон Ома для цепей переменного тока:
|
Формула мощности тока в физике
Содержание:
Электрический ток, на каком угодно участке цепи совершает некоторую работу (А). Допустим, что у нас есть произвольный участок цепи (рис.1) между концами которого имеется напряжение U.
Работа, которая выполняется при перемещении заряда равного 1 Кл между точками A и B (рис.1) будет равна U. В том случае, если через проводник протекает ток силой I за время равное $\Delta t$ по указанному выше участку пройдет заряд (q) равный:
$$q=I \Delta t(1)$$Следовательно, работа, которую совершает электрический ток на данном участке, равна:
$$A=U \cdot I \cdot \Delta t(2)$$Надо отметить, что выражение (2) является справедливым при I=const для любого участка цепи (в таком участке могут содержаться проводники 1–го и 2–го рода).
Определение и формула мощности тока
Определение
Мощность тока – есть работа тока в единицу времени:
$$P=\frac{A}{\Delta t}$$Формулой для вычисления мощности можно считать выражение:
$$P=U \cdot I=I^{2} R(4)$$В том случае, если участок цепи содержит источник тока, то формулу мощности можно представить в виде:
$$P=\left(\varphi_{1}-\varphi_{2}\right) I+\varepsilon I$$где $\left(\varphi_{1}-\varphi_{2}\right)$ – разность потенциалов, $\varepsilon$ – ЭДС источника, который включен в цепь. {2}(6)$$
где j – плотность тока, $\rho$ – удельное сопротивление.
Единицы измерения мощности тока
Основной единицей измерения мощности тока (как и мощности вообще) в системе СИ является: [P]=Вт=Дж/с.
В СГС: [P]=эрг/с.
1 Вт=107 эрг/( с).
Выражение (4) применяют в системе СИ для того, чтобы дать определение единицы напряжения. Так, единицей напряжения (U) является вольт (В), который равен: 1 В= (1 Вт)/(1 А).
Вольтом называют электрическое напряжение, которое порождает в электроцепи постоянный ток силы 1 А при мощности 1 Вт.
Примеры решения задач
Пример
Задание. Какой должна быть сила тока, которая течет через обмотку электрического мотора для того, чтобы полезная мощность двигателя (PA) стала максимальной?Какова максимальная полезная мощность? Если двигатель постоянного тока подключен к напряжению U, сопротивление обмотки якоря – R.
Решение. Мощность, которую потребляет электроприбор, идет на нагревание (PQ) и совершение работы (PA):
$$P=P_{Q}+P_{A}(1. {2}}{P_{2}}}$$Читать дальше: Формула напряжения электрического поля.
Мощность переменного тока: измерение, формула
Мощность — то, что характеризует скорость передачи с преобразованием электроэнергии. Какие есть нормы мощности в сети переменного тока и виды, что такое активная и реактивная мощность? Об этом и другом далее.
Нормы мощности в сети переменного тока
Напряжение и мощность — то, что нужно знать каждому человеку, живущему в квартире или частном доме. Стандартное напряжение сети переменного тока в квартире и частном доме выражается в количестве 220 и 380 ватт. Что касается определения количественной меры силы электрической энергии, необходимо сложить электрический ток с напряжением или же измерить необходимый показатель ваттметром. При этом чтобы сделать измерения последним аппаратом, нужно использовать щупы и специальные программы.
Что такое мощность переменного токаМощность переменного тока определяется соотношением величины тока со временем, которая производит работу за определенное время. Обычный пользователь использует мощностный показатель, передаваемый ему поставщиком электрической энергии. Как правило, он равен 5-12 киловатт. Этих цифр хватает, чтобы обеспечить работоспособность необходимого бытового электрооборудования.
Этот показатель зависит от того, какие внешние условия поступления энергии в дом, какие поставлены ограничительные токовые устройства (автоматы или полуавтоматы), регулирующие момент поступления мощностных емкостей к потребительскому источнику. Это совершается на разных уровнях, от бытового электрощита до центрального устройства электрического распределения.
Мощностные нормы в сети переменного токаХарактеристики
Переменный ток течет по цепи и меняет свое направление с величиной. Создает магнитное поле. Поэтому его нередко называют периодическим синусоидальным переменным электротоком. Согласно закону кривой линии, величина его меняется через конкретный промежуток времени. Поэтому он называется синусоидным. Имеет свои параметры. Из важных стоит указать период с частотой, амплитудой и мгновенным значением.
Период — это то время, на протяжении которого происходит изменение электротока, а затем оно повторяется вновь. Частота — период течение за секунду. Измеряется в герцах, килогерцах и миллигерцах.
Амплитуда — токовое максимальное значение с напряжением и эффективностью протекания на протяжении полного периода. Мгновенное значение — переменный ток или напряжение, возникающее за конкретное время.
Характеристики переменного токаВиды мощностей
Мощностью называется измеряемая физическая величина, которая равна скорости изменения с преобразованием, передачей или потреблением системной энергии. Согласно более узкому понятию, это показатель, который равен отношению затраченного времени на работы к самому периоду, который тратится на работу. Обозначается в механике символом N. В электротехнической науке используется буква P. Нередко можно увидеть также символ W, от слова ватт.
Мощность переменного тока -это произведение силы тока с напряжением и косинусом сдвига фаз. При этом беспрепятственно можно посчитать только активную и реактивную разновидность. Узнать полное мощностное значение можно через векторную зависимость этих показателей и площади.
Основные мощностные разновидностиАктивная мощность
Активной называется полезная сила, определяющая процесс прямого преобразования электроэнергии в необходимый вид силы. В каждом электроприборе преобразовывается она по-своему. К примеру, в лампочке получается свет с теплом, в утюге — тепло, а в электрическом двигателе — механическая энергия. Соответственно, показывает КПД устройства.
Активная разновидностьРеактивная мощность
Реактивной называется та, которая определяется при помощи электромагнитного поля. Образуется при работе электроприборов. Обратите внимание! Это вредная и паразитная мощностная характеристика, которая определяется тем, каков характер нагрузки. Для лампочки она равняется нулю, а для электродвигателя она может быть равна большим значением.
Разница между величинами в том, что активно действующая мощностная характеристика показывает КПД устройств, а реактивная является передачей этого КПД. Разница также наблюдается в определении, символе, формуле и значимости.
Обратите внимание! Что касается значения, то вторая нужна лишь для того, чтобы управлять создавшимся напряжением от первой величины и преодолевать мощностные колебания. Обе измеряются в ваттах и имеют большое значение в электромагнитном излучении, механической форме генератора или акустической волне. Активно применяются в промышленности.
Реактивная разновидностьПолная мощность
Полная — это сумма активной с реактивной мощностью. Равна сетевому мощностному показателю. Это произведение напряжения с током в момент игнорирования фазы угла между ними. Вся рассеиваемая с поглощаемой и возвращаемой энергией — это полная энергия.
Это произведение напряжения и тока, единица измерения которого это ватт, перемноженный на ампер. При активности цепи, полная равняется активной. Если речь идет об индуктивной или емкостной схеме, то полная больше, чем активная.
Полная разновидностьКомплексная мощность
Это сумма всех мощностных показателей фаз источника электроэнергии. Это комплексный показатель, модуль которого равняется полному мощностному показателю электроцепи. Аргументом является фазовый сдвиг между электротоком с сетевым напряжением. Может быть выражена уравнением, где суммарный мощностный показатель, который генерируют источники электроэнергии, равен суммарному мощностному показателю, который потребляется в электроцепи.
Обратите внимание! Вычисляется посредством использования соответствующей формулы. Так, необходимо комплексное напряжение перемножить на комплексны ток или же удвоенное значение комплексного тока перемножить на импеданс. Также можно удвоенное значение комплексного напряжения поделить на удвоенное значение импеданса.
