Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Устройство солнечной батареи – Солнечные батареи: все про альтернативный источник энергии — solar-energ.ru. Принцип работы солнечной батареи для дома: устройство, схема, эффективность

Содержание

Солнечные батареи: принцип работы, как сделать своими руками в домашних условиях

Использование солнечной энергии для обеспечения жизненных потребностей в 21 веке является актуальным вопросом не только для корпораций, но и для населения. Теперь использование солнечных батарей для получения экологической электроэнергии привлекает много людей своей доступностью, автономностью, неиссякаемостью и минимальными вложениями. Теперь эти явления настолько привычны и обыденны, что уже давно прочно обосновались в нашу каждодневную жизнь.

Данный источник электроэнергии используется для освещения, функционирования бытовых электроприборов и отопления. Уличные фонари на солнечных батареях используются повсеместно в городской черте, на дачных участках и территориях загородных коттеджей.

Содержание

Принцип работы солнечной батареи

Устройство предназначено для непосредственного преобразования лучей солнца в электричество. Этот действие называется фотоэлектрическим эффектом. Полупроводники (кремневые пластины), которые используются для изготовления элементов, обладают положительными и отрицательными заряженными электронами и состоят их двух слоев n-слой (-) и р-слой (+). Излишние электроны под воздействием солнечного света выбиваются из слоев и занимают пустые места в другом слое. Это заставляет свободные электроны постоянно двигаться, переходя из одной пластины в другую вырабатывая электричество, которое накапливается в аккумуляторе.

Как работает солнечная батарея, во многом зависит от ее устройства. Первоначально фотоэлементы изготавливались из кремния. Они и сейчас очень популярны, но поскольку процесс очистки кремния достаточно трудоемок и затратен, разрабатываются модели с альтернативными фотоэлементами из соединений кадмия, меди, галлия и индия, но они менее производительны.

КПД солнечных батарей с развитием технологий вырос. На сегодняшний день это показатель возрос от одного процента, который регистрировался в начале столетия, до более двадцати процентов. Это позволяет в наши дни использовать панели не только для обеспечения бытовых нужд, но и производственных.

Технические характеристики

Устройство солнечной батареи довольно простое, и состоит из нескольких компонентов:

  • Непосредственно фотоэлементы / солнечная панель;
  • Инвертор, преобразовывающий постоянный ток в переменный;
  • Контроллер уровня заряда аккумулятора.

Аккумуляторы для солнечных батарей купить следует с учетом необходимых функций. Они накапливают и отдают электроэнергию. Запасание и расход происходит в течение всего дня, а ночью накопленный заряд только расходуется. Таким образом, происходит постоянное и непрерывное снабжение энергией.

Чрезмерная зарядка и разрядка батареи укорачивает ее эксплуатационный срок. Контроллер заряда солнечной батареи автоматически приостанавливают накопление энергии в аккумуляторе, когда он достиг максимальных параметров, и отключают нагрузку устройства при сильной разрядке.

(Tesla Powerwall — аккумулятор для солнечных панелей на 7 КВт — и домашняя зарядка для электромобилей)

Сетевой инвертор для солнечных батарей является самым важным элементом конструкции. Он преобразовывает полученную от солнечных лучей энергию в переменный ток различной мощности. Являясь синхронным преобразователем, он совмещает выходное напряжение электрического тока по частоте и фазе со стационарной сетью.

Фотоэлементы могут соединяться как последовательно, так и параллельно. Последний вариант увеличивает параметры мощности, напряжения и тока и позволяет устройству работать, даже если один элемент потеряет функциональность. Комбинированные модели изготовлены с использованием обеих схем. Эксплуатационный срок пластин около 25 лет.

Установка солнечных батарей

Если конструкции будут использоваться для электрообеспечения жилых пространств, то место установки следует выбирать тщательно. Если панели будут загорожены высотными зданиями или деревьями, то трудно будет получить необходимую энергию. Их необходимо разместить там, где поток солнечных лучей максимален, то есть на южную сторону. Конструкцию лучше установить под наклоном, угол которого равен географической широте месторасположения системы.

Солнечные панели должны размещаться таким образом, чтобы хозяин имел возможность периодически очищать поверхность от пыли и грязи или снега, поскольку это приводит к более низкой способности выработки энергии.

Солнечная батарея своими руками

Те, кто хочет сэкономить, задумываются, как сделать солнечную батарею в домашних условиях самостоятельно, чтобы она обладала необходимыми эксплуатационными параметрами и полностью обеспечивала энергетические потребност. Это особенно актуально для мест отдаленных от главных артерий цивилизации.

Солнечные батареи своими руками в домашних условиях изготавливаются из соответствующих элементов, которые можно купить в открытом доступе в специализированных компаниях или через интернет магазины. Если кремниевые пластины должны приобретаться у производителей, то остальные элементы, такие как лента, рамка, пленка, стекло, припой и прочее можно вполне обнаружить и дома в хозяйстве.

Солнечная батарея своими руками из подручных средств изготавливается некоторыми умельцами из медных листов, зажимов, мощных электроплит, соли и из других материалов. Такие кустарные устройства не смогут полностью обеспечить необходимой электроэнергией и могут использоваться лишь в небольших масштабах.

Лучше всего солнечные батареи купить у производителя, поскольку они обладают гарантией и необходимыми функциональными и эксплуатационными параметрами, и, значит, не подведут. Производство солнечных батарей базируется на применении новейших технологий, которые постоянно развиваются, предлагая более усовершенствованные модели. В зависимости от размеров устройств, они могут использовать для различных целей в местах, где нет снабжения электроэнергией. Они встречаются на калькуляторах, часах, различных мобильных устройствах.

Так, например, рюкзак с солнечной батареей будет незаменимым помощником тех, кто любит путешествовать с комфортом. Он накопит достаточно энергии, чтобы зарядить фонарик для освещения туристической палатки или чтобы во время похода заряжать необходимые гаджеты. Судя по отзывам, солнечные батареи используются часто и с удовольствием для удовлетворения разнообразных нужд не только на природе, но и в быту.

Современные устройства со встроенными солнечными модулями

  • Power bank с солнечной батареей – внешний накопитель с фотоэлементами для преобразования солнечных лучей в заряд аккумулятора. Он обладает несколькими портами и предназначен для зарядки смартфонов или планшетов. Это незаменимое устройство для тех кто, много времени тратят в дороге и пользуются гаджетами. Устройство, зависимо от модели может дополняться различными функциями, как, к примеру, фонариком.
  • Робот конструктор – наборы с различными элементами, из которых можно собрать несколько конструкций, которые двигаются автономно. Это лучшая игрушка для любознательных детей. Робот конструктор на солнечной батарее купить интересно будет не только малышам, но и вполне взрослым дяденькам, поскольку захватывающим является не только движение робота, но и сам процесс сборки.
  • Уличные садовые светильники на солнечных батареях – идеальное решение для сада, огорода или приусадебного участка. Благодаря накопленному заряду они будут светиться всю ночь. Для этого не нужно прокладывать специальную проводку. Их можно брать с собой на рыбалку или семейный поход. Чрезвычайная мобильность, компактность и удобство делают фонари самыми востребованными изделиями на солнечных батареях.

Возможности эксплуатации настолько разнообразны, а технологии так быстро развивается, что скоро солнечные модули охватят все сферы жизни современного человека.

mbhn.ru

Солнечные батареи: все про альтернативный источник энергии — solar-energ.ru. Поворотное устройство для солнечной батареи своими руками: как сделать трекер

В настоящее время множество людей переходит на солнечные фонарики для сада, к примеру, или на зарядное устройство для телефона. Как всем известно, и понятно, работает такая зарядка от полученной днем солнечной энергии. Однако светило не стоит на месте целый день, а потому, создав поворотное устройство для солнечной батареи своими руками, можно повысить эффективность зарядка примерно в половину, передвигая батарею по направлению к солнцу на протяжении всего дня.

Преимущества

Трекер для солнечных панелей своими руками обладает несколькими очень весомыми преимуществами, которые стоят того, чтобы потратить время на его изготовление и установку.