Комплексная разновидностьКак узнать какая мощность в цепи переменного тока
Стоит указать, что это величина, которая прямо связывается с иными показателями. К примеру, она находится в прямой зависимости от времени, силы, скорости, вектора силы и скорости, модуля силы и скорости, момента силы и частоты вращения. Часто в формулах во время вычисления электромощности используется также число Пи с показателем сопротивления, мгновенным током, напряжением на конкретном участке электрической сети, активной, полной и реактивной силой. Непосредственно участник вычисления это амплитуда, угловая скорость и начальная сила тока с напряжением.
Формула мощности в цепи переменного токаВ однофазной цепи
Понять, какой мощностный показатель есть в однофазной цепи переменного тока, можно при помощи применения трансформатора тока. Для этого необходимо воспользоваться ваттметром, который включен через токовый трансформатор. Показания следует перемножить на трансформаторный коэффициент тока. В момент измерения мощности в высоком напряжении трансформатор тока необходим, чтобы заизолировать ваттметр и обеспечить безопасность пользователя. Параллельна цепь включается не непосредственным способом, а благодаря трансформатору напряжения. Вторичные обмотки с корпусами измерительных трансформаторных установок необходимо заземлять во избежание случайного изоляционного повреждения и попадания высокого напряжения на приборы.
Обратите внимание! Для определения параметров в сети необходимо амперметр перемножить на трансформаторный коэффициент тока, а цифры, полученные вольтметром, перемножить на трансформаторный коэффициент напряжения.
В однофазной цепиВ трехфазной цепи
В цепи переменного тока мощностный показатель в трехфазной цепи определить можно, перемножив ток на напряжение. Поскольку это непостоянный электроток, он зависит от времени и других параметров, поэтому необходимо использовать другие проверенные схемы. Так, можно использовать ваттметр.
Измерение должно быть проведено только в одной фазе и по формуле умножено на три. Этот способ экономит приборы и уменьшает габариты измерения. Применяется для высокой точности измерения каждой фазы. В случае несимметричной нагрузки, нужно использовать соответствующую схему подключения ваттметра. Это более точный способ, но требует наличие трех ваттметров.
Обратите внимание! Если цепь не предусматривает наличие нулевого проводника, нужна также соответствующая схема.
Стоит указать, что сегодня измерить можно необходимые показатели не только аналоговым, но и цифровым прибором. Отличие второго в уменьшенных размерах и легкости. Кроме того, цифровые агрегаты способы осуществлять фиксацию тока с напряжением, косинусом сети и другим. Это позволяет на дистанции осуществлять отслеживание различных величин и передавать предупреждения, если есть отклонение. Это удобно, поскольку не нужно измерять ток с напряжением, а потом, используя формулы, все досконально просчитывать.
В трехфазной цепиВ целом, мощность — это величина, основное предназначение которой показывать силу работы конкретного прибора и во многих случаях скорость деятельности, взаимодействуя с ним. Она бывает механической, электрической, гидравлической и для постоянного с переменным током. Измеряется по международной системе в ваттах и киловаттах.
Расчет электроэнергии | Закон Ома
Изучите формулу силы
Мы видели формулу для определения мощности в электрической цепи: умножая напряжение в «вольтах» на силу тока в «амперах», мы получаем ответ в «ваттах». Давайте применим это к примеру схемы:
Как использовать закон Ома для определения силы тока
В приведенной выше схеме мы знаем, что у нас есть напряжение батареи 18 вольт и сопротивление лампы 3 Ом.Используя закон Ома для определения тока, получаем:
Теперь, когда мы знаем ток, мы можем взять это значение и умножить его на напряжение, чтобы определить мощность:
Это говорит нам о том, что лампа рассеивает (высвобождает) 108 ватт мощности, скорее всего, в виде света и тепла.
Увеличение напряжения батареи
Давайте попробуем взять ту же схему и увеличить напряжение батареи, чтобы посмотреть, что произойдет.Интуиция должна подсказывать нам, что ток цепи будет увеличиваться по мере увеличения напряжения, а сопротивление лампы останется прежним. Точно так же увеличится и мощность:
Теперь напряжение аккумулятора составляет 36 вольт вместо 18 вольт. Лампа по-прежнему обеспечивает электрическое сопротивление 3 Ом потоку тока. Текущий сейчас:
Это понятно: если I = E/R, и мы удваиваем E, а R остается прежним, ток должен удвоиться.Действительно, имеет: у нас теперь 12 ампер тока вместо 6. А что с мощностью?
Что влияет на питание повышение напряжения батареи?
Обратите внимание, что мощность увеличилась, как мы и подозревали, но она увеличилась немного больше, чем ток. Почему это? Поскольку мощность является функцией напряжения, умноженного на ток, а и , и напряжение, и ток удвоены по сравнению с их предыдущими значениями, мощность увеличится в 2 x 2 или 4 раза.
Вы можете проверить это, разделив 432 ватта на 108 ватт и увидев, что соотношение между ними действительно равно 4. Снова используя алгебру для манипулирования формулой, мы можем взять нашу исходную формулу мощности и изменить ее для приложений, где мы не знаем оба напряжение и ток: если мы знаем только напряжение (E) и сопротивление (R):
Если мы знаем только ток (I) и сопротивление (R):
Закон Джоуля против.
Закон ОмаИсторическая справка: именно Джеймс Прескотт Джоуль, а не Георг Саймон Ом, первым обнаружил математическую связь между рассеиваемой мощностью и током через сопротивление. Это открытие, опубликованное в 1841 году, соответствовало форме последнего уравнения (P = I 2 R) и известно как закон Джоуля.
Однако эти уравнения мощности так часто ассоциируются с уравнениями закона Ома, связывающими напряжение, ток и сопротивление (E=IR ; I=E/R ; и R=E/I), что их часто приписывают Ому.
ОБЗОР:
- Мощность измеряется в Вт , обозначается буквой «Вт».
- Закон Джоуля: P = I 2 R ; Р = ИЭ; Р = Е 2 /Р
СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:
Попробуйте наш калькулятор закона Ома в разделе «Инструменты».
Мощность в электрических цепях | Закон Ома
Помимо напряжения и силы тока есть еще один важный параметр, относящийся к электрическим цепям: мощность . Во-первых, нам нужно понять, что такое мощность, прежде чем анализировать ее в каких-либо цепях.
Что такое мощность и как ее измерить?
Мощность — это мера того, какой объем работы может быть выполнен за заданный промежуток времени. Работа обычно определяется как поднятие тяжестей против силы тяжести. Чем тяжелее вес и/или чем выше он поднят, тем больше работы было проделано. Мощность — это показатель того, насколько быстро выполняется стандартный объем работы.
Для американских автомобилей мощность двигателя измеряется в единицах, называемых «лошадиными силами», которые первоначально были изобретены производителями паровых двигателей для количественной оценки работоспособности их машин с точки зрения наиболее распространенного в то время источника энергии: лошадей.
Одна лошадиная сила определяется в британских единицах как 550 ft-lbs работы в секунду времени. Мощность двигателя автомобиля не будет указывать на то, насколько высокий холм он может подняться или какой вес он может буксировать, но он покажет, насколько быстро он может подняться на определенный холм или буксировать определенный вес.
Мощность механического двигателя зависит как от частоты вращения двигателя, так и от его крутящего момента на выходном валу. Скорость выходного вала двигателя измеряется в оборотах в минуту или об/мин.
Крутящий момент — это количество крутящего момента, создаваемого двигателем, и обычно он измеряется в фунтах-футах или фунтах-футах (не путать с фут-фунтами или фут-фунтами, которые являются единицей измерения работы). Ни скорость, ни крутящий момент сами по себе не являются мерой мощности двигателя.
Дизельный двигатель трактора мощностью 100 л.с. вращается относительно медленно, но обеспечивает большой крутящий момент.Мотоциклетный двигатель мощностью 100 лошадиных сил будет вращаться очень быстро, но обеспечит относительно небольшой крутящий момент. Оба будут производить 100 лошадиных сил, но с разными скоростями и разными крутящими моментами. Уравнение для мощности на валу простое:
Обратите внимание, что в правой части уравнения есть только два переменных члена, S и T. Все остальные члены в этой части являются постоянными: 2, пи и 33 000 — все константы (их значение не меняется). . Мощность меняется только при изменении скорости и крутящего момента, больше ничего.Мы можем переписать уравнение, чтобы показать эту связь:
Поскольку единица «лошадиной силы» не совпадает в точности со скоростью в оборотах в минуту, умноженной на крутящий момент в фунт-футах, мы не можем сказать, что лошадиных сил равняется ST. Однако они пропорциональны друг другу. При изменении математического произведения ST значение лошадиных сил изменится в той же пропорции.
Мощность как функция напряжения и тока
В электрических цепях мощность зависит как от напряжения, так и от тока.Неудивительно, что это соотношение имеет поразительное сходство с приведенной выше формулой «пропорциональной» мощности:
лошадиных сил.
Однако в этом случае мощность (P) точно равна току (I), умноженному на напряжение (E), а не просто пропорциональна IE. При использовании этой формулы единицей измерения мощности является ватт , сокращенно буквой «Вт».
Необходимо понимать, что ни напряжение, ни ток сами по себе не являются мощностью.Скорее мощность представляет собой комбинацию напряжения и тока в цепи. Помните, что напряжение — это удельная работа (или потенциальная энергия) на единицу заряда, а ток — это скорость, с которой электрические заряды перемещаются по проводнику.
Напряжение (удельная работа) аналогично работе, совершаемой при подъеме веса против силы тяжести. Текущая (скорость) аналогична скорости, с которой этот вес поднимается. Вместе как продукт (умножение), напряжение (работа) и ток (скорость) составляют мощность.
Как и в случае дизельного двигателя трактора и двигателя мотоцикла, цепь с высоким напряжением и малым током может рассеивать такое же количество энергии, как цепь с низким напряжением и большим током. Ни величина напряжения сама по себе, ни величина тока сама по себе не указывают на величину мощности в электрической цепи.
Питание при обрыве/коротком замыкании
В разомкнутой цепи, где между клеммами источника присутствует напряжение, а ток равен нулю, рассеивается нулевая мощность, независимо от того, насколько велико это напряжение.Поскольку P=IE и I=0, а все, что умножается на ноль, равно нулю, мощность, рассеиваемая в любой разомкнутой цепи, должна быть равна нулю.
Точно так же, если бы у нас была короткая цепь, состоящая из петли из сверхпроводящего провода (абсолютно нулевого сопротивления), мы могли бы иметь состояние тока в петле с нулевым напряжением, и точно так же никакая мощность не рассеивалась бы. Поскольку P=IE и E=0, а все, что умножается на ноль, равно нулю, мощность, рассеиваемая в сверхпроводящем контуре, должна быть равна нулю. (Мы рассмотрим тему сверхпроводимости в одной из последующих глав).
Как мощность связана с ваттами?
Измеряем ли мы мощность в «лошадиных силах» или в «ваттах», мы все равно говорим об одном и том же: сколько работы можно выполнить за заданный промежуток времени. Эти две единицы численно не равны, но они выражают одно и то же.
Фактически, европейские производители автомобилей обычно указывают мощность своих двигателей в киловаттах (кВт) или тысячах ватт, а не в лошадиных силах! Эти две единицы мощности связаны друг с другом простой формулой преобразования:
.
Таким образом, наши дизельные и мотоциклетные двигатели мощностью 100 л.Двигатели мощностью 57 кВт. В европейских технических спецификациях этот рейтинг был бы скорее нормой, чем исключением.
ОБЗОР:
- Мощность — это мера того, какой объем работы можно выполнить за заданный промежуток времени.
- Механическая мощность обычно измеряется (в Америке) в лошадиных силах.
- Электрическая мощность почти всегда измеряется в «ваттах» и может быть рассчитана по формуле P = IE.
- Электрическая мощность является произведением напряжения и тока , а не каждого отдельно.
- Лошадиная сила и ватт — это просто две разные единицы для описания одного и того же физического измерения, где 1 лошадиная сила равна 745,7 ватта.
СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:
Напряжение, ток, сопротивление и закон Ома
Избранное Любимый 121Основы электричества
Приступая к изучению мира электричества и электроники, очень важно начать с понимания основ напряжения, силы тока и сопротивления.Это три основных строительных блока, необходимых для управления электричеством и его использования. Поначалу эти концепции может быть трудно понять, потому что мы не можем их «видеть». Нельзя невооруженным глазом увидеть энергию, текущую по проводу, или напряжение батареи, лежащей на столе. Даже молния в небе, хотя и видимая, на самом деле является не обменом энергией, происходящим от облаков к земле, а реакцией воздуха на проходящую через него энергию. Чтобы обнаружить эту передачу энергии, мы должны использовать инструменты измерения, такие как мультиметры, анализаторы спектра и осциллографы, чтобы визуализировать то, что происходит с зарядом в системе. Не бойтесь, однако, этот учебник даст вам общее представление о напряжении, токе и сопротивлении и о том, как они связаны друг с другом.
Георг Ом
Описано в этом руководстве
- Как электрический заряд связан с напряжением, током и сопротивлением.
- Что такое напряжение, ток и сопротивление.
- Что такое закон Ома и как с его помощью понять электричество.
- Простой эксперимент для демонстрации этих концепций.
Рекомендуемая литература
Электрический заряд
Электричество — это движение электронов. Электроны создают заряд, который мы можем использовать для совершения работы. Ваша лампочка, ваша стереосистема, ваш телефон и т. д. используют движение электронов для выполнения работы. Все они работают, используя один и тот же основной источник энергии: движение электронов.
Три основных принципа этого руководства можно объяснить, используя электроны, или, точнее, создаваемый ими заряд:
- Напряжение — это разница заряда между двумя точками.
- Ток — скорость, с которой течет заряд.
- Сопротивление — это способность материала сопротивляться потоку заряда (току).
Итак, когда мы говорим об этих значениях, мы на самом деле описываем движение заряда и, таким образом, поведение электронов. Цепь представляет собой замкнутый контур, который позволяет заряду перемещаться из одного места в другое. Компоненты в цепи позволяют нам контролировать этот заряд и использовать его для выполнения работы.
Георг Ом — баварский ученый, изучавший электричество.Ом начинается с описания единицы сопротивления, которая определяется током и напряжением. Итак, давайте начнем с напряжения и пойдем оттуда.
Напряжение
Мы определяем напряжение как количество потенциальной энергии между двумя точками цепи. Одна точка имеет больший заряд, чем другая. Эта разница заряда между двумя точками называется напряжением. Он измеряется в вольтах, что технически представляет собой разность потенциалов между двумя точками, которые передают один джоуль энергии на кулон проходящего через них заряда (не паникуйте, если это не имеет смысла, все будет объяснено).Единица «вольт» названа в честь итальянского физика Алессандро Вольта, который изобрел то, что считается первой химической батареей. Напряжение обозначается в уравнениях и схемах буквой «V».