  1. Первое и наиболее важное преимущество – это то, что поворот солнечного элемента в течение всего дня может повысить КПД батареи примерно в половину. Достигается это за счет того, что максимально эффективная работа солнечных батарей достигается в период, когда лучи от светила падают перпендикулярно на фотоэлемент.
  2. Второе преимущество устройства создается под влиянием первого. Из-за того, что батарея повышает свою эффективность и производит вполовину больше энергии, отпадает необходимость установки дополнительных стационарных батарей. К тому же сама поворотная батарея может обладать меньшим фотоэлементом, чем при стационарном способе. Все это экономит большие материальные средства.

Составные элементы трекера

Создание поворотного устройства для солнечных панелей своими руками включает в себя те же комплектующие, что и заводские товары.

Список обязательных деталей для создания такого устройства:

  1. Основа или каркас – состоит из несущих деталей, которые подразделяются на две категории – это подвижные и неподвижные. В некоторых случаях каркас имеет подвижную часть лишь с одной осью – горизонтальной. Однако есть модели и с двумя осями. В таких случаях нужны актуаторы, которые управляют вертикальной осью.
  2. Описанный ранее актуатор также должен входить в конструкцию и обладать устройствами не только поворота, но и устройствами контроля за этими действиями.
  3. Необходимы детали, которые будут защищать устройство от капризов погоды – гроза, сильный ветер, дождь.
  4. Возможность удаленного управления и доступа к поворотному устройству.
  5. Элемент, преобразующий энергию.

Но стоит отметить, что сбор такого устройства иногда дороже, чем покупка уже готового, а потому в некоторых случаях упрощается до несущих деталей, актуатора, управление актуатором.

Электронные системы поворота

Принцип работы

Принцип работы поворотного устройства очень прост и держится на двух деталях, одна из которых механическая, а другая электронная. Механическая часть поворотного устройства соответственно отвечает за поворот и наклон батареи. А электронная часть регулирует моменты времени и углы наклона, по которым действует механическая часть.

Электрооборудование, используемое вместе с солнечными батареями, заряжается от самих же батарей, что в некотором роде также экономит средства на подпитку электроники.

Положительные стороны

Если говорить о достоинствах электронного оборудования для поворотного устройства, то стоит отметить удобство. Удобство заключается в том, что электронная часть устройства будет в автоматическом режиме управлять процессом поворота батареи.

Данное преимущество не единственное, а является лишь еще одним в списке тех, что были перечислены ранее. То есть помимо экономии средств и повышения КПД, электроника освобождает человека от надобности вручную осуществлять поворот.

Как сделать своими руками

Создать трекер для солнечных батарей своими руками несложно, так как схема его создания проста. Для того чтобы создать работоспособную схему трекера своими руками необходимо иметь в наличии два фоторезистора. Кроме этих составляющих, нужно также приобрести моторное устройство, которое будет поворачивать батареи.

Подключение этого устройства осуществляется при помощи Н – моста. Этот метод подключения позволит преобразовывать ток силой до 500 мА с напряжением от 6 до 15 В. Схема сборки позволить не только понять, как работает трекер для солнечных батарей, но и создать его самому.

Чтобы настроить работу схемы, необходимо провести следующие действия:

  1. Удостовериться в наличия питания на схему.
  2. Провести подключение двигателя с постоянным током.
  3. Установить фотоэлементы нужно рядом, чтобы добиться одинакового количества солнечных лучей на них.
  4. Необходимо выкрутить два подстроечных резистора. Сделать это нужно против часовой стрелки.
  5. Запускается подача тока на схему. Должен включиться двигатель.
  6. Вкручиваем один из подстроечников до тех пор, пока он не упрется. Помечаем это положение.
  7. Продолжить вкручивание элемента до тех пор, пока двигатель не начнет крутиться в противоположную сторону. Помечаем и это положение.
  8. Делим полученное пространство на равные отделы и посередине устанавливаем подстроечник.
  9. Вкручиваем другой подстроечник до тех пор, пока двигатель не начнет немного дергаться.
  10. Возвращаем подстроечник немного назад и оставляем в таком положении.
  11. Для проверки правильности работы можно закрывать участки солнечной батареи и смотреть за реакцией схемы.

Часовой механизм поворота

Устройство часового механизма поворота в основе своей довольное простое. Для того чтобы создать такой принцип работы, нужно взять любые механические часы и соединить их с двигателем солнечной батареи.

Для того чтобы заставить работать двигатель, необходимо установить один подвижный контакт на длинную стрелку механических часов. Второй неподвижный закрепляется на двенадцати часах. Таким образом, каждый час, когда длинная стрелка будет проходить через двенадцать часов, контакты будут замыкаться, и двигатель будет поворачивать панель.

Временной промежуток в один час, выбран исходя из того, что за это время солнечное светило проходит по небу около 15 градусов. Установить еще один неподвижный контакт можно на шесть часов. Таким образом, поворот будет проходить каждые полчаса.

Водяные часы

Данный способ управления поворотным устройством был изобретен одной предприимчивой канадской студенткой лет и отвечает за поворот лишь одной оси, горизонтальной.

Принцип работы также прост и заключается в следующем:

  1. Солнечная батарея устанавливается в изначальное положение, когда солнечные лучи попадают на фотоэлемент перпендикулярно.
  2. После этого к одной из сторон цепляют емкость с водой, а к другой стороне цепляют какой-нибудь предмет такого же веса, что и емкость с водой. Дно емкости должно обладать небольшим отверстием.
  3. Через него вода будет понемногу вытекать из емкости, из-за чего будет уменьшаться вес, а панель будет потихоньку наклоняться в сторону противовеса. Определить размеры отверстия для емкости придется экспериментально.

Данный способ является наиболее простым. К тому же он экономит материальные средства, которые ушли бы на покупку двигателя, как в случае с часовым механизмом. К тому же, провести монтаж поворотного механизма в виде водяных часов можно самостоятельно, даже не обладая какими-либо специальными знаниями.

Видео

Как сделать трекер для солнечной батареи своими руками, вы узнаете из нашего видео.

solar-energ.ru

Устройство и принцип работы солнечной батареи

Принцип работы солнечной батареи основан на фотоэлектрическом эффекте, вне зависимости от ее разновидности и устройства.

Характеристика устройств

Ученым удалось обнаружить природные вещества, в которых происходит преобразование света в электроэнергию. Этот процесс они стали называть фотоэлектрическим эффектом. Впоследствии им удалось научиться управлять этим явлением. Потом благодаря полупроводниковым материалам они смогли создать небольшие эффективные приборы – фотоэлементы.

После этого было налажено производство миниатюрных преобразователей и эффективных гелиопанелей. КПД кремниевых панелей составляет 18–22%.

Устройство солнечного модуля

 

Из данных модулей собирают солнечные батареи, преобразующие фотоны солнечной энергии в постоянный ток, накапливающийся в аккумуляторах или трансформирующийся в переменный ток напряжением 220 V, необходимый для питания многих бытовых и промышленных электроприборов.

Такие источники питания незаменимы для удаленных районов, где нет централизованного электроснабжения или часто случаются перебои с электричеством. Кроме того, они позволяют экономить затраты на электроснабжение в быту и в некоторых отраслях промышленности.

Разновидность солнечных батарей

В зависимости от материала изготовления и способа производства, солнечные батареи подразделяют на кремниевые и плёночные.

Кремневые элементы – это устройства, сделанные из кремния, так как этот химический элемент обладает повышенной производительностью, поэтому на него сейчас огромный спрос на мировом рынке. По структуре их подразделяют на три подтипа.

Монокристаллические батареи

Это солнечные батареи состоят из силиконовых ячеек, соединенных между собой. Их удается создавать только из чистейшего кремния, который добывают с помощью выращивания кристаллов. Когда монокристалл становится твёрдым, его делят на тончайшие пластинки, которые соединяют между собой с помощью сетки из металлических электродов. Такая технология изготовления очень дорогая и трудоемкая, поэтому её используют меньше, хотя у монокристаллических батарей высокий КПД, около 22%.

Монокристаллические солнечные батареи

Поликристаллические батареи

Это солнечные батареи состоят из поликристаллов, полученных благодаря постепенному охлаждению сплава кремния. Данная технология изготовления обходится дешевле. Но в этом случае понижается КПД на 4–5%. Это характеризуется тем, что в поликристаллах образуются зоны с зернистыми границами, именно они понижают эффективность поликристаллических батарей.

Устройство поликристаллической батареи

Аморфные батареи

Это солнечные батареи делают из кремневодорода или силана. У аморфных батарей маленький КПД, порядка 5%, но они обладают многими достоинствами:

  • гибкие;
  • эффективно работают в пасмурную погоду;
  • очень тонкие (1 мкм).

Плёночные батареи подразделяются на несколько видов:

  • на основе теллурида кадмия;
  • на основе сплава меди, индия и селена, их КПД достигает 16–20%;
  • полимерные фотоэлементы из органики, у которых КПД небольшой 5–6%.

Аморфная солнечная батарея — устройство

Принцип работы

На отрицательно заряженную панель воздействует солнечный свет, при этом образуется еще множество отрицательных зарядов и «пустот». Электрическое поле, присутствующее в p-n переходе, разделяет положительные и отрицательны частицы. При этом положительные переходят в верхний слой, а отрицательные в нижний. Это приводит к разности потенциалов, в результате возникает постоянное напряжение. Поэтому становится ясно, что каждый фотопреобразователь действует как батарейка. И если к нему подключить нагрузку, в цепи возникнет ток. При этом его сила зависит от следующего:

  • степень инсоляции;
  • габариты фотопреобразователя;
  • вид фотоэлемента;
  • полное сопротивление подключенных электроприборов.

Схема работы солнечного электроснабжения

Когда рассматривается схема солнечной батареи, то становятся заметны в ней загадочные наименования узлов. Но на первый взгляд, схема электрической цепи и устройство батареи выглядят просто.

Солнечные модули – это основные элементы солнечной батареи. Эти прямоугольные солнечные панели собирают из определенного количества фотоэлементов. Изготавливают фотопанели разные по мощности и напряжению, кратному 12V.

Панели плоской формы хорошо ложатся на поверхностях. Модульные блоки соединяются с помощью взаимосвязанных подключений в гелиобатарею. Главная цель устройства – это трансформация энергии света в постоянный ток необходимой величины.

Схема соединения солнечных батарей

Аккумуляторы – это устройства, накапливающие электричество. Когда потребители подключены к электрической сети, энергонакопители сохраняют в себе излишки электроэнергии.Аккумуляторный блок питает сеть нужным объемом энергии и в то же время поддерживает в ней стабильное напряжение, после возрастания величины потребления до высоких значений. Это бывает ночью и в пасмурную погоду, когда не работают солнечные панели.

Контроллер является посредником между солнечным модулем и аккумуляторами. Он корректирует степень заряженности батарей и защищает их от выкипания, что может произойти от перезарядки или уменьшения электрического потенциала ниже приделов, требуемых для стабильного функционирования системы.

Инвертор – это узел, который выполняет функцию трансформации постоянного тока солнечных панелей и аккумуляторов в переменный ток напряжением 220V. Именно это напряжение требуется для большинства бытовых и промышленных электроприборов.

Принцип работы солнечной батареи

Пример устройства

Основной смысл подключения солнечных источников электропитания в точном определении нагрузки и правильной настройке контролёра заряда. Самая примитивная схема представлена в устройстве садового фонаря. Эти фонари сегодня становятся очень популярными за счёт яркого освещения. Конечно, зимой свет фонарей, питающихся с помощью фотоэлектрического эффекта солнечной энергией, не такой яркий. В этом случае в схему входит фотоэлемент, накопительный аккумулятор и лампа.

Видео по теме: Солнечная батарея (как устроена)

teplyhouse.ru

Принцип работы солнечных батарей для дома, как устроена? (видео)

Во все времена человечество стремилось использовать по максимуму блага предоставленные природой. Доказательство тому изобретённые солнечные батареи. Принцип работы солнечных батарей достаточно прост. Именно благодаря им ранее наши калькуляторы работали в любое время суток, летом и зимой, вне зависимости от вида и частой смены батарейки. Современный мир характеризуется применением солнечной энергии в разных сферах и масштабах, начиная от актуальных планшетов и заканчивая самолётами. О том, как устроена солнечная батарея, её виды и принцип работы Вас проинформирует данная статья.

ОГЛАВЛЕНИЕ

  • Немного из истории
  • Определение и основы трансформации энергии
  • Классификация

Немного из истории

Как известно, солнечная батарея является не первым изобретением, использующим всеохватывающую энергию Солнца в качестве альтернативы электрической энергии. Первые попытки применения солнечного света — терминальные электростанции, которые имеют более распространённое название как «коллекторы». Принцип их действия заключался в нагревании воды до 100 ° С при помощи солнечных лучей, итогом чего становилась выработка электричества. Работа коллекторов состояла из многоступенчатой трансформации энергии: скопление солнечных лучей, кипячение жидкости, образование пара, движение парового двигателя и преобразование тепловой энергии в механическую.

В отличие от коллектора солнечная батарея напрямую трансформируют продукцию Солнца в электрическую энергию. Также следует отметить такую особенность солнечной батареи, как использование света, а не тепла, что позволяет образовывать электроэнергию даже зимой.

На сегодняшний день принцип работы этих приспособлений основывается на преобразовании действия лучей в электрический ток (фотоэлектрический эффект) при помощи специальных полупроводников, которые и составляют всю батарею.

Первооткрывателями фотоэлектрического эффекта являются три заслуженных учёных физика. Само явление такового процесса описал физик французского происхождения — Александр Эдмон Беккерель в 1839 году. Далее в 1873 году был открыт первый полупроводник для осуществления действия фотоэлектрического эффекта английским инженером-электриком Уиллоуби Смит. А более подробно были описаны принцип работы, схема солнечной батареи и подтверждены законы предыдущих открывателей в 1905 году всемирно известным лауреатом Нобелевской премии Альбертом Эйнштейном.

Определение и основы трансформации энергии

Устройство солнечной батареи состоит из пластины, оснащённой цепочкой соединённых полупроводников (фотоэлементов). Фотоэлементы выполняют функцию преобразования солнечного света в электрический ток. Поэтому для того, чтобы понять принцип действия данного приспособления, следует изучить его основы, а именно фотоэлементы.

Фотоэлементы – полупроводники, трансформирующие действие квантов электромагнитного излучения, способных двигаться лишь со скоростью света, в электрическую энергию. Процесс данной трансформации называется фотоэлектрическим эффектом, появляющимся под воздействием солнечного света на структуры фотоэлемента. Особенность структуры заключается в неоднородности, которую создают при помощи сплавов различных материалов и примесей для изменения её свойств с точки зрения физики и химии.

Наши читатели рекомендуют! Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

загрузка…

Эти самые примеси создают отрицательные и положительные переходы (р- n), которые являются основой работы двух полупроводников и проводимости между ними. Помимо этого метода, образующего неоднородность структуры фотоэлементов, применяются также такие:

  • объединение, различающихся по ширине запрещённой зоны, полупроводников;
  • изменение химического состава фотоэлемента с целью образования варизонной структуры;
  • комбинирование вышеперечисленных способов.

Трансформация энергии напрямую зависит от физических и электрических свойств структуры и электрической проводимости полупроводников (фотопроводимость).  Фотоэлемент состоит из разного типа электронов и слоёв их. В качестве электрода, на котором возникает заряд, выступает отрицательный тип, и соответственно, анодом (приёмником) этого заряда является положительный тип. Накопление солнечной энергии происходит таким образом: выходящие из отрицательного слоя под воздействием солнечных лучей, электроны принимают аноды. Выходя из слоя положительных электронов, они возвращаются в исходное место. Далее действия повторяются. Ввиду чего энергия Солнца остаётся внутри устройства.

Классификация

В зависимости от материала и метода изготовления различают такие виды солнечных батарей: кремниевые и плёночные.