При описании напряжения, тока и сопротивления часто используется аналогия с резервуаром для воды. В этой аналогии заряд представлен количеством воды , напряжение представлен водой давлением , а ток представлен потоком воды . Итак, для этой аналогии запомните:
- Вода = Заправка
- Давление = Напряжение
- Расход = Текущий
Рассмотрим резервуар для воды на определенной высоте над землей. На дне этого бака есть шланг.
Давление на конце шланга может представлять собой напряжение. Вода в баке представляет собой заряд. Чем больше воды в баке, тем выше заряд, тем большее давление измеряется на конце шланга.
Мы можем думать об этом резервуаре как о батарее, месте, где мы храним определенное количество энергии, а затем высвобождаем ее. Если мы спустим наш бак на определенное количество, давление, создаваемое на конце шланга, упадет. Мы можем думать об этом как об уменьшении напряжения, например, когда фонарик тускнеет, когда батарейки садятся.Также уменьшается количество воды, протекающей через шланг. Меньшее давление означает, что течет меньше воды, что приводит нас к течению.
Текущий
Количество воды, вытекающей из бака по шлангу, можно представить как ток. Чем выше давление, тем выше расход, и наоборот. В случае с водой мы бы измерили объем воды, протекающей через шланг за определенный период времени.18 электронов (1 кулон) в секунду проходят через точку цепи. Усилители представлены в уравнениях буквой «I».
Допустим, у нас есть два бака, к каждому из которых подходит шланг снизу. В каждом баке одинаковое количество воды, но шланг одного бака уже, чем шланг другого.
Мы измеряем одинаковое давление на конце любого шланга, но когда вода начнет течь, расход воды в баке с более узким шлангом будет меньше, чем расход воды в баке с более широкий шланг.В электрических терминах ток через более узкий шланг меньше, чем ток через более широкий шланг. Если мы хотим, чтобы поток через оба шланга был одинаковым, мы должны увеличить количество воды (зарядку) в баке с более узким шлангом.
Это увеличивает давление (напряжение) на конце более узкого шланга, проталкивая больше воды через резервуар. Это аналогично увеличению напряжения, которое вызывает увеличение тока.
Теперь мы начинаем видеть взаимосвязь между напряжением и током.Но здесь следует учитывать третий фактор: ширину шланга. В этой аналогии ширина шланга является сопротивлением. Это означает, что нам нужно добавить еще один член в нашу модель:
.- Вода = заряд (измеряется в кулонах)
- Давление = Напряжение (измеряется в вольтах)
- Расход = ток (измеряется в амперах или для краткости «ампер»)
- Ширина шланга = сопротивление
Сопротивление
Рассмотрим еще раз наши два резервуара для воды, один с узкой трубой, а другой с широкой трубой.
Само собой разумеется, что мы не можем пропустить через узкую трубу столько же объема, сколько через более широкую при том же давлении. Это сопротивление. Узкая труба «сопротивляется» потоку воды через нее, хотя вода находится под тем же давлением, что и резервуар с более широкой трубой.
В электрических терминах это представлено двумя цепями с одинаковыми напряжениями и разными сопротивлениями. Цепь с более высоким сопротивлением позволит протекать меньшему заряду, а это означает, что через цепь с более высоким сопротивлением протекает меньший ток.18 электронов. Это значение обычно обозначается на схемах греческой буквой «Ω», которая называется омега и произносится как «ом».
Закон Ома
Объединив элементы напряжения, силы тока и сопротивления, Ом вывел формулу:
Где
- В = напряжение в вольтах
- I = ток в амперах
- R = сопротивление в омах
Это называется законом Ома.Допустим, например, что у нас есть цепь с потенциалом 1 вольт, током 1 ампер и сопротивлением 1 Ом. Используя закон Ома, мы можем сказать:
Допустим, это наш бак с широким шлангом. Количество воды в баке определяется как 1 вольт, а «узость» (сопротивление течению) шланга определяется как 1 Ом. Используя закон Ома, это дает нам поток (ток) в 1 ампер.
Используя эту аналогию, давайте теперь посмотрим на бак с узким шлангом. Поскольку шланг уже, его сопротивление потоку выше.Определим это сопротивление как 2 Ом. Количество воды в резервуаре такое же, как и в другом резервуаре, поэтому, используя закон Ома, наше уравнение для резервуара с узким шлангом равно
.Но какой ток? Поскольку сопротивление больше, а напряжение такое же, это дает нам значение тока 0,5 ампер:
Значит, в баке с большим сопротивлением ток меньше. Теперь мы можем видеть, что если мы знаем два значения закона Ома, мы можем найти третье.Продемонстрируем это на эксперименте.
Эксперимент по закону Ома
В этом эксперименте мы хотим использовать 9-вольтовую батарею для питания светодиода. Светодиоды хрупкие, и через них может протекать только определенное количество тока, прежде чем они сгорят. В документации на светодиод всегда будет «номинальный ток». Это максимальное количество тока, которое может протекать через конкретный светодиод, прежде чем он перегорит.
Необходимые материалы
Для проведения экспериментов, перечисленных в конце руководства, вам потребуется:
ПРИМЕЧАНИЕ. Светодиоды — это так называемые «неомические» устройства.Это означает, что уравнение для тока, протекающего через сам светодиод, не так просто, как V=IR. Светодиод вносит в цепь то, что называется «падением напряжения», тем самым изменяя величину тока, протекающего через нее. Однако в этом эксперименте мы просто пытаемся защитить светодиод от перегрузки по току, поэтому мы пренебрежем токовыми характеристиками светодиода и выберем значение резистора, используя закон Ома, чтобы быть уверенным, что ток через светодиод безопасно ниже 20 мА.
В этом примере у нас есть 9-вольтовая батарея и красный светодиод с номинальным током 20 миллиампер или 0.020 ампер. Чтобы быть в безопасности, мы бы предпочли не управлять светодиодом с его максимальным током, а скорее рекомендуемым током, который указан в его спецификации как 18 мА или 0,018 ампер. Если мы просто подключим светодиод напрямую к батарее, значения закона Ома будут выглядеть так:
поэтому:
и так как у нас пока нет сопротивления:
Деление на ноль дает нам бесконечный ток! Ну, на практике не бесконечный, а столько тока, сколько может выдать батарея. Поскольку мы НЕ хотим, чтобы через наш светодиод протекал такой большой ток, нам понадобится резистор.Наша схема должна выглядеть так:
Точно так же мы можем использовать закон Ома для определения номинала резистора, который даст нам желаемое значение тока:
поэтому:
подставляем наши значения:
решение для сопротивления:
Итак, нам нужен резистор номиналом около 500 Ом, чтобы поддерживать ток через светодиод ниже максимального номинального тока.
500 Ом не является обычным значением для стандартных резисторов, поэтому в этом устройстве вместо него используется резистор на 560 Ом.Вот как выглядит наше устройство в собранном виде.
Успех! Мы выбрали сопротивление резистора, достаточно высокое, чтобы ток через светодиод оставался ниже его максимального номинала, но достаточно низкое, чтобы тока было достаточно, чтобы светодиод оставался красивым и ярким.
Этот пример со светодиодом и токоограничивающим резистором часто встречается в любительской электронике. Вам часто придется использовать закон Ома, чтобы изменить величину тока, протекающего через цепь. Другой пример этой реализации можно увидеть в светодиодных платах LilyPad.
При такой настройке вместо выбора резистора для светодиода резистор уже встроен в светодиод, поэтому ограничение тока выполняется без необходимости добавления резистора вручную.
Ограничение тока до или после светодиода?
Чтобы немного усложнить ситуацию, вы можете разместить токоограничивающий резистор с любой стороны светодиода, и он будет работать точно так же!
Многие люди, впервые изучающие электронику, сомневаются в том, что токоограничивающий резистор может располагаться с любой стороны светодиода, и схема будет работать как обычно.