Кремневые батареи – приспособления, основным действующим материалом которых является кремний. Кремний характеризуется высокой производительностью сравнительно с другими материалами, используемыми для создания данных устройств, поэтому пользуется большим спросом. По своей структуре кремниевые устройства делятся на три подвида:

  1. Монокристаллические батареи – устройства, состоящие из силиконовых ячеек, соединённых с друг другом. Такие приспособления производятся при условии использовании абсолютно чистого кремния, добытого способом выращивания кристаллов Чохральского. Когда монокристалл переходит в твёрдую форму, его разделяют на тончайшие пластины. Монокристаллические пластины соединяют с сеткой металлических электродов. Данная технология производства солнечных устройств достаточно дорогостоящая. Поэтому используется реже, хотя имеет сравнительно высокий коэффициент полезного действия (КПД), порядка 22 %. В зимнее время за счёт короткого светового дня батареи менее производительны.
  2. Поликристаллические батареи — устройства, которые состоят из поликристаллов, полученных путём медленного охлаждения сплава кремния. Техника производства таких устройств обходится значительно дешевле, чем монокристаллических батарей. Но вместе со снижением стоимости устройства, уменьшается его КПД на 4-5 единиц. Это обусловлено образованием в поликристаллах зон с зернистыми границами, снижающих эффективность фотоэлементов.
  3. Аморфные батареи – приспособления, производимые при помощи пл ёночной технологии из кремневодорода или силана. КПД аморфных батарей составляет всего 5%, но они имеют ряд особых преимуществ, таких как: гибкость, эффективность действия при пасмурной погоде зимой и толщину 1 мкм.

Плёночные устройства делятся на такие виды:

  • на основе теллурида кадмия с использованием плёночного технологии;
  • на основе сплава меди, индия и селена, КПД таких устройств составляет 16-20%;
  • полимерные плёночные устройства, производимые из органических фотоэлементов, КПД их составляет 5-6 %.

Схема подключения солнечных батарей заключается в расчете нагрузки и настройке контролёра заряда. Самую простую схему можно рассмотреть на примере садового фонаря. Такие садовые фонари постепенно обретают широкое распространение за счёт яркого освещения дорожек, газонов и приусадебных участков. Зимой свет садовых фонарей на солнечном питании отличается меньшей яркостью, чем в другую пору. Схема в данном случае состоит из светочувствительного элемента, накопительного аккумулятора, солнечной батареи.

На сегодняшний день ведутся разработки по производству масштабных полей солнечных батарей на территории Антарктики. Такие электростанции будут накапливать энергии в течение полугодового  полярного дня, наступающего на северных территориях – в летнее время, а на юге – в зимнее. Солнечная энергия является достойной альтернативой электрическому току, поэтому спектр её применения широк. Батареи, работающие от солнечного света, используют даже для производства космических аппаратов.

 

electricvdele.ru

Принцип работы солнечной батареи и ее устройство

Относительно недавно считалась фантастической сама идея обеспечивать частные дома электричеством автономно. Сегодня это объективная реальность. В Европе солнечные батареи используются уже продолжительное время, ведь это практически неисчерпаемый источник дешевой энергии. У нас получение электричества от таких устройств только обретает популярность. Данный процесс происходит не слишком быстро, и виной тому – высокая стоимость их.

Принцип работы солнечной батареи основан на том, что в двух кремниевых пластинах, покрытых разными веществами (бором и фосфором), под действием солнечного света возникает электрический ток. В пластине, которая покрыта фосфором, появляются свободные электроны.

Отсутствующие частицы образуются в тех пластинах, которые покрыты бором. Электроны начинают двигаться под действием света солнца. Так образуется электрический ток в солнечных батареях. Тонкие жилы из меди, которыми покрыта каждая батарея, отводят от нее ток и направляют по назначению.

С помощью одной пластины можно питать энергией небольшую лампочку. Вывод напрашивается сам собой. Для того, чтобы солнечные батареи обеспечивали дом электричеством достаточной мощности, нужно чтобы их площадь была довольно большой.

Кремниевые механизмы

Итак, принцип работы солнечной батареи понятен. Ток вырабатывается при воздействии ультрафиолетового света на специальные пластины. Если в качестве материала для создания таких пластин используется кремний, то батареи называются кремниевыми (или кремневодородными).

Подобные пластины требуют очень сложных систем производства. Это, в свою очередь, сильно влияет на стоимость изделий.

Кремниевые солнечные батареи бывают разных типов.

Монокристаллические преобразователи

Представляют собой панели со скошенными углами. Их цвет всегда чисто черный.

Если говорить о монокристаллических преобразователях, то принцип работы солнечной батареи кратко можно охарактеризовать как средне эффективный. Все ячейки светочувствительных элементов такой батареи направлены в одну сторону.

Это позволяет получить самый высокий результат среди подобных систем. КПД батарей этого типа достигает 25%.

Минусом является то, что такие панели должны быть всегда обращены лицевой стороной к солнцу.

Если солнце прячется за тучами, опускается к горизонту, или еще не успело взойти, то батареи будут вырабатывать ток довольно слабой мощности.

Поликристаллические

Пластины этих механизмов всегда квадратные, темно-синего цвета. В состав их поверхности включены неоднородные кристаллы кремния.

КПД поликристаллических батарей не настолько высок, как у монокристаллических моделей. Он может достигать 18%. Однако этот недостаток компенсируется достоинствами, о которых будет сказано ниже.

Принцип работы солнечной батареи этого типа позволяет изготавливать их не только из чистого кремния, но также из вторичных материалов. Этим объясняются некоторые дефекты, встречающиеся в оборудовании. Отличительной особенностью механизмов данного типа является то, что они могут достаточно эффективно вырабатывать электрический ток даже при пасмурной погоде. Такое полезное качество делает их незаменимыми в местах, где рассеянный солнечный свет является обычным повседневным явлением.

Аморфные панели из кремния

Аморфные панели дешевле остальных, это обуславливает принцип работы солнечной батареи и ее устройство. Каждая панель состоит из нескольких тончайших слоев кремния. Их изготавливают путем напыления частиц материала в вакууме на фольгу, стекло или пластмассу.

КПД панелей значительно меньше, чем у предыдущих моделей. Он достигает 6%. Кремниевые слои довольно быстро выгорают на солнце. Уже через полгода использования этих батарей их эффективность упадет на 15%, а иногда и на все 20.

Два года работы полностью исчерпают ресурс действующих веществ, и панель нужно будет менять.

Но есть два плюса, из-за которых эти батареи все же покупают. Во-первых, они работают даже в пасмурную погоду. Во-вторых, как уже говорилось, они не такие дорогие, как другие варианты.

Фотопреобразователи гибридного типа

Аморфный кремний является основой для расположения микрокристаллов. Принцип работы солнечной батареи делает ее похожей на поликристаллическую панель. Отличие батарей такого типа состоит в том, что они способны вырабатывать электрический ток большей мощности в условиях рассеянного солнечного света, например, в пасмурный день или на рассвете.

Кроме того, батареи работают под воздействием не только солнечного света, но и в инфракрасном спектре.

Полимерные пленочные солнечные преобразователи

У этой альтернативы панелям из кремния есть все шансы занять лидирующее положение на рынке солнечных батарей. Они напоминают пленку, состоящую из нескольких слоев. Среди них можно выделить сетку алюминиевых проводников, полимерный слой активного вещества, подложка из органики и защитной пленки.

Такие фотоэлементы, объединенные друг с другом, образуют пленочную солнечную батарею рулонного типа. Эти панели легче и компактнее кремниевых. При их изготовлении не используется дорогостоящий кремний, и сам процесс производства не такой затратный. Это делает рулонную панель дешевле всех прочих.

Принцип работы солнечной батареи делает их КПД не слишком высоким.

Он достигает 7%.

Процесс изготовления панелей этого типа сводится к многослойному печатанию на пленку фотоэлемента. Производство налажено в Дании.

Еще одним преимуществом является возможность резать рулонную батарею и подгонять ее под любой размер и форму.

Минус лишь один. Батареи только начали производить, поэтому еще довольно непросто ими обзавестись.

Но есть повод полагать, что эти элементы быстро обретут заслуженную хорошую репутацию среди потребителей, что даст изготовителям возможность наладить производство в более крупных масштабах.

Отопление солнечной энергией домов

Принцип работы солнечной батареи для отопления дома кардинально отличает их от всех описанных выше приспособлений. Это совершенно другое устройство. Описание следует ниже.

Главной деталью отопительной системы, работающей на энергии солнца, является коллектор, принимающий его свет и преобразовывающий его в кинетическую энергию. Площадь этого элемента может варьироваться от 30 до 70 квадратных метров.

Для крепления коллектора используется специальная техника. Между собой пластины соединены металлическими контактами.

Следующим компонентом системы является накопительный бойлер. В нем происходит трансформация кинетической энергии в тепловую. Он участвует в нагревании воды, литраж которой может достигать 300 литров. Иногда такие системы поддерживаются дополнительными котлами на сухом топливе.

Завершают систему солнечного отопления настенные и напольные элементы, в которых по тонким медным трубам, распределенным по всей их площади, циркулирует нагретая жидкость. Благодаря низкой температуре запуска панелей и равномерности теплоотдачи, помещение прогревается достаточно быстро.

Как работает солнечное отопление?

Давайте подробно рассмотрим принцип работы солнечных батарей от ультрафиолетового света.

Между температурой коллектора и накопительного элемента появляется разница. Носитель тепла, что чаще всего является водой, в которую добавлен антифриз, начинает циркулировать о системе. Совершаемая жидкостью работа является именно кинетической энергией.

По мере прохождения жидкости через слои системы кинетическая энергия преобразовывается в тепло, которое и используется для отопления дома. Этот процесс циркуляции носителя обеспечивает помещение теплом и позволяет сохранять его в любое время суток и года.

Итак, мы выяснили принцип работы солнечных батарей.

fb.ru

Устройство солнечной батареи

Солнечные батареи можно подключить к совершенно разным устройствам, даже к телефону, это очень выгодно, поскольку мы будем получать бесплатное электричество собственного производства.

В этой статье мы рассмотрим схемы подключения батарей, контроллера, инвертора и других электронных устройств.

Правильно подключить солнечные панели, это залог успешной, длительной работы альтернативного источника энергии.

Соединение солнечных батарей может быть произведено тремя способами, солнечные батареи можно подключить:

  1. параллельно
  2. последовательно
  3. комбинированно

Как подключить солнечные батареи между собой, решать вам, поскольку соединение их в группы, зависит от желаемого результата и мощности оборудования которое будет работать в ситеме.

Чтоб получилось грамотно подключить, нужно правильно по параметрам подобрать всю ситему.

Подключение панели к контроллеру

Отвечая на вопрос как подключить контроллер к солнечной батареи, то здесь все очень просто, плюсовой выход из солнечной батареи, соединяем на плюсовую клемму контроллера, соответственно, минус на минусовую.

Если панель будет располагаться на определенном расстоянии от него, вам нужны будут дополнительно специальные провода для солнечных батарей.

Как видите подключить солнечную панель контроллеру легко, но прежде чем соединять провода, контроллер должен быть подключен к аккумулятору. Подключение контроллера солнечных батарей к аккумулятору, предохраняет оборудование от выхода из строя, поскольку подавая питание на него, вы сможете настроить контроллер по параметрам солнечной панели.

К примеру если у вас С.панель на 200 ватт.

которая выдает 8 ампер- а аккумулятор маленький, то зарядка таким током запросто убьет аккумулятор. Поэтому сначала настраиваем контроллер, потом его подключаем.

Кроме того большинство контроллеров имеют прямой выход на лампочку соответствующей мощности. если он на 12 вольт- то можно подсоединить лампочку на 12V.

Подключение к аккумулятору

Если вы не знаете как подключить солнечную панель к аккумулятору, то она соединяется исключительно через контроллер.

Конечно же на свой страх и риск, можно подключить панель напрямую, и аккумулятор будет заряжаться, но такая система должна быть под присмотром.

Если после захода солнца их не разъединить, панель его снова разрядит.

Схема подключения батареи к аккумулятору, заключается в простом соединении проводов- плюс на плюс; минус на минус.

Подключение к инвертору

Как подключить инвертор солнечной к батарее?
Инвертор- предназначен для преобразования постоянного тока 12-24-48 Вольт, в переменный 220.

Подключение батарей напрямую инвертору, может быть реализовано только в двух случаях: когда он имеет встроенный контроллер или в наличии есть сетевой инвертор.

Во всех остальных вариантах, инвертор соединяется исключительно с аккумуляторным блоком, поскольку для адекватной работы особенно при перемене нагрузки, для него должен быть достаточный запас энергии.

При соединении с солнечной батареей напрямую- из-за нехватки энергии он будет аварийно отключаться.

Если говорить о схеме подключения сетевого инвертора, то его должны соединять специалисты, поскольку такое оборудование для альтернативных источников, приобретают зачастую в коммерческих целях для заработка по зеленому тарифу.

Но если он используется в собственных целях, то следует знать какие они бывают.

Сетевой инвертор выпускается двух типов, с резервированием и без.

В первом варианте (с резервированием)- такое оборудование позволяет иметь собственный аккумуляторный блок, разъеденять солнечную станцию на потоки, где только излишки вырабатываемой энергии будут отдаваться в общую сеть населенного пункта.

Сетевой инвертор без резервирования — подключается непосредственно в общую сеть города через счетчик- за которую производитель получает деньгипо Зеленому Тарифу в конце месяца.

Подключение к коллектору

У многих возникает вопрос: как подключить солнечный коллектор?

На схеме представлен так сказать летний вариант (без отопления) подключения солнечного коллектора.

Устройство солнечной батареи и солнечной панели

Этой системой можно пользоваться круглый год, горячая вода будет практически всегда, примерно 35-40 гр. Контур обогрева снабжен аварийным клапаном, датчиками температуры, другими необходимыми вещами которые можно прочитать в описании на картинке.

Как подключить коллектор к отоплению?

Схема подключения солнечного коллектора к отоплению и водопроводу более сложная, требует правильной установки всех компонентов системы.

Система имеет буферную теплоаакумулирующую емкость. Как и в случае обычного горячего водоснабжения, здесь используется специальный бак, внутренний резервуар который должен быть хорошо утеплен. Зимой коллектор будет играть вспомогательную роль в системе отопления, что скажется на меньшем расходе покупных энергоресурсов. В качестве теплоносителя в зимние системы ГВС заливают незамерзающие жидкости.

Опубликовано 19 Март 2014

Устройство солнечной батареи. Роль диодов в схеме солнечной панели

Понимание принципов работы солнечных панелей крайне важно при проектировании и эксплуатации электростанций. В этой статье мы изложим некоторые физические основы работы солнечных ячеек, а также особенности конструкции солнечных батарей.

Устройство солнечной батареи

Рассмотрим устройство солнечной батареи.

Фотоэлектрическая ячейка является полупроводниковой гетероструктурой, имеющей один p-n переход, который возникает на границе раздела двух полупроводниковых пластин p и n типа, соответственно, с «дырочной» и электронной проводимостью. На переднюю и заднюю поверхность ячейки нанесены электрические контакты. При падении света на солнечный элемент фотоны «выбивают» электроны из кристаллической решетки, образуя таким образом электронно- дырочную пару. Далее носители заряда свободно движутся под действием электрического поля p-n перехода.

Таким образом, на обкладках солнечной ячейки появляется электро-движущая сила (ЭДС).

Простейшая эквивалентная схема фотоэлектрической ячейки выглядит следующим образом:

Рис.1 Эквивалентная схема солнечной ячейки.

Здесь Rп – последовательное  сопротивление солнечного элемента, Rш – шунтовое сопротивление солнечного элемента.

Мощность всей солнечной батареи складывается из мощности входящих в нее солнечных элементов, которые могут быть соединены последовательно или параллельно.

Устройство и работа солнечной батареи

Введем обозначения: I – максимальный ток отдельного элемента, U – напряжение отдельного элемента, Nпс – число последовательно соединенных элементов, Nпр – число параллельно соединенных элементов, Iб – максимальный ток солнечной батареи, Uб – напряжение солнечной батареи.

При последовательном соединении солнечных ячеек имеем: Uб=U* Nпс, Iб=I.

Рис.2 Последовательное соединение солнечных элементов.

При параллельном соединении: Uб=U, Iб=I* Nпр

Рис.3 Параллельное соединение солнечных элементов.

Руководствуясь данным принципом можно рассчитать максимальный ток и напряжение для любой системы солнечных элементов

Приведем пример.

Ячейки соединены в три каскада по 2 штуки, как показано на Рис.4

Рис.4 Схема соединения солнечных ячеек  в три каскада.

Для данной системы имеем: Uб=2U, Iб=3I.

Роль диодов в схеме солнечной панели

Как правило, в солнечной батареи все элементы соединены последовательно, вследствие чего возникает так называемая проблема «темного пятна». Рассмотрим солнечные панели, состоящие из большого числа элементов, соединенных последовательно.

К батарее подключена нагрузка Rн. (Рис. 5)

Рис.