Представьте себе реку в непрерывной петле, бесконечную, круговую, текущую реку. Если бы мы поместили в нем плотину, вся река перестала бы течь, а не только один берег. Теперь представьте, что мы помещаем в реку водяное колесо, которое замедляет течение реки. Неважно, в каком месте круга находится водяное колесо, оно все равно будет замедлять течение всей реки .
Это упрощение, так как токоограничивающий резистор не может быть размещен где-либо в цепи ; его можно разместить на с любой стороны светодиода для выполнения своей функции.
Для более научного ответа обратимся к закону Кирхгофа о напряжении. Именно из-за этого закона токоограничивающий резистор может располагаться с любой стороны светодиода и при этом иметь тот же эффект. Для получения дополнительной информации и решения некоторых практических задач по использованию KVL посетите этот веб-сайт.
Ресурсы и продолжение
Теперь вы должны понимать, что такое напряжение, ток, сопротивление и как они связаны между собой. Поздравляем! Большинство уравнений и законов для анализа цепей можно вывести непосредственно из закона Ома.Зная этот простой закон, вы понимаете концепцию, лежащую в основе анализа любой электрической цепи!
Эти концепции — лишь верхушка айсберга. Если вы хотите продолжить изучение более сложных приложений закона Ома и проектирования электрических цепей, обязательно ознакомьтесь со следующими учебными пособиями.
Закон Ома и взаимосвязь V-I-R
В физике есть определенные формулы, настолько мощные и всеобъемлющие, что они достигают уровня общеизвестности.Студент-физик столько раз записывал такие формулы, что запоминал их, даже не пытаясь. Конечно, для профессионалов в этой области такие формулы настолько важны, что они запечатлеваются в их сознании. В области современной физики есть E = m • c 2 . В области ньютоновской механики есть F net = m • a. В области волновой механики есть v = f • λ. А в поле тока электричества есть ΔV = I • R.
Преобладающим уравнением, которое пронизывает изучение электрических цепей, является уравнение
. ΔV = I • RДругими словами, разность электрических потенциалов между двумя точками цепи ( ΔV ) эквивалентна произведению тока между этими двумя точками ( I ) и общего сопротивления всех электрических устройств между этими двумя точками ( Р ).В оставшейся части этого раздела «Класс физики» это уравнение станет наиболее распространенным уравнением, которое мы видим. Часто называемое уравнением закона Ома , это уравнение является мощным предиктором взаимосвязи между разностью потенциалов, током и сопротивлением.
Закон Ома как показатель силы тока
Уравнение закона Ома можно изменить и выразить как
В виде уравнения это служит алгебраическим рецептом для расчета тока, если известны разность электрических потенциалов и сопротивление. Тем не менее, хотя это уравнение служит мощным рецептом решения проблем, оно представляет собой гораздо больше. Это уравнение указывает две переменные, которые могут повлиять на величину тока в цепи. Ток в цепи прямо пропорционален разности электрических потенциалов на ее концах и обратно пропорционален общему сопротивлению, обеспечиваемому внешней цепью. Чем больше напряжение батареи (т. е. разность электрических потенциалов), тем больше ток. И чем больше сопротивление, тем меньше ток.Заряд течет с наибольшей скоростью, когда напряжение батареи увеличивается, а сопротивление уменьшается. В самом деле, двукратное увеличение напряжения батареи приведет к двукратному увеличению тока (если все остальные факторы остаются равными). А увеличение сопротивления нагрузки в два раза приведет к уменьшению тока в два раза до половины его первоначального значения.
В таблице ниже эта взаимосвязь качественно и количественно иллюстрируется для нескольких цепей с различными напряжениями и сопротивлениями аккумуляторов.
Строки 1, 2 и 3 показывают, что удвоение и утроение напряжения батареи приводит к удвоению и утроению тока в цепи. Сравнение строк 1 и 4 или строк 2 и 5 показывает, что удвоение общего сопротивления позволяет вдвое уменьшить ток в цепи.
Поскольку на ток в цепи влияет сопротивление, резисторы часто используются в цепях электроприборов, чтобы влиять на величину тока, присутствующего в его различных компонентах.Увеличивая или уменьшая величину сопротивления в конкретной ветви цепи, производитель может увеличивать или уменьшать величину тока в этой ветви . Кухонные приборы, такие как электрические смесители и регуляторы освещенности, работают, изменяя ток на нагрузке путем увеличения или уменьшения сопротивления цепи. Нажатие различных кнопок на электрическом миксере может изменить режим с смешивания на взбивание, уменьшив сопротивление и позволив большему току присутствовать в миксере.Точно так же поворот диска на диммерном переключателе может увеличить сопротивление его встроенного резистора и, таким образом, уменьшить ток.
На приведенной ниже схеме изображена пара цепей, содержащих источник напряжения (батарейный блок), резистор (лампочка) и амперметр (для измерения силы тока). В какой цепи лампочка имеет наибольшее сопротивление? Нажмите кнопку «Просмотреть ответ», чтобы убедиться, что вы правы.
Уравнение закона Ома часто исследуется в физических лабораториях с использованием резистора, аккумуляторной батареи, амперметра и вольтметра.Амперметр — это прибор, используемый для измерения силы тока в заданном месте. Вольтметр — это устройство, оснащенное щупами, которые можно прикоснуться к двум точкам цепи, чтобы определить разность электрических потенциалов в этих точках. Изменяя количество элементов в аккумуляторной батарее, можно изменять разность электрических потенциалов во внешней цепи. Вольтметр можно использовать для определения этой разности потенциалов, а амперметр можно использовать для определения тока, связанного с этим ΔV. Батарея может быть добавлена к блоку батарей, и процесс может быть повторен несколько раз, чтобы получить набор данных I-ΔV. График зависимости I от ΔV даст линию с наклоном, эквивалентным обратной величине сопротивления резистора. Это можно сравнить с заявленным производителем значением, чтобы определить точность лабораторных данных и достоверность уравнения закона Ома.
Величины, символы, уравнения и единицы!
Склонность обращать внимание на единицы измерения — неотъемлемая черта любого хорошего студента-физика.Многие трудности, связанные с решением задач, могут быть связаны с неспособностью уделить внимание единицам. По мере того, как все больше и больше электрических величин и соответствующих им метрических единиц вводятся в этот раздел учебника «Класс физики», становится все более важным организовать информацию в вашей голове. В таблице ниже перечислены некоторые количества, которые были введены до сих пор. Символ, уравнение и соответствующие метрические единицы также перечислены для каждой величины.Было бы разумно часто обращаться к этому списку или даже сделать свою собственную копию и дополнять ее по мере продвижения модуля. Некоторые учащиеся считают полезным сделать пятую колонку, в которой указано определение каждой величины.
Количество | Символ | Уравнение(я) | Стандартная метрическая единица | Другие подразделения |
Разность потенциалов (а.к.а. напряжение) | ΔV | ΔV = ΔPE/Q ΔV = I • R | Вольт (В) | Дж / С |
Текущий | я | I = Q / т I = ΔV / R | Ампер (А) | Усилитель или к/с или В/Ом |
Сила | п | P = ΔPE / т (больше будет) | Вт (Вт) | Дж/с |
Сопротивление | р | R = ρ • L / A R = ΔV / I | Ом (Ом) | В/А |
Энергия | E или ΔPE | ΔPE = ΔV • Q ΔPE = P • t | Джоуль (Дж) | В • С или Вт • с |
(Обратите внимание, что символ единицы измерения C представляет единицу измерения Кулоны. )
В следующем разделе Урока 3 мы еще раз рассмотрим количественную силу. Новое уравнение для мощности будет введено путем объединения двух (или более) уравнений из приведенной выше таблицы.