5 Схема солнечной панели из большого числа элементов и под нагрузкой

Предположим, один из солнечных элементов затенен. Сопротивление затененной ячейки намного больше сопротивления нагрузки, следовательно, на ней выделится почти вся энергия солнечной батареи, вследствие чего ячейка может перегреться и выйти из строя.

Для борьбы с таким явлением параллельно каждой ячейке нужно включить шунтирующий диод Rш, как показано на Рис.

Рис. 6 Схема солнечной батареи с шунтирующими диодами.

В результате, когда солнечный элемент освещен, шунтирующий диод находится под прямым напряжением смещения самого солнечного элемента и ток не пропускает.

Когда элемент затенен, то есть его напряжение меньше падения напряжения на нем при протекании тока, создаваемого остальными ячейками в цепи, шунтирующий диод «открыт» обратным напряжением смещения.

В реальной жизни диодами шунтируется не каждый солнечный элемент (это слишком сложно и дорого), а группы элементов в солнечной батарее. Например, батарея из 72 ячеек 125*125мм, обычно имеет в своем составе три шунтирующих диода.

В рамках данной статье, мы затронули основные физические принципы работы солнечных фотоэлектрических систем.

Более подробно тема изложена в монографии Г. Раушенбах. Справочник по проектированию солнечных батарей: пер. с англ. – М.:  энергоатомиздат, 1983.

Е.А. Коблучко

Вам также могут быть интересны другие статьи..

Устройство солнечной батареиЧто такое мобильные солнечные системы?Особенности и виды солнечных электростанцийВернуться к списку статей…

September 29, 2011

Солнечные батареи

Солнечная батарея – или как оно работает?

Солнечная батарея – практически волшебное слово употребляемое в любой научной фантастике. Однако настоящая солнечная батарея – это далеко не обычная панель.

В науке вообще нет понятия “солнечные батареи”, равно как и “солнечная батарея” – зато есть понятия ячеек, панелей и многого другого, о чем мы расскажем вам в этой статье.

В современном мире все уже пришли к пониманию того, что на нефти и газе долго цивилизация не проживет. Следовательно надо переходить на другие источники, а именно солнце, геотермальные, ветер и вода.

Про ветрогенераторы мы уже писали, теперь пора писать про устройство солнечной батареи.

Впервые фотогальванический эффект наблюдал в 1839 году французский физик Антуан Анри Беккерель, однако первый прототип солнечной батареи сделал в 1883 году американский изобретатель Чарльз Фриттс. Устройство первой солнечной батареи представляло из себя полупроводник покрытый сверхтонким слоем золота.

Эффективность батареи была около 1%.

В 1888 году Александр Столетов создал первый в мире фотоэлектрический элемент. А в 1905 году Альберт Эйнштейн в своей работе объяснил явление фотоэлектрического эффекта, за что был удостоен Нобелевской премии по физике в 1921 году. В 1946 году солнечная батарея современного вида была запатентована Расселом Олом (Russell Ohl).

Современные высокоэффективные солнечные батареи на кристаллическом кремнии были созданы в Лабораториях Белла (Bell Laboratories), инженерами Дэрил Чапин (Daryl Chapin), Кельвином Соулзером Фуллером (Calvin Souther Fuller) и Геральдом Пирсоном (Gerald Pearson) в 1954 году.

С тех пор солнечная батарея начала свое победное шествие по миру.

Устройство солнечных батарей

Современные солнечные батареи делаются в основном на основе кремния. Существуют две технологии изготовления – монокристаллическая и поликристаллическая. Последняя более современна и используется для получения более дешевых солнечных батарей.

Солнечная батарея

Также существуют солнечные батареи созданные на основе теллурида кадмия, селенидов меди индия и галия, а также аморфного кремния.

Солнечная батарея (называемые также фотоэлектрические элементы) — это твердотельные электрические устройства, предназначенные для преобразования солнечной энергии в электрическую, посредством фотоэлектрического эффекта.

Каждая солнечная батарея состоит из солнечных ячеек.

Сборки солнечных ячеек используются для создания модулей, для выработки электричества из солнечной энергии. Такие сборки монтируются вместе, для получения группы из солнечных модулей, которые в свою очередь устанавливаются на специальные поворотные устройства или слеллажи, ориентирующие группу солнечных модулей на солнце, которая также включает в себя другой электронный обвес.

Такие сборки называются солнечными панелями.

Надо заметить, что в русском языке и все детали сборки вместе и по отдельности называют солнечными батареями.

Это неверно, поскольку слово “батарея” подразумевает под собой аккумулирование и/или выделение энергии. По сути, батареи в солнечной панели тоже есть — это могут быть аккумуляторы, которые накапливают заряд, поступающий от солнечных сборок. Но солнечная сборка это скорее генератор.

Также следует сказать, что в английском языке присутствует упоминание как солнечного модуля, так и солнечной панели.

Различие состоит в том, что солнечный модуль нельзя разобрать на солнечные ячейки, он представляет собой самостоятельное, спаянное и гидроизолированное устройство. В то время как солнечную панель можно разобрать на солнечные модули.

В данном цикле статей мы будем использовать более привычное словосочетание — солнечная батарея, имея ввиду именно неразборный солнечный модуль, собранный из солнечных ячеек.

Вообще видов фотогальванических ячеек много.

Они необязательно используются для создания солнечных батарей. Они могут служить для обнаружения света в любых других системах, обнаруживая, например инфракрасное излучение. Также фотоэлектрические ячейки используются для измерения интенсивности светового потока.

Присутствует несколько обозначений фотоэффекта.

Фотовольтаический эффект (греч. φῶς (phōs) означающее свет и англ.

“voltaic” по имени Вольты) — это возникновение электродвижущей силы под действием электромагнитного поля.

Фотогальванический эффект — возникновение электрического тока при освещении полупроводника или диэлектрика или возникновение электро-движущей силы на освещаемом образце при разомкнутой цепи.

В тоже время фотоэффект — это испускание электронов или любого электромагнитного излучения в веществах, будь то твердые или жидкие.

Для удобства мы будем употреблять термин фотогальванические элементы.

Применения солнечных батарей

Фотогальванические модули обычно заключены в своеобразный корпус.

Сверху их покрывают стеклом, которое позволяет солнечному свету проникать до самих ячеек, в тоже время защищая их от внешних механических и химический воздействий. Сзади модули защищены пластиковой крышкой с креплениями.
Солнечные ячейки обычно соединены в модулях в серии, чтобы создавать достаточное напряжение, в этом случае они соединяются по последовательной схеме.

Параллельное соединение ячеек дает больший ток, но оно проблематично из-за условий внешней среды и электрических эффектов, протекающих в панелях.

Например затенение отдельных строк из ячеек (солнечный модуль имеет строчную структуру) может привести к обратным токам через затененные ячейки от освещенных товарищей. Это может привести к серьезному снижению эффективности и даже выходу ячеек из строя.

Строки из ячеек должны быть самостоятельными элементами, например четыре строки по десять вольт.

Для предотвращения теневых эффектов используются специальные схемы распараллеливания и защиты строк.

Солнечные модули могут соединяться в панели последовательно или параллельно, для достижения необходимого соотношения напряжения и силы тока. Однако специалистами рекомендуется использовать специальные независимые системы распределения нагрузки – MPPT (maximum power point trackers).
Системы распределения помогают избежать фиксированной цепи, переключая модули в параллельный или последовательный режимы для компенсации затененных участков солнечной панели.

Собранная с солнечной панели энергия поступает к потребителям через инвенторы напряжения.

В автономных системах, энергия запасается в батареях и используется по надобности.

Как работают солнечные батареи

Солнечная батарея работает следующим образом.

1. Фотоны ударяются о поверхность солнечной батареи и поглощаются её рабочим материалом, например кремнием.
2. Фотоны, сталкиваясь с атомами вещества выбивают из него его родные электроны.

В результате чего возникает разность потенциалов. Свободные электроны начинают двигаться внутри вещества, чтобы погасить разность потенциалов. Возникает электрический ток. Так как солнечная батарея это полупроводник, электроны движутся только в одном направлении.
3. Получаемый ток солнечная батарея преобразует в постоянный и отдает его потребителю или аккумулятору.

Стоимость солнечных панелей (солнечных батарей) неуклонно снижается год от года.

Это происходит благодаря разработке новых методов изготовления ячеей, изучению материалов и методов их обработки.
Начиная с середины 2010 года цена производимого солнечной батареей ватта электрической энергии упала до 1,2-1,5 долларов для кристаллических модулей.

Материалы и технологии

“Здесь интересно упомянуть, что кремний по английски — silicon, а силикон — silicone).”

Солнечные батареи делаются из кристаллического кремния.
Кристаллический кремний это самое популярное на сегодняшний день вещество для изготовления солнечных ячеек.

Его также называют «кремний солнечного качества». Этот вид кремния подразделяют на различные виды, определяемые методиками изготовления и размером кристаллов.

Монокристаллический кремний

Чаще всего изготовляется методом Чохральского или тигельным методом. Схематично он показан на рисунке.
Принципиально он не отличается от методов выращивания кристаллов соли или медного купороса.
В большом тигле расплавляется кремний.

После чего в него опускается затравка, представляющая собой кремниевый стержень-затравку, вокруг которого и начинает нарастать новый кристалл. Затравка и тигель вращаются в противоположные стороны. В результате получается огромный круглый кристалл кремния, который нарезают на пластинки, из которых изготавливают ячейки солнечной батареи. Однако главным недостатком этого метода является большое количество обрезков, а также специфическая форма монокристаллических солнечных ячеек — квадрат с обрезанными углами.

Поликристаллический кремний

Поликристаллический кремний является более дешевым и более простым в производстве.

В отличие от монокристаллического кремния, который являет собой единый кристалл с регулярной решеткой, поли-кремний это совокупность из массы различных кристаллов, образующих единый кусок. Отсюда появляется специфический блик, похожий на металлические хлопья, на поверхности солнечных батарей, сделанных из него.

Ленточный кремний

Это тип поликристаллического кремния.

Он изготавливается путем наплавнения тонких слоев кремния друг на друга. Образует поликристаллическую структуру. Не требует последующей распиловки, поэтому еще более дешев в производстве. Однако он менее эффективен.

Помимо подключение солнечных батарей между собой, прежде стоит рассмотреть схему общего подключения системы.

Типичная схема подключения батарей в системе приведена на картинке выше. Как видно на примере, основные её элементы это несколько солнечных батарей, соединенных параллельно, контроллер заряда акб, сами аккумуляторные батареи, инвертор для преобразования тока.

Среди слабеньких альтернативных систем выработки энергии, самыми популярными бывают 12-вольтовые системы с преобразованием в 220 вольт.

Чтобы понимать, как работает такая схема, мы рассмотрим элементы поподробнее.

Батареи, поглощающие свет солнца вырабатывают энергию которая направляется по следующей цепи в схеме.

  • Контроллер заряда-разряда АКБ, будет следить за напряжением аккумуляторов.
  • Аккумулятор, накапливает генерированную электроэнергию.
  • Инвертор – преобразовывает 12-24 Вольт в переменные 220, для работы электрооборудования.

Схема подключения работает таким образом, что на входе в аккумуляторную батарею поступает регулируемое контроллером постоянное напряжение 12 или 24 вольт.

Далее с помощью инвертора мы получаем сетевое напряжение как в обычной розетке.

Сетевая схема подключения

Сетевая схема подключения солнечных батарей подразумевает соединение домашней электростанции с энергосетью населенного пункта.

По сути система должна отличаться большей мощностью (обычно это от 10- до 30 кВ/ч), поскольку предназначена для продажи излишка ресурса государству.

Принцип работы простой- вся энергия или только излишки, через мощный инвертор и счетчик, отдается в общую сеть.

В конце месяца производится дебет — если есть излишки, они автоматически выплачиваются хазяину на карточку.

Такая схема подключения выгодна тем, что при наличии мощной солнечной электростанции, можно не только полностью обеспечить свой дом электроэнергией, но так-же иметь дополнительный пассивный доход.

Если долго нет солнечных дней- электричество можно брать с сети привычным способом.

В схему включены мощные сетевые инверторы для фотогальванических систем синхронизированного по частоте и фазе типа.

Их применяют в системах бесперебойного питания, обеспечивая полную независимость потребителя от нестабильной работы сети энергоснабжения.

Сетевые подразделяются на типы: прямой и гибридный.

Обыкновенные- могут работать одновременно с централизованной сетью подачи электроэнергии, не требуют наличия аккумуляторов. Гибридный инвертор — может работать в обоих случаях.

Хотя такая схема требует серьезных вложений, она очень популярна в европе, набирает обороты в нашей стане.

Схемы соединения солнечных батарей

Для работы солнечной системы панелей для дома, применяют различные варианты подключения батарей в зависимости от их количества, мощности. Преобразование тока происходит в батареях, которые сформированы в определенные группы.

Ниже представлена принципиальная схема последовательного подключения солнечных батарей.

Последовательное соединение солнечных батарей в группы, применяется в случаях, когда вам нужно поднять уровень напряжения, не изменяя мощности на одном уровне.

К примеру: если подключить два модуля мощностью по 200Вт с напряжением 12В, в итоге мы получим солнечный PV-массив 200Вт.

напряжением 24В.

Важно!!! Стоит подчеркнуть, что схема соединения солнечных батарей в 24В — требует наличие точно такого 24В соединения аккумуляторного блока.

Параллельное соединение солнечных панелей

Параллельная схема удобна в случае, когда в силу различных причин, нужно оставить напряжение батарей согласно заводским параметрам, но есть необходимость увеличить мощность всего солнечного PV-массива.

К примеру, если взять 2 солнечные батареи мощностью 250Ват с напряжением 24В.

Образование группы происходит путем подключения плюсовых проводов друг в друга, а минусовых выводов – во вторую группу. Такими образом, на выходе напряжение остается прежним как и было 24В, однако мощность возрастает в два раза- до 500 Вт.

Параллельно-последовательное подключение

Параллельно-последовательная схема, применяется когда необходимо подключить нестандартные группы батарей, или фотоэлектрические модули разной мощности.

Схема подключения инвертора

Подключение инвертора.

При самостоятельной сборке домашней электростанции дома, возникает много текущих вопросов, на один из которых мы решили написать ответ. Чтобы ваша система работала правильно, нужно знать как грамотно подключить инвертор к аккумулятору чтоб ничего не спалить. Особых сложности с подключением акб не должно возникать, стоит только придерживаться основных правил.

Заводом изготовителем настоятельно рекомендуется соблюдать полярность, использовать кабели идущие в комплекте с инвертором.

Во избежание больших потерь энергии, нерекомендуется их удлинять.

Во избежание последствий форс-мажорных ситуаций, рекомендуется установить предохранитель или подключать оборудование через автоматический выключатель.

При первом подключении инвертора к аккумулятору- вас может несколько напугать характерное искрение — это нормально.

Солнечная батарея – устройство солнечной батареи

Схема подключения аккумуляторных батарей

Подключение блока АКБ к инвертору. Источники бесперебойного питания (инверторы) работают на различном напряжении постоянного тока от аккумуляторных батарей, которое зависит от параметров завода производителя.

Потому нередко приходится подбирать индивидуальные схемы подключения аккумуляторных блоков под различные мощности используемого оборудования.

Для реализации таких потребностей существует несколько вариантов соединения.

Принцип работы и устройство солнечной батареи

В профессиональных кругах панели, которые преобразуют солнечный свет в электричество, называются фотоэлектрическими преобразователями, которые обычно называют солнечными батареями в разговорной речи или в письменной форме приемлемыми для самых разных продуктов. Принцип работы этих устройств, чьи первые рабочие копии появились достаточно долго, на самом деле довольно легко понять человека, обладающего только знаниями со скамейки.

Не секрет, что пересечение p-n может преобразовывать свет в электричество. В школьных экспериментах нет ничего необычного, чтобы экспериментировать с транзистором с верхней крышкой, которая позволяет свету падать на перекрестке p-n. Подключив вольтметр к нему, можно записать, как такой транзистор создает недопустимый электрический ток в процессе облучения светом.

И если мы увеличим пересечение p-n, что произойдет в этом случае?

Устройство и принцип работы солнечных батарей: система и компоненты, история создания

В рамках научных экспериментов предыдущих лет эксперты сделали p-n пересечение с большими пластинами, что привело к появлению фотоэлектрических преобразователей, называемых солнечными батареями.