Мы хотели бы предложить … Зачем просто читать об этом и когда вы могли бы взаимодействовать с ним? Взаимодействие — это именно то, что вы делаете, когда используете один из интерактивов The Physics Classroom.Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактивного конструктора цепей постоянного тока. Вы можете найти его в разделе Physics Interactives на нашем сайте. Конструктор цепей постоянного тока предоставляет учащимся набор для создания виртуальных схем. Легко перетащите источник напряжения, резисторы и провода на рабочую область. Соедините их, и у вас есть схема. Добавьте амперметр для измерения тока и используйте датчики напряжения для определения падения напряжения. Это так просто. И не нужно беспокоиться о поражении электрическим током (если, конечно, вы не читаете это в ванной).
Проверьте свое понимание
1. Что из следующего приведет к уменьшению тока в электрической цепи? Выберите все подходящие.
а. уменьшить напряжение
б. уменьшить сопротивление
с. увеличить напряжение
д.увеличить сопротивление
2. Некоторая электрическая цепь содержит батарею с тремя ячейками, провода и лампочку. Что из нижеперечисленного заставит лампочку светить менее ярко? Выберите все подходящие.
а. увеличить напряжение батареи (добавить еще одну ячейку)
б. уменьшить напряжение батареи (удалить элемент)
с.уменьшить сопротивление цепи
д. увеличить сопротивление цепи
3. Вас, вероятно, предупредили, что следует избегать контакта с электрическими приборами или даже электрическими розетками мокрыми руками. Такой контакт более опасен, когда ваши руки мокрые (а не сухие), потому что мокрые руки вызывают ____.
а.напряжение цепи должно быть выше
б. напряжение цепи должно быть ниже
с. ваше сопротивление должно быть выше
д. ваше сопротивление должно быть ниже
эл. ток через вас будет ниже
4. Если бы сопротивление цепи увеличить втрое, то ток в цепи был бы ____.
а. одна треть
б. в три раза больше
с. без изменений
д. … бред какой то! Не было бы никакой возможности сделать такой прогноз.
5. Если напряжение в цепи увеличить в четыре раза, то ток в цепи будет ____.
а.одна четвертая часть
б. в четыре раза больше
с. без изменений
д. … бред какой то! Не было бы никакой возможности сделать такой прогноз.
6. Схема соединена с источником питания, резистором и амперметром (для измерения силы тока). Амперметр показывает ток 24 мА (миллиампер). Определить новый ток, если напряжение источника питания было …
а. … увеличилось в 2 раза, а сопротивление осталось постоянным.
б. … увеличилось в 3 раза, а сопротивление осталось постоянным.
с. … уменьшилось в 2 раза, а сопротивление осталось постоянным.
д. … оставался постоянным, а сопротивление увеличивалось в 2 раза.
эл. … оставался постоянным, а сопротивление увеличивалось в 4 раза.
ф…. оставался постоянным, а сопротивление уменьшалось в 2 раза.
г. … увеличилось в 2 раза, а сопротивление увеличилось в 2 раза.
ч. … увеличилось в 3 раза, а сопротивление уменьшилось в 2 раза.
я. … уменьшилось в 2 раза, а сопротивление увеличилось в 2 раза.
7.Используйте уравнение закона Ома, чтобы дать численные ответы на следующие вопросы:
а. Электрическое устройство с сопротивлением 3,0 Ом пропустит через себя ток силой 4,0 А, если на устройство будет воздействовать падение напряжения ________ Вольт.
б. Когда на электрический нагреватель подается напряжение 120 В, через нагреватель потечет ток силой 10,0 ампер, если сопротивление составляет ________ Ом.
с. Фонарик, который питается от 3 Вольт и использует лампочку с сопротивлением 60 Ом, будет иметь силу тока ________ Ампер.
8. Используйте уравнение закона Ома, чтобы определить недостающие значения в следующих цепях.
9. См. вопрос 8 выше. В цепях схем А и Б каким способом регулировали ток в цепях? А в цепях схем С и Г каким методом регулировали ток в цепях?
Текущее электричество — Мир науки
Цели
Описать компоненты, необходимые для замыкания электрической цепи.
Продемонстрируйте различные способы замыкания цепи (параллельные или последовательные).
Определите, как электричество используется в бытовых приборах.
Опишите связь между электроном и электрическим током.
Материалы
Фон
Электричество используется для работы вашего сотового телефона, питания поездов и кораблей, работы холодильника и двигателей таких машин, как кухонные комбайны. Электрическая энергия должна быть преобразована в другие формы энергии, такие как тепло, свет или механическая, чтобы быть полезной.
Все, что мы видим, состоит из крошечных частиц, называемых атомами. Атомы состоят из еще более мелких частей, называемых протонами, электронами и нейтронами.Атом обычно имеет одинаковое количество протонов (имеющих положительный заряд) и электронов (имеющих отрицательный заряд). Иногда электроны могут удаляться от своих атомов.
Электрический ток — это движение электронов по проводу. Электрический ток измеряется в ампер (ампер) и относится к количеству зарядов, которые перемещаются по проводу в секунду.
Чтобы протекал ток, цепь должна быть замкнута; другими словами, должен быть непрерывный путь от источника питания через цепь, а затем обратно к источнику питания.
Параллельный контур (верхний)
Цепь серии (нижняя)
Напряжение иногда называют электрическим потенциалом и измеряется в вольт . Напряжение между двумя точками цепи — это общая энергия, необходимая для перемещения небольшого электрического заряда из одной точки в другую, деленная на размер заряда.
Сопротивление измеряется в Ом и относится к силам, противодействующим потоку электронного тока в проводе.Мы можем использовать сопротивление в свою пользу, преобразуя электрическую энергию, теряемую в резисторе, в тепловую энергию (как в электрической плите), световую энергию (лампочка), звуковую энергию (радио), механическую энергию (электрический вентилятор) или магнитную энергию. энергия (электромагнит). Если мы хотим, чтобы ток протекал прямо из одной точки в другую, мы должны использовать провод с как можно меньшим сопротивлением.
Простая аналогия, помогающая понять эти тер мс: система водопроводных труб.
- Напряжение эквивалентно давлению воды, которое выталкивает воду в трубу
- Ток эквивалентен скорости потока воды
- Сопротивление похоже на ширину трубы – чем тоньше труба, тем выше сопротивление и тем тяжелее вода, протекающая через нее.
В этой серии заданий учащиеся будут экспериментировать с проводами, батареями и выключателями для создания собственных электрических цепей, одновременно изучая напряжение, силу тока и сопротивление.
Интересный факт!
Вы можете заметить, что символы некоторых единиц СИ (Международная система единиц) в этом плане урока написаны с заглавной буквы, например, вольт (В) и ампер (А), в отличие от тех, к которым вы привыкли. используя (м, кг). Это традиция использовать заглавную букву, когда единица называется в честь человека. В этих случаях единицы были названы в честь Алессандро Вольта и Андре-Мари Ампера. Единица сопротивления также была названа в честь человека (Георг Симон Ом), но использует символ Ω, который представляет собой греческую букву омега.Этим правилам важно следовать, поскольку строчные и прописные буквы могут обозначать разные единицы измерения, например, тонну (т) и тесла (Т). Единственным исключением является то, что допустимо использовать L для обозначения литров, так как букву «l» часто путают с цифрой «1»!
Словарь
амперметр : Прибор, используемый для измерения электрического тока в электрической цепи; единица измерения – ампер или ампер (А).
цепь : Путь для прохождения электрического тока.
проводник : Вещество, состоящее из атомов, которые свободно удерживают электроны, что позволяет им легче проходить через него.
электрический ток : непрерывный поток электрического заряда, перемещающийся из одного места в другое по пути; требуется для работы всех электроприборов; измеряется в амперах или амперах (А).
электрохимическая реакция : Реакция, которая чаще всего включает перенос электронов между двумя веществами, либо вызванный электрическим током, либо сопровождаемый им.
электрод : Проводник, через который ток входит или выходит из объекта или вещества.
электрон : субатомная частица, имеющая отрицательный электрический заряд.
изолятор : Вещество, состоящее из атомов, которые очень крепко удерживают электроны, не позволяя электронам очень легко проходить.
параллельная цепь : тип цепи, которая позволяет току течь по параллельным путям. Электрический ток разделяется между разными путями.Если лампочки соединены в параллельную цепь, а одна из ламп удалена, ток все равно сможет протекать, чтобы зажечь другие лампочки в цепи.
полупроводник : Вещество, состоящее из атомов, удерживающих электроны, с силой между проводником и изолятором.
последовательная цепь : Цепь, в которой все компоненты соединены по одному пути, так что через все компоненты протекает один и тот же ток. Если вынуть одну из лампочек, цепь разорвется, и ни один из других огней не будет работать.
напряжение : разность потенциалов между двумя точками цепи, например положительным и отрицательным полюсами батареи. Его часто называют «толчком» или «силой» электричества. Возможно иметь напряжение без тока (например, если цепь неполная и электроны не могут течь), но невозможен ток без напряжения. Измеряется в вольтах (В).
вольтметр : прибор, используемый для измерения разности электрических потенциалов между двумя точками цепи.
Прочие ресурсы
до н.э. Гидро | Power Smart для школ
до н.э. Гидро | Изучение простых схем
до н.э. Гидро | Изучение последовательных и параллельных цепей
до н.э. Гидро | Электробезопасность
Как это работает | Как работают светоизлучающие диоды
Чтобы приобрести мини-лампочки для рождественской елки: Home Depot, Canadian Tire
Для приобретения небольших учебных лампочек (номинальной мощностью не более 2 вольт каждая): Boreal Science
Раздел F: Ватты, Вольты и Амперы, о боже! — Энергетическое образование: концепции и практика
Мощность и время использования являются факторами, определяющими, сколько энергии используется электрическим прибором или частью оборудования.Мощность — это скорость, с которой энергия используется или выполняется работа в единицу времени. Электрическая мощность обычно измеряется в ваттах; следовательно, электрическая мощность часто упоминается как мощность. Чем выше мощность, тем большее количество электроэнергии потребляет электроприбор или часть оборудования в течение определенного периода времени. Например, микроволновая печь мощностью 1200 Вт потребляет в два раза больше электроэнергии и производит вдвое больше тепла за одну минуту, чем микроволновая печь мощностью 600 Вт.
Однако прибор с более высокой мощностью не будет потреблять много энергии, если он используется всего несколько секунд, в то время как прибор с меньшей мощностью может потреблять много энергии, если он используется в течение нескольких часов.Например, микроволновая печь мощностью 1200 Вт, используемая всего 30 секунд, потребляет меньше энергии, чем микроволновая печь мощностью 600 Вт за полчаса.
Соотношение между мощностью, временем использования и энергией, потребляемой прибором или частью оборудования, может быть выражено следующей формулой:
Мощность (мощность) x время = потребление энергии
Используя эту формулу, мы можем сравнить энергию, потребляемую электроприборами и оборудованием, чтобы увидеть, какие из них потребляют больше всего электроэнергии.
Мощность и другая электрическая информация часто указывается непосредственно на приборе или оборудовании. Например, этикетка на микроволновке может выглядеть так: |
|
Информация на этикетке говорит нам о том, что для работы микроволновой печи требуется 120 вольт электричества в виде переменного тока (AC), и она потребляет 5 ампер (ампер) тока во время ее использования.Число 60 Гц означает, что ток меняется со скоростью 60 раз в секунду. Мощность микроволновки 600 Вт.
Если на приборе указаны напряжение и сила тока, а мощность не указана, мощность в ваттах можно рассчитать, умножив напряжение на силу тока. Используя информацию на этикетке микроволновой печи, мощность в ваттах равна Напряжение x Ток = Мощность .
120 вольт x 5 ампер = 600 ватт
Если микроволновая печь используется в среднем полчаса каждый день, среднее количество энергии, используемой в день, составляет
.Мощность x Время = Использование энергии
600 Вт х 0.5 часов в день = 300 ватт-часов в день
Вольт, Ампер и Ватт: что это такое?
Напряжение
Все источники электроэнергии, такие как аккумуляторы или генераторы, могут выполнять работу (например, зажигать лампочки, включать электроприборы). Напряжение описывает этот потенциал. Чем больше напряжение, тем больший потенциал должен совершать источник электричества.
Возможность работать не следует путать с фактическим выполнением работы.Например, батарея, которая стоит на столе, но ни к чему не подключена, имеет напряжение или потенциал для выполнения работы, такой как зажигание лампочки. Однако батарея не зажжет лампочку, если она не подключена к лампочке в электрической цепи. Только тогда аккумулятор действительно будет работать.
Единицей напряжения является вольт. Один вольт определяется как выполнение работы в один джоуль (0,74 фут-фунта) для перемещения одного кулона (6,25 x 10 18 ) электронов.
Ток, производимый источниками электроэнергии, бывает двух основных форм: постоянный ток (DC) и переменный ток (AC). Постоянный ток – это ток, протекающий по цепи в одном направлении. Он вырабатывается источниками электричества, у которых положительная (+) клемма всегда остается положительной, а отрицательная (-) клемма всегда остается отрицательной. Например, батарея вырабатывает постоянный ток, потому что клеммы батареи всегда остаются неизменными; отрицательная клемма не меняется на положительную, и наоборот. Следовательно, ток всегда будет течь от отрицательной клеммы батареи к положительной клемме.
Переменный ток — это ток, течение которого в цепи периодически меняет направление. Он производится источником электричества, положительные и отрицательные клеммы которого переключаются или чередуются туда и обратно. Другими словами, одна клемма будет переключаться с положительной на отрицательную и обратно на положительную, а другая клемма будет переключаться с отрицательной на положительную и на отрицательную. Чередование клемм с положительного на отрицательный приводит к тому, что ток течет в одном направлении, затем в обратном направлении и обратно в исходное направление и так далее.Электрические генераторы на электростанциях по всей территории Соединенных Штатов производят переменный ток, который меняет направление 60 раз в секунду. Единицей, используемой для описания скорости изменения тока, является цикл в секунду, или герц (Гц).
Обычно мощность определяется как скорость выполнения работы или использования энергии в единицу времени. Электроэнергия конкретно относится к скорости, с которой источник электроэнергии производит энергию, или относится к скорости, с которой электрическое устройство, прибор или часть оборудования преобразует электрическую энергию в другие формы энергии.Чем быстрее источник электроэнергии (например, генератор) производит электрическую энергию, тем больше его выходная мощность. Чем быстрее электрическое устройство (например, лампочка) преобразует электрическую энергию в световую и тепловую, тем больше потребляемая им мощность. Электрическая мощность связана с напряжением и током по следующей формуле: Мощность = Напряжение x Ток
Единицей электрической мощности является ватт. Один ватт определяется как один джоуль (0,74 фут-фунта) в секунду или один вольт, умноженный на один ампер.Поскольку единица ватт используется очень часто, электрическая мощность часто упоминается как мощность в ваттах.
Напряжение, ток, сопротивление и электрическая мощность, общие основные электрические формулы, математические расчеты, калькулятор, формула для расчета мощности, энергия, работа, уравнение, мощность, ватты, общая электрическая круговая диаграмма, расчет электричества, электрическая ЭДС, напряжение, мощность, формула, уравнение, два разных уравнения для расчета мощности, общий закон Ома, аудиофизика.
электричество электроника формула колесо формулы амперы ватты вольты омы уравнение косинуса аудиотехника круговая диаграмма заряд физика мощность звукозапись расчет электротехника формула мощность математика пи физика отношение отношение напряжение ток сопротивление и электрическая мощность общие основные электрические формулы математические расчеты калькулятор формула расчета мощности расчет энергии работа уравнение мощность закон ватты понимание общая электрическая круговая диаграмма расчет электричества электрическая ЭДС напряжение формула мощности уравнение два разных уравнения для расчета мощности общий закон ома аудио физика эл ectricity электроника формула колесо формулы амперы ватты вольты омы уравнение косинуса аудиотехника круговая диаграмма заряд физика мощность звукозапись расчет электротехника формула мощность математика pi физика отношения отношения — sengpielaudio Sengpiel Berlinэлектрический ток , , , электрическое напряжение и электрический заряд 0
самые распространенные общие формулы, используемые в электротехнике
● ● Основные формулы и Расчеты ● ● ● электрическое напряжение V , imperage I , удельное сопротивление R , импеданс Z , Wattage и Power P Volt V , Ampere A, Сопротивление и Импеданс OHM Ω ω , и WATT W 0
Номинальный импеданс Z = 4, 8 и 16 Ом (громкоговорители) часто принимают в качестве сопротивления Р . Уравнение закона Ома (формула): В = I × R и уравнение степенного закона (формула): P = I × В . P = мощность, I или J = латинское: influare, международный ампер или интенсивность и R = сопротивление. В = напряжение, разность электрических потенциалов Δ В или E = электродвижущая сила (ЭДС = напряжение). |
Введите два любых известных значения и нажмите «Рассчитать», чтобы решить для двух других. Пожалуйста, введите только два значения. |
Используемый браузер, к сожалению, не поддерживает Javascript. Программа указана, но собственно функция отсутствует. |
Формула колеса электротехники
В происходит от «напряжение», а E от «электродвижущая сила (ЭДС)». E означает также энергия , поэтому мы выбираем V . Энергия = напряжение × заряд. Е = В × Q . Некоторым лучше придерживаться E вместо V , так что делайте это. Для R возьмите Z . |
12 самых важных формул: Напряжение V = R = R = R = √ ( p × R ) в Volts v Текущий I = V / R = P / V = √ ( R / R ) В Amperes a Сопротивление R = V / I = P / I 2 = V 2 2 / P в Ом Ω Power P = I × I = R × I 2 = V 2 / R в WATTS W |
См. также: Колесо формулы акустики (аудио)
The Big Power Formulas Расчет электрической и механической мощности (сила) |
|
Андр-Мари Ампре был французским физиком и математиком. Его именем названа единица измерения электрического тока в системе СИ, ампера . Алессандро Джузеппе Антонио Анастасио Вольта был итальянским физиком. Его именем названа единица измерения электрического напряжения в системе СИ вольт . Георг Симон Ом был немецким физиком и математиком. Его именем названа единица измерения электрического сопротивления в системе СИ Ом Ом. Джеймс Уатт был шотландским изобретателем и инженером-механиком. Его именем названа единица измерения электрической мощности (мощности) в системе СИ ватт . |
Мощность, как и все энергетические параметры, в первую очередь является расчетным значением. |
Слово «усилитель мощности» используется неправильно, особенно в аудиотехнике. Напряжение и ток могут быть усилены. Странный термин «усилитель мощности» стал пониматься как усилитель, предназначенный для управления нагрузкой например громкоговоритель. Мы называем произведение усиления по току и усиления по напряжению «усилением мощности». |
Совет: треугольник электрического напряжения В = I × R (закон Ома VIR)
Пожалуйста, введите два значения , третье значение будет рассчитано. Треугольник электрической мощности P = I × В (степенной закон PIV)
Пожалуйста, введите два значения , будет рассчитано третье значение.
С помощью магического треугольника можно легко вычислить все формулы. Вы прячетесь с
пальцем вычисляемое значение. Два других значения показывают, как производить вычисления.
Расчеты: закон Ома – магический треугольник Ома
Измерение входного и выходного импеданса
ПЕРЕМЕННЫЙ ТОК (AC) ~
В l = линейное напряжение (В), В p = фазное напряжение (В), I l = линейный ток (А), I p = фазный ток ампер)
Z = импеданс (Ом), P = мощность (ватт), φ = угол коэффициента мощности, VAR = вольтампер (реактивный)
Ток (однофазный): I = P / В p × cos φ | Текущий (3 этапаза): I = P = P / √3 V × COS Φ или I = P /3 V P × COS Φ |
Мощность (одна фаза): P = В p × I p ×cos φ | Power (3 этапаза): P = √3 V I × I × COS Φ или P = √3 V P × I P × cos φ |
Полная мощность S вычисляется по Пифагору, активная мощность P и реактивная мощность Q . S = √( P 2 + Q 2 )
Формулы мощности постоянного тока Напряжение В дюймов (В) расчет по току I дюймов (А) и сопротивлению R дюймов (Ом): В (В) = I (А) × R (Ом) Мощность P дюймов (Вт) расчет по напряжению В дюймов (В) и току I дюймов (А): (A) = V = V 2 (V) / R / R 5 (Ω) = I 2 (A) R (Ω) |
Истинный коэффициент мощности, а не обычный коэффициент мощности смещения 50/60 Гц
Определения электрических измерений | ||
Количество | Наименование | Определение |
частота f | герц (Гц) | 1/с |
усилие F | ньютон (Н) | кг · м/с² |
давление р | паскаль (Па) = Н/м² | кг/м · с² |
энергия Е | рабочий джоуль (Дж) = Н · м | кг · м²/с² |
мощность П | ватт (Вт) = | Дж/скг · м²/с³ |
электрический заряд Q | кулон (К) = A · с | А · с |
напряжение В | вольт (В) = Вт/А | кг · м²/А · с³ |
текущий я | ампер (А) = Q/s | А |
емкость Кл | фарад (Ф) = C/V = A · с/В = с/Ом | A² · s 4 /кг · м² |
индуктивность л | Генри (H) = Wb/A = V · с/A | кг · м²/А² · с² |
сопротивление R | Ом (Ом) = В/А | кг · м²A² · с³ |
проводимость G | Сименс (S) = А/В | A² · с³/кг · м² |
магнитный поток Φ | Вебер (Wb) = V · с | кг · м²/А · с² |
плотность потока B | тесла (T) = Втб/м² = В · с/м² | кг/А · с² |
Поток электрического заряда Q называется электрическим током I. Сумма заряда в единицу времени это изменение электрического тока. Ток течет при постоянной величине I. за время t , он переносит заряд Q = I × t . Для постоянной во времени мощности соотношение между зарядом и током: I = Q/t или Q = I×t. Благодаря этому соотношению основные единицы ампер и секунды кулон в Установлена международная система единиц.Кулоновскую единицу можно представить как 1 C = 1 A × s. Зарядка Q , (единица измерения в ампер-часах Ач), ток разряда I , (единица измерения в амперах А), время t , (единица измерения в часах ч). |
В акустике у нас есть » Акустический эквивалент закона Ома »
Соотношения акустических величин, связанных с плоскими прогрессивными звуковыми волнами
Преобразование многих единиц, таких как мощность и энергия
префиксы | длина | площадь | объем | вес | давление | температура | время | энергия | сила | плотность | скорость | ускорение | сила
[начало страницы]
.