Несмотря на долгую историю их существования, сохранился принцип работы современных солнечных батарей.

Улучшены только конструкции и материалы, используемые в производстве, что заставляет производителей постепенно увеличивать как важный параметр, так и коэффициент фотоэлектрического преобразования или эффективность устройства. Следует также отметить, что размер выходного тока и напряжение солнечной энергии напрямую зависят от внешнего освещения, которое влияет на него.

В структуре солнечных элементов связь p-n и пара электродов используются для удаления выходного напряжения

На рисунке выше видно, что верхний слой пересечения p-n, который имеет избыток электронов, соединен с металлическими пластинами, действующими как положительный электрод, испускает свет и придает дополнительную жесткость элементу.

Нижний слой в конструкции солнечного элемента имеет электронный недостаток и к нему прикреплена сплошная металлическая пластинка, которая действует как отрицательный электрод.

Технология, используемая для создания солнечной батареи, влияет на ее эффективность

В идеале считается, что солнечная батарея почти на 20% эффективна. Однако на практике и, по мнению экспертов сайта www.sun-battery.biz, около 10%, несмотря на то, что для солнечных батарей больше, для которых оно меньше.

Фактически, это зависит от технологии, на которой выполняется p-n пересечение. Они работают быстрее всего, и самый высокий процент производительности по-прежнему остается солнечными элементами, которые основаны на одном кристалле или поликристаллическом кремнии. И другие становятся все более распространенными из-за относительной дешевизны.

Тип конструкции, принадлежащей солнечной батарее, можно определить невооруженным глазом. Монокристаллические световые преобразователи исключительно черные и серые, а поликристаллические модели на основе кремния излучают голубую поверхность. Поликристаллические солнечные элементы, полученные литьем, оказались дешевле в производстве. Однако поликристаллические и монокристаллические панели имеют один недостаток — образование на них солнечных элементов не имеет гибкости, что в некоторых случаях не мешает.

Ситуация меняется с появлением солнечной батареи с 1975 года на основе аморфного кремния, активный элемент которого имеет толщину от 0,5 до 1 мкм, что обеспечивает их гибкость. Толщина обычных кремниевых элементов достигает 300 мкм. Однако, несмотря на поглощение легкого аморфного кремния, который примерно в 20 раз выше, чем у обычного кремния, эффективность солнечных батарей такого типа, а именно эффективность, не превышает 12%. Для моно- и поликристаллических вариантов это может достигать 17% и 15% соответственно.

Материал, из которого изготовлены панели, влияет на характеристики солнечных элементов

Чистый кремний при производстве солнечных батарей практически не используется. Чаще всего в качестве примеси для изготовления пластины, производящей положительный заряд, используют бор и мышьяк для отрицательно заряженных пластинок.

Кроме того, в производстве солнечных батарей все чаще используются такие компоненты, как арсенид, галлий, медь, кадмий, телоурид, селен и другие. Благодаря им солнечные панели стали менее чувствительными к изменениям температуры окружающей среды.

Большинство солнечных элементов могут накапливать энергию, представляющую системы

В сегодняшнем мире солнечные элементы часто все реже встречаются, часто называются так называемыми системами. Учитывая, что фотоэлектрические элементы производят электричество только при прямом воздействии солнечного света или света, ночью или в пасмурный день, они становятся практически бесполезными.

С системами солнечной энергии все по-другому. Они оснащены батареей, которая может накапливать электрический ток в течение дня, когда солнечная батарея генерирует его, а ночью он может дать накопленную нагрузку потребителям.

Солнечная система представляет собой комбинацию солнечной батареи и аккумулятора

Для увеличения мощности, выходного напряжения и тока на основе солнечных элементов формируются панели, в которых отдельные элементы соединены последовательно или параллельно.

stroitel12.ru

Принцип работы и устройство солнечной батареи

Одним из источников энергии является солнечная батарея, генерирующая альтернативную энергию Солнца. Она появилась сравнительно недавно, но уже успела обрести популярность в странах Евросоюза, за счет высокой эффективности и приемлемой стоимости.

Солнечная батарея является почти неисчерпаемым источником энергии, способным накапливать и преобразовывать световые лучи в энергию и электричество. В странах СНГ новый источник энергии постепенно только набирает популярность. (Кстати, статью о том, как выбрать солнечную батарею, Вы можете прочитать здесь.)

Компоненты

Само устройство и принцип работы энергоисточника можно называть простым. Оно состоит всего из двух частей:

  • основного корпуса;
  • преобразовательных блоков.

В большинстве случаев корпус делают из пластика. Он похож на обыкновенную плитку, к которой прикреплены преобразовательные блоки.

Преобразовательным блоком является кремниевая пластинка. Она может изготавливаться двумя способами:

  • поликристаллическим;
  • монокристаллическим.

Поликристаллический способ является менее затратным, а монокристаллический считается наиболее эффективным.

Все остальные дополнительные части (например, контроллеры и инверторы), гаджеты и микросхемы присоединяют только для увеличения работоспособности и функционирования источника энергии. Без них солнечная батарея также сможет работать.

Имейте в виду: для того чтобы данный источник начал функционировать нужно правильно и аккуратно подключить все преобразовательные блоки.

С расчётом мощности солнечных батарей может помочь данная статья: https://teplo.guru/eko/solnechnyie-batarei-kpd.html

Существует два вида их подключения:

  • последовательное;
  • параллельное.

Разница лишь в том, что в параллельном соединении происходит увеличение силы тока, а при последовательном увеличивается напряжение.

Если есть необходимость в максимальной работе сразу двух параметров, то используется параллельно-последовательное.

Но стоит учитывать, что высокие нагрузки могут способствовать тому, что некоторые контакты могут перегореть. Для предотвращения этого используют диоды.

Один диод способен защитить одну четвертую часть фотоэлемента. Если их нет в устройстве, то есть большая вероятность, что весь источник энергии прекратит своё функционирование после первого же дождя или урагана.

Важный момент: ни накопление, ни сила тока совершенно не соответствуют возможным параметрам современной бытовой техники, поэтому приходится перераспределять и накапливать электроэнергию.

Для этого рекомендуется дополнительно подключать минимум два аккумулятора. Один будет являться накопительным, а второй запасным или резервным.

Приведем пример работы дополнительных аккумуляторов. Когда на улице хорошая и солнечная погода, то заряд идет быстро и через малое количество времени появляется уже лишняя энергия.

Поэтому весь этот процесс контролирует специальный реостат, который способен в определенный момент перевести всю ненужную электроэнергию в дополнительные резервы.

Познакомиться с отзывами владельцев солнечных батарей можно в данной статье: https://teplo.guru/eko/solnechnyie-batarei-dlya-doma-otzyivy.html

Принцип работы

В чем же заключается принцип работы альтернативного источника энергии?

Во-первых, фотоэлементы являются кремниевыми пластинами. В свою очередь, кремний по своему химическому составу имеет максимальную схожесть с чистым силицием. Именно этот нюанс дал возможность понизить стоимость солнечной батареи и запустить ее уже на конвейер.

Кремний в обязательном порядке кристаллизуют, так как сам по себе он является полупроводником. Монокристаллы изготавливаются намного проще, но при этом не имеют много граней, за счет чего электроны имеют возможность двигаться прямолинейно.

Важно знать, что добавлением фосфора или мышьяка повышается электропроводность. Также, одним из важных свойств силиция является невидимость для инфракрасного излучения.

Благодаря этому элементу, преобразовательные блоки поглощают только полезные части солнечного спектра.

Последовательность действий солнечной батареи:

  1. Принцип работы солнечной батареи. (Для увеличения нажмите)

    Энергия солнца попадает на пластины.

  2. Пластины нагреваются и освобождают электроны.
  3. Электроны активно двигаются по проводникам.
  4. Проводники дают заряд аккумуляторам.

Вот мы и выяснили, из чего состоят солнечные батареи и каков их принцип действия.

Подробнее узнать об основных видах солнечных панелей можно здесь: https://teplo.guru/eko/vidyi-solnechnyih-paneley.html

В заключение хотелось бы добавить, что такую альтернативу можно сделать дома самостоятельно, при наличии всех необходимых частей.

Смотрите видео, в котором в легкой и познавательной форме объясняется принцип работы солнечных батарей:

teplo.guru

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *