Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Утеплитель теплоизоляция: Утеплители: материалы для стен дома внутри и снаружи, виды теплоизоляционных продуктов

обзор теплоизоляционных материалов для наружных и внутренних работ, требования и характеристики

Правильно подобранный и установленный утеплитель позволяет улучшить микроклимат в помещении, т.к. он способствует сохранению тепла зимой и прохлады в летний период. Формирование дополнительной теплоизоляции экономически выгодно, т.к. помогает снизить расходы на отопление и охлаждение помещения.

Теплоизоляционные материалы, представленные на рынке, различаются не только характеристиками, но и сферами применения. Одни могут использоваться только для формирования утеплительного пирога внутри помещения, в то время как другие подходят для наружных работ.

Содержание

Что это такое?

Все строительные материалы отличаются разной степенью теплопроводности. Одни, несмотря на большую толщину, легко пропускают тепло, в то время как другие даже при небольшой толщине сдерживают теплопотерю. Теплоизолятор – это материал, отличающийся низкой теплопроводностью. Его использование для изготовления утеплительных конструкций способствует снижению теплоотдачи строения. Рассматривая вопрос, что такое теплоизоляция, следует учесть, что это материал, который при правильном монтаже выполняет функцию термоса для дома.

Сейчас в продаже имеются разные виды утеплителей. По форме они бывают листовыми, рулонными, сыпучими, напыляемыми и т.д. Благодаря наличию большого количества разновидностей можно подобрать оптимальный вариант для утепления стен, крыши, пола и т.д.

Утеплители

Параметры, которым должен соответствовать материал-утеплитель

Утеплители для дома должны отличаться рядом характеристик, которые нужно учитывать, чтобы выбрать лучший теплоизоляционный материал. К ним относится:

  • низкая теплопроводность;
  • гигроскопичность;
  • пароизоляция;
  • огнестойкость;
  • высокая способность задерживать шумовые загрязнители;
  • биостойкость;
  • экологичность;
  • долговечность;
  • устойчивость к деформации;
  • простота монтажа.

Главным параметром выбора подобного материала является показатель теплоэффективности. Чем он ниже, тем больше тепловой энергии будет сохраняться в помещении. Кроме того, важно соотношение тепловодности с толщиной слоя. Самый тонкий и при этом имеющий высокий коэффициент теплопроводности – пенополиуретан.

Второй важнейший параметр, на который следует обратить внимание, – это гигроскопичность, т.е. способность впитывать влагу. Материалы, которые отличаются высокой гигроскопичностью, больше подходят для внутренней теплоизоляции. При формировании утеплительного пирога вне дома с использование таких материалов может потребоваться дополнительная гидроизоляция, т. к. пропитывание их водой приводит к потере теплоизоляционных свойств. Однако, если вероятность контакта с водой велика, лучше выбирать материалы, отличающиеся низкой гигроскопичностью.

Еще один важный параметр, на который следует обратить внимание, – это паропроницаемость. Некоторые материалы для утепления совсем не пропускают водяные пары. Это не всегда хорошо, т.к. способствует нарушению микроклимата внутри помещения. Паропроницаемые утеплители способны пропускать влажный воздух к стенам и обратно, при этом они не должны напитываться влагой. Это способствует сохранению тепла и поддержанию нормальной влажности в помещении. При этом нет риска появления грибка под покрытием.

Важно, чтобы строительная теплоизоляция была способна выдерживать воздействие высоких температур. Нередко такие материалы горят с выделением большого количества тепла. Температура горения базальтовой ваты составляет 1000°C. Лучше всего останавливать выбор на негорящих и самозатухающих материалах.

Не менее важным параметром является экологичность. Натуральные материалы более безопасны. Они не выделяют в воздух вредных веществ, которые могут накапливаться в организме человека, вызывая тяжелые нарушения. Некоторые из них не рекомендуется использовать для внутренних работ.

Нужно учитывать, что далеко не все современные теплоизоляционные материалы способны подавлять шумовые загрязнители. Если данный параметр является важным, лучше отдавать предпочтение пенополиуретану или минеральной вате. Большинство других разновидностей отличаются худшими звукоизоляционными характеристиками.

На долговечность материала влияет ее биостойкость. Если теплоизоляция подвержена влиянию грибка и плесени, она быстро потеряет свои свойства. Также важна устойчивость к деформации строительных утеплителей. Дома способны давать усадку, что создает дополнительную нагрузку на слой теплоизоляции. Кроме того, стойкий к механическому воздействию продукт необходим при обустройстве полов.

Большинство материалов выпускаются в удобных формах, т.е. листах, рулонах, матах и т.д. Это упрощает их монтаж. Однако есть и напыляемы виды, которые требуют использования специального оборудования. Это эффективные утеплители для стен, крыш и полов, т.к. их нанесение на поверхность не способствует формированию щелей, через которые может происходить теплопотеря, однако монтажные работы в большинстве случаев требуют дополнительных трат для найма специалистов.

Многие современные утеплители не всегда соответствуют всем требованиям, но при этом отличаются относительно небольшой стоимостью. Более дорогие строительные материалы наиболее приближены к желаемым показателям.

Утеплители

Разнообразие материалов

Перед покупкой нужно рассмотреть главные виды утеплителей и их характеристики для подбора наилучшего варианта. Это позволит оценить возможность применения материала для формирования утеплительного пирога на той или иной поверхности.

Арболит и керамзит

К натуральным утеплителям можно отнести арболит и керамзит. Арболит получается путем введения в цементный раствор мелких опилок или измельченной соломы, а также ряда добавок. Выпускается он в виде плит и насыпного материала. На последней стадии изготовления материал обрабатывается минерализатором. Его плотность составляет от 500 до 700 кг/м³. Коэффициент теплопроводности составляет 0,08-0,12 Вт/мК. Прочность составляет 0,5-3,5 МПа.

Керамзит – это сыпучий материал, который изготавливают методом вспучивания и дальнейшего обжига глины. Теплопроводность составляет 0,07-0,16 Вт/мК. Прочность материала составляет 0,6-5,5 МПа. Коэффициент водопоглощения не превышает 8-20%. При сочетании с цементной смесью данный материал дает хороший звукоизоляционный эффект.

Вата каменная, стеклянная и эковата

Для обустройства теплоизоляции чаще всего используются разновидности строительной ваты. Характеристики утеплителей данного вида могут различаться в зависимости от особенностей производства. Минеральная или каменная вата изготавливается из доломита, диабаза, известняка, базальта и других горных пород. В качестве основы применяется фенол или карбамид. Данный материал не горит, не дает усадки и не впитывает воду, но при этом отличается высоким уровнем тепло- и звукоизоляции.

Стекловата оправдывает свое название, т.е. изготавливается из отходов стекольного производства и сырья, предназначенного для изготовления стекла. Плотность составляет около 130 кг/м³. Показатели теплопроводности колеблются в пределах от 0,03-0,052 Вт/мК. Материал отличается низкой гигроскопичностью. Подходит для фасадных работ.

Основой для производства эковаты служат отходы бумажно-картонного производства. Часто применяют обрезки, получающиеся при изготовлении гофрированных ящиков, а также отбракованные журналы, газеты и книги. Сырьем может выступать и макулатура. Данный материал отличается хорошими тепло- и звукоизоляционными свойствами. Подобные материалы характеризуются способностью пропитываться влагой, поэтому лучше использовать данные виды утеплителей для стен изнутри.

Вермикулит и пеностекло

Вермикулит – это еще одна разновидность сыпучей теплоизоляции. Он изготавливается из обработанной горной породы. Отличается высокой огнестойкостью, влагостойкостью и паропроницаемостью. Этот материал для утепления стен не подходит. Его чаще используют для утепления ровных поверхностей чердаков и полов. Кроме того, он используется для изготовления теплых штукатурок.

Пеностекло изготавливается путем высокотемпературного обжига стеклянного вторсырья. Материал отличается не только влагостойкостью и пожаробезопасностью, но и высокой прочностью. Выпускается в форме удобных для монтажа блоков. Он не имеет хорошего декоративного вида, поэтому требует дополнительной штукатурки.

Утеплители

Джут

Джут – это теплоизоляционная ткань, являющаяся заменителем пакли. Применяется для сокращения теплопотери через межвенцовые щели в домах из бруса. Выпускается в форме канатов и лент. Даже при усадке стен в деревянных домах этот материал не требует замены.

ДВП и ДСП

Плиты ДВП и ДСП изготавливаются из отходов деревообрабатывающей промышленности. Мелкие опилки склеиваются особым клеем и спрессовываются. Благодаря специальной обработке материалы устойчивы к действию повышенной влажности воздуха и высоких температур. Однако ДВП и ДСП подходят только для внутренних работ, т.к. они не могут эффективно противостоять влиянию факторов внешней среды и быстро разрушаются.

Жидкая керамическая изоляция

Жидкая керамическая изоляция – это новый утеплитель, отличающийся высокой эффективностью, способностью выдерживать низкие температуры и долговечностью. Применяется для окрашивания любых поверхностей. Даже тонкий слой может снизить теплопотери. Толщина слоя должна составлять от 2 до 5 мм. Допускается и внешняя, и внутренняя теплоизоляция жидкой керамикой.

Пенофол и изоком

Пенофол и изоком – это многокомпонентные теплоизоялционные материалы. Они представляют собой тонкий слой вспененного полиэтилена, покрытого с одной или двух сторон тонким слоем алюминия. Даже тонкий слой отличается высокими теплоизоляционными и звукоизоляционными качествами. В большинстве случаев изоком и пенофол применяются для внутренней отделки.

Пенопласт, пенополистирол и пеноизол

Пенопласт, пенополистирол и пеноизол изготавливаются из одних материалов, однако данные утеплители различаются характеристиками из-за разницы в технологии производства. Наименьшей плотностью и худшими теплоизоляционными характеристиками отличается пенопласт.

Пенополистирол характеризуется более плотной ячеистой структурой. Он не боится воды и достаточно легкий, поэтому не создает дополнительной нагрузки на несущие стены. В отличие от двух других материалов пеноизол выпускается не только в форме листов и блоков, но и в виде пены. Теплопроводность составляет от 0,031 до 0,041 Вт/мК.

Утеплители

Пенополиуретан напыляемый

Пенополиуретан – это пена, которая в жидком виде наносится на утепляемую поверхность. Он отличается высокими тепло- и звукоизоляционными свойствами. Кроме того, почти не подвержен влиянию влаги. Преимуществом выступает возможность заполнения им даже больших трещин. Есть возможность создания монолитной утепленной поверхности.

Пробка. Пробковые обои

Сейчас на рынке представлены пробковые утеплительные плиты и обои. Основой для их изготовления выступает измельченная и специально обработанная кора пробкового дерева. Эти материалы отличаются высокой экологичностью и при этом способны задерживать тепло и звуковые загрязнители. Кроме того, они отличаются прочностью и долговечностью. Не подвержены влиянию патогенной микрофлоры. Пробковые блоки и обои почти не поддаются горению. Они обладают антистатическими свойствами.

Теплая штукатурка

Теплая штукатурка представляет собой классическую смесь, в состав которой входят гранулированный керамзит, опилки, вермикулит или другой наполнитель. Смесь после застывания отличается высокими теплоизоляционными свойствами. Поверхность не подвержена влиянию влаги. Материал можно использовать в сочетании с другими теплоизоляторами. Он подходит и для для внутренней, и для наружной отделки.

Фибролитные плиты

Фибролитные плиты изготавливаются из тонкой древесной стружки и связывающего цементного компонента. Плотность материала составляет от 300 до 500 кг/м³. Показатели теплопроводности колеблются в пределах от 0,8 до 0,1 Вт/мК. Фибролитные плиты отличаются высокой огнестойкостью. Они подходят для утепления помещений с повышенной влажностью.

Фольгированный утеплитель

Многие пористые материалы сейчас выпускают с фольгированным покрытием. Утеплительная вата, плиты пенополистирола и т.д. при покрытии фольгой отличаются лучшими эксплуатационными качествами. Они меньше подвержены пропитыванию водой и реже повреждаются грызунами. Фольгированные утеплители имеют более высокую стоимость.

Утеплители

Производители

На рынке сейчас представлено большое количество схожих материалов от разных производителей. Качественные варианты, отличающиеся лучшими эксплуатационными характеристиками и являющиеся безопасными для людей, выпускаются под следующими марками:

  1. Rockwool.
  2. Isover.
  3. Ursa.
  4. Knauf.
  5. Izovol.
  6. ТехноНИКОЛЬ.
  7. Белтеп.
  8. Европлекс.
  9. Пеноплекс.

Каждый производитель выпускает линейку продуктов, предназначенных для утепления поверхностей, поэтому есть возможность подобрать наилучший вариант.

Какие виды утеплителей и для чего использовать?

На рынке представлено много видов утеплительных материалов, различающихся составом, характеристиками и формой выпуска. Нужно правильно подбирать вариант утеплителя с учетом особенностей поверхности, требующей дополнительной защиты.

Утепление пола

Для утепления пола подходят почти все виды материалов. Можно использовать такие сыпучие материалы, как керамзит и вермикулит. При дополнительной гидроизоляции допускается применение минеральной и эковаты. Хороший эффект дает и утепление плитами пенополистирола. Однако при обработке пола нежелательно использовать напыляемые утеплители. Высокие вибронагрузки могут стать причиной отслаивания и растрескивания.

Утепление стен снаружи

При утеплении фасада здания лучше всего использовать материалы, отличающиеся низкой водопроницаемостью. Хороший эффект дает утепление фибролитовыми и арболитовыми блоками, плитами экструдированного пенополистирола. Между стенами можно засыпать керамзит. Если есть уверенность, что в простенках не будет скапливаться вода, можно использовать эковату.

При наружном утеплении стен можно применять минеральную вату, но в этом случае требуется обустройство гидроизоляции и защита материала слоем штукатурки. Кроме того, можно использовать навесные пенополиуретановые панели и теплую штукатурку. Хороший эффект дает жидкая керамическая теплоизоляция при использовании ее вне помещения.

Утеплители

Утепление внутренних стен

Для утепления внутренних стен наиболее часто используют плиты минеральной ваты, которые после установки зашиваются гипсокартоном. Кроме того, можно эффективно применять пробковые плиты и обои. Для внутренней отделки нередко применяется теплая штукатурка. Для отделки внутренних стен балконов лучше использовать фольгированные утеплители.

Утепление потолка

Для утепления потолка с чердака можно применять керамзит и вермикулит. При обустройстве внутреннего утеплительного пирога на потолке можно использовать минеральную вату, плиты пенополистирола, пенопласт. Кроме того, допустимо использование пробковых обоев и плит. Они просты в монтаже и при этом отличаются небольшим весом.

Утепление кровли

Для утепления скатов крыши часто используется плиты минеральной ваты, которые в дальнейшем прикрываются гипсокартоном. Однако в этом случае требуется создание дополнительной гидроизоляции, т.к. в этой части дома высока вероятность вымокания материала. Нередко используются плиты пенополистирола для обустройства теплоизоляционного пирога кровли. Хороший эффект дает использование напыляемых утеплителей. Напыляемый пенополиуретан не подвержен влиянию влаги и при этом позволяет создать монолитное теплоизоляционное покрытие между балками кровли.

Утеплители

Советы по применению

Большинство современных утеплителей выпускаются в рулонах, листах и матах. Последние 2 варианта являются наиболее удобными в монтаже, т.к. они уже ровно нарезаны, что позволяет получить более плотную стыковку. Ширина мягких утеплительных матов должна быть на 1,5 см меньше, чем расстояние между элементами обрешетки. Это позволит избежать появления зазоров, через которые холод будет проникать в помещение.

Утеплительные работы следует планировать. Желательно воспользоваться тепловизором для выявления областей, где наблюдается наибольшая теплопотеря. Вне зависимости от вида выбранного материала необходимо подготовить поверхность, устранить мелкие щели, убрать мусор и провести противогрибковую обработку.

Для обрешетки можно использовать металлические профили, имеющие антикоррозийное покрытие. Большинство приклеиваемых утеплителей требуют дополнительной фиксации специальными дюбелями. Жидкую керамику не следует наносить краскопультом. Лучше всего воспользоваться валиком или кистью. При использовании пробкового утеплителя нужно заранее подготовить поверхность, т.к. она должна быть максимально ровной, чтобы под покрытием не скапливался конденсат.

виды, как выбрать, лучшие марки

В этой статье вы узнаете, какой утеплитель лучше использовать для стен дома снаружи. Здесь мы собрали все основные виды современных материалов для термоизоляции, популярные марки и основные свойства утеплителей.

Утеплители для наружных стен дома

Подборка товаров осуществлена на основе отзывов, мнений и оценок пользователей, размещенных на различных ресурсах в сети интернет. Вся информация взята из открытых источников. Мы не сотрудничаем с производителями и торговыми марками и не призываем к покупке тех или иных изделий. Статья носит информационный характер.

Читайте также:

Чем наружное утепление лучше внутреннего

Утепление домов в большинстве случаев должно быть наружным. Эта рекомендация содержится в своде правил по проектированию и строительству (СП 23-101-2004).

Проще всего это объяснить тем, что внутренне утепление отнимает у помещения свободное пространство, хотя это не главная причина. Утеплять дом изнутри не запрещено, но рекомендовано прибегать к этому только в исключительных ситуациях. Например, если особенная конструкция здания не позволяет утеплить снаружи.

Качественно утеплить дом изнутри можно только при создании паронепроницаемого слоя – сплошного и долговечного. Сделать это довольно сложно. Если теплый влажный воздух проникнет в утеплитель, то неминуемо образование конденсата. То же самое произойдет при соприкосновении воздуха с холодной стеной. При таком утеплении точка росы перемещается внутрь теплоизоляционного слоя или между ним и стеной.

Исходя из этих причин, рекомендации по утеплению практически всегда соответствуют нормативам – проводить утепление снаружи.

Популярные утеплители, применяемые для наружных стен дома

Из большого ассортимента теплоизоляции бывает сложно выбрать подходящий вариант. Наиболее популярными утеплителями для наружных стен дома являются:

  • вспененный пенополистирол;
  • экструдированный пенополистирол;
  • каменная вата.

Вспененный пенополистирол

Чаще всего данный утеплитель называют пенопластом, однако пенопласты это общее название для большого количества разновидностей материалов получаемых путем вспенивания. В утеплении дома чаще всего используются цельные плиты. Материал бывает разной плотности, от чего и зависит его теплопроводность. Структура утеплителя представляет собой мелкие шарики заполненные воздухом и скрепленные между собой. Такое устройство обеспечивает хорошую термоизоляцию.

Пенополистирол простой в использовании, влагостойкий и прочный, при этом совсем не дорогой. Все это делает его одним из самых популярных утеплителей. Он слабогорючий, а некоторые виды – самозатухающие, они имеют маркировку ПСБ-С.

Недостаток вспененного пенополистирола – низкая паропроницаемость, поэтому его нельзя использовать для утепления стен из дышащего материала, а также горючесть – при горении он выделяет в большом объеме ядовитые вещества. 

Вспененный пенополистирол
Вспененный пенополистирол.

Экструдированный пенополистирол

Это материал, схожий по составу со вспененным пеноплистиролом, но производится по другой технологии, поэтому имеет сплошную ячеистую структуру. В качестве утеплителя превосходит по свойствам вспененный пенополистирол. Водопоглощение у него такое же – не более 2%, а вот теплопроводность ниже на 30%. Он более прочный материал, с низким показателем паропроницаемости.

Свойства пенополистирола позволяют использовать его в качестве утеплителя фундамента и цокольного этажа. Недостатки у материала такие же, как у обычного пенопласта, но цена выше.

Экструдированный пенополистирол
Экструдированный пенополистирол.

Читайте также:

Каменная (базальтовая) вата

Разновидность минеральной ваты, которую производят из горных пород, в основном из базальта. Низкая теплопроводность материала обусловлена волокнистой структурой с низкой плотностью. Но пенопластовым утеплителям вата уступает по этому показателю.

Преимущество каменной ваты в том, что она не горит и не подвержена тлению. Считается дышащим материалом, то есть имеет низкое сопротивление перед прохождением пара.

Каменная вата
Каменная вата.

Есть еще один популярный минераловатный утеплитель, который называется стекловата, но в качестве утеплителя для горизонтальных поверхностей ее использовать не рекомендуется, так как она сильно проседать образуя мостики холода. По этой причине в данной статье она не рассматривается.

Читайте также:

Новые утеплители, применяемые для наружных стен

Относительно новыми утеплителями применяемыми для наружной изоляции являются:

  • пенополиуретан;
  • эковата.

Пенополиуретан

Пенополиуретан — это та же монтажная пена, которой заделывают щели в строительных конструкциях.

Материал используют чаще всего для изготовления сэндвич-панелей и термопанелей для фасадов. Напыляемый вариант удобно использовать, когда необходимо создать бесшовную поверхность утеплителя. Раньше его наносили только с помощью профессионального оборудования. Сейчас в магазине можно купить такой материал в виде аэрозоля – это однокомпонентная разновидность для бытового использования.

Недостаток этого материла — в невысокой удерживающей способности. В системах мокрого фасада его использовать нельзя.

Нанесение пенополиуретана
Нанесение пенополиуретана.

Эковата

Новый материал для утепления, который производят из целлюлозного волокна. Наносится на стены с использованием специального аппарата. Утепление проводится двумя способами:

  • Заполнение пространства между стеной и облицовочным материалом.
  • Напыление вместе с клейкой связующей массой на стену с обрешеткой, с последующим покрытием фасадными панелями.

Нанесение эковаты
Мокрый способ нанесения эковаты.

Читайте также:

Выбор утеплителя в зависимости от материала стен и способа финишной отделки

Кирпичные стены

Для кирпичного дома подходят любые утеплители для наружных стен дома. Но для каждого типа финишной отделки есть свои рекомендации по технологии утепления.

Облицовочный кирпич

Если в качестве наружного отделочного слоя выбран облицовочный кирпич, а несущие стены дома выполнены, тоже из кирпича, то в качестве утеплителя можно применять как вспененный или экструдированный пенополистирол, так и каменную вату. В случае применения каменной ваты необходимо предусмотреть вентилируемую воздушную прослойку, чтобы частицы воды свободно испарялись – это поможет избежать намокания стен.

Утепление стен дома каменной ватой с облицовкой кирпичом
Пирог утепления кирпичного дома каменной ватой с облицовкой кирпичём.

Мокрый фасад

По правилам строительства и проектирования (п. 8.5 СП 23-101-2004) слои должны располагаться так, чтобы паропроницаемость внутреннего слоя была меньше чем внешнего. Т. е. утеплитель не должен мешать выветриванию влаги из стен помещения. Если придерживаться этого правила, то лучше всего в этом случае подходит минеральная вата из-за высокой паропроницаемости. Однако кирпичные стены не обладают высокой паропроницаемостью, поэтому для их утепления можно использовать пенополистирол, с последующим нанесением штукатурного слоя.

Мокрый фасад утеплитель пенополистирол
Пирог утепления кирпичных стен пенополистиролом с последующим обустройством штукатурного слоя.

Вентилируемый фасад

Если в качестве облицовки кирпичных стен выбраны стеновые панели или крупные плиты керамогранита, которые монтируются на вентилируемый фасад, то в качестве утеплителя рекомендуется использовать каменную вату.

Вентилируемый фасад утеплитель каменная вата
Пирог утепления кирпичных стен при обустройстве навесного вентилируемого фасада.

Деревянные стены

Дома из бревна или бруса утепляют как по технологии навесного вентилируемого фасада, так и по технологии мокрого фасада. В обоих случаях в качестве утеплителя рекомендуется использовать каменную вату.

Навесной фасад и утепление деревянного дома каменной ватой
Утепление деревянных стен каменной ватой.

Читайте также:

Стены из газобетонных блоков

Мокрый фасад

Если следовать правилу, что паропроницаемость строительных конструкций должна возрастать по направлению изнутри помещения в наружу, то для утепления несущих стен из газобетонных блоков, лучше всего использовать каменную вату.

Утепление стен из газобетонных блоков каменной ватой
Пирог утепления стен из газобетонных блоков каменной ватой, с обустройством штукатурного фасада.

Однако газобетон не дерево, в нем не может происходить гниения и если внутри помещение хорошо проветривается, тогда для наружного утепления стен из газобетона допускается применение пенополистирола.

Утепление стен из газобетонных блоков пенополистиролом
Пирог утепления стен из газобетонных блоков пенополистиролом, с обустройством штукатурного фасада.

Облицовочный кирпич

Если в качестве наружной отделки газобетонных стен выбран облицовочный кирпич, то возможно применение в качестве утеплителя как каменной ваты, так и пенополистирола. В том случае, когда утепление производится каменной ватой, необходимо предусмотреть вентиляционный зазор между утеплителем и кирпичной кладкой. Это позволит влаге испаряться из утеплителя.

Утепление стен из газобетона каменной ватой
Пирог утепления стен из газобетонных блоков с последующей отделкой облицовочным кирпичём.

Лучшие утеплители для стен дома снаружи

Далее произведем обзор наиболее удачных марок утеплителей применяемых для утепления наружных стен дома.

Лучшие марки каменной ваты для наружных стен

Базальтовая вата Rockwool Лайт Баттс Скандик

Это современная разновидность каменной ваты, созданная из базальтовых пород. Выпускается в виде плит, главные преимущества которых – легкость и влагоустойчивость.

Продукт уникален новой технологией получения каменных волокон. Благодаря ей готовые плиты подвергаются компрессии до 70%. Материал легко восстанавливается и сохраняет свои свойства. Вата плотно прилегает к поверхности, не оставляя щелей.

Плиты изготовлены по технологии Флекси – одна торцевая сторона их может пружинить. Такая особенность облегчает процесс монтажа. Чтобы не проверять каждую плиту, пружинистый край промаркирован с внутренней стороны, это еще более добавляет удобства при монтаже.

Rockwool lait 

Применение. Плиты Лайт Баттс Скандик рекомендованы к применению в качестве ненагружаемого теплоизоляционного слоя в конструкциях легких покрытий. Это могут быть мансарды, перегородки, перекрытия между этажей, а также стены невысоких строений. Используется в вертикальных и наклонных стенах. Плиты нельзя подвергать большим нагрузкам.

Основные характеристики:

  • плотность – 37 кг/м3
  • водопоглощение – 1 кг/м2
  • группа горючести – НГ
  • коэффициент паропроницаемости – 0.3 мг/м*ч*Па
  • коэффициент теплопроводности – 0.036 Вт/(м*С)

 

Базальтовая вата Rockwool Фасад Баттс

Утеплитель предназначен для использования в штукатурных фасадах. Эти плиты жёсткие и плотные, они устойчивы к деформации. Производятся из базальтовых пород.

Чтобы установить утеплитель Rockwool Фасад Баттс, следует использовать специальный клеевой состав. Для более надежной фиксации нужно дополнительно механическое крепление дюбелями.

Rockwool

Применение. Плиты Фасад Баттс подходят для фасадной изоляции с тонким слоем штукатурки. Материал обеспечивает надежную теплоизоляцию, а также используется как основание для финишного слоя.

Основные характеристики:

  • плотность – 130 кг/м3
  • водопоглощение – 1 кг/м2
  • группа горючести – НГ
  • коэффициент паропроницаемости – 0.3 мг/м*ч*Па
  • коэффициент теплопроводности – 0.037 Вт/(м*С)

 

Теплоизоляция Технониколь ТехноФас Коттедж

Этот утеплитель выпускается в форме плит. Относится к группе негорючих материалов, защищает от проникновения влаги. Продукт производится из базальтовых волокон на низкофенольном связующем.

Технониколь TehnoFas Kottedzh

Применение. ТехноФас Коттедж предназначен для теплоизоляции в фасадных композиционных системах с наружными штукатурными слоями. Используется только для утепления фасадов малоэтажных зданий, высотой не более 10 м.

Основные параметры:

  • плотность – 115 кг/м3
  • группа горючести – НГ
  • коэффициент паропроницаемости – 0,3 мг/м*ч*Па
  • коэффициент теплопроводности – 0,038 Вт/(м*С)

 

Базальтовая вата Технониколь Техновент Оптима

Этот материал обеспечивает тепловую и звуковую изоляцию. Он негорючий и гидрофобизированный – отталкивает воду благодаря специальному составу. Обладает хорошей паропроницаемостью и не сохраняет в себе влагу, которая выходит из помещения, что создает правильный микроклимат в доме.

Базальтовая вата Технониколь Техновент Оптима

Применение. Техновент Оптима предназначен для жилых домов и промышленного строительства. Используется в вентилируемых фасадных системах.

Основные свойства материала:

  • коэффициент теплопроводности – 0.036 Вт/(м*С)
  • коэффициент паропроницаемости – 0.3 мг/м*ч*Па
  • группа горючести – НГ
  • плотность – 81-99 кг/м3

 

Универсальный теплоизоляционный материал Paroc Extra

Этот материал подходит не только для тепло- и звукоизоляции, но и для огнезащиты – он абсолютно негорючий. Выпускается в виде гибких, упругих плит, которые легко монтировать. Теплоизоляционная конструкция не дает усадку и не теряет своих качеств во время использования. Защищает даже в самые холодные зимы, сохраняя высокое сопротивление отдаче тепла.

Материал сохраняет свои свойства в широком диапазоне температур. Связующие компоненты начинают испаряться при температуре 200 градусов, а сплавление происходит при 1000 градусов.

Универсальный теплоизоляционный материал Paroc Extra

Применение. Базальтовая вата Paroc Extra не должна испытывать внешних нагрузок. Ее целесообразно использовать на наружных стенах, межэтажных перекрытиях, мансардах, внутренних перегородках, скатной кровле.

Основные свойства материала:

  • коэффициент теплопроводности – 0.036 Вт/(м*С)
  • группа горючести – НГ
  • водопоглощение – 1 кг/м2
  • плотность – 30-34 кг/м3

 

Лучшие марки экструдированного пенополистирола для наружных стен

Теплоизоляция Пеноплэкс Стена

Материал представляет собой экструдированный пенополистирол. Он отличается нулевым водопоглощением, высокой прочностью и низкой теплопроводностью. Плиты выпускаются с фрезерованной поверхностью для лучшего соединения с клеевым составом и штукатуркой. Такая особенность делает конструкцию более прочной и долговечной, а также облегчает и ускоряет работы по монтажу теплоизоляционной системы.

Теплоизоляция Пеноплэкс Стена

Применение. Пеноплэкс Стена предназначен для ограждающих конструкций в качестве внутренней и внешней теплоизоляции. Используется в системах мокрого фасада.

Основные характеристики:

  • коэффициент теплопроводности – 0,032 Вт/(м*К)
  • коэффициент паропроницаемости – 0,005 мг/м*ч*Па
  • группа горючести – Г4
  • водопоглощение – не более 0,5 % по объему
  • плотность – от 20 кг/м3

 

Теплоизоляция Технониколь Техноплекс

Утеплитель представляет собой экструдированный пенополистирол при производстве которого используются наноразмерные частицы графита. Нанографит снижает теплопроводность материала и увеличивает прочность плит. Из-за этих добавок плиты Технониколь Техноплекс имеют сероватый оттенок.

Теплоизоляция Технониколь Техноплекс

Применение. Утеплитель имеет широкий спектр применения и разработан специально для теплоизоляции частных домов и ремонта жилых помещений. Может использоваться как для утепления вертикальных, так и горизонтальных конструкций.

Основные свойства утеплителя:

  • коэффициент теплопроводности – 0,034 Вт/(м*К)
  • коэффициент паропроницаемости – 0,010 мг/(м*ч*Па)
  • группа горючести – Г4
  • водопоглощение – 0,2 %

 

Теплоизоляция Ursa XPS-N-III-L Г4

Это экструдированный пенополистирол выпускаемый в форме жестких плит. При изготовлении утеплителя не используются фреоны. Утеплитель Ursa долговечен, не подвержен действию влаги, надежно защищает от холода и обладает высокой прочностью. Он удобен как для бытового использования, так и для промышленных объектов.

Плиты выпускаются с разной толщиной, можно выбрать наиболее подходящий вариант в зависимости от требуемого слоя теплоизоляции. Они легкие, при нарезке не ломаются и не крошатся, хорошо переносят транспортировку. Для установки не требуется особых знаний и специальных инструментов. Кромка плиты выполнена в виде ступеней, края соединяются между собой плотно, без зазоров.

Теплоизоляция Ursa XPS-N-III-L Г4

Применение. Ursa XPS-N-III-L Г4 рекомендуется к использованию для теплоизоляции балконов, фундаментов и цоколей, подвалов внутри и снаружи, скатных крыш, стен с последующей отделкой штукатурным слоем.

Основные свойства:

  • коэффициент теплопроводности – 0,032 Вт/(м*К)
  • коэффициент паропроницаемости – 0,004 мг/м*ч*Па
  • группа горючести – Г4
  • водопоглощение – не более 0,3% по объему

 

Технониколь Carbon Eco TB

Плиты утеплителя производятся по технологии термосклейки ThermoBonding, что повышает его теплоизоляционные свойства и прочность, по сравнению с другими методами изготовления. В состав включены нано-частицы углерода, что еще больше снижает теплопроводность и и делает конструкцию прочнее.

Технониколь Carbon Eco TB

Применение. Сфера применения – малоэтажное строительство (коттеджи, дачи). Используется для стен и полов, фасадов, кровли, фундаментов.

Основные свойства:

  • коэффициент теплопроводности – 0,033 Вт/(м*К)
  • коэффициент паропроницаемости – 0,014 мг/м*ч*Па
  • группа горючести – Г4
  • водопоглощение – не более 0,4 % по объему

 

Лучшие марки вспененного пенополистирола

Пенопласт Knauf Therm Фасад RRO

Утеплитель производится в виде плит прямоугольной формы. Специальная технология производства исключает усадку плит после установки и во время эксплуатации. Высокая влагостойкость позволяет использовать материал в условиях влажного климата. Малый вес утеплителя не создает нагрузку на фундамент. Материал не выделяет вредных веществ.

Пенопласт Knauf Therm Фасад RRO

Применение. Knauf Therm используют для утепления стен дома,  дачи, офисных и промышленных помещений.

Основные свойства:

  • коэффициент теплопроводности – 0,038 Вт/(м*К)
  • коэффициент паропроницаемости – 0,026 мг/м*ч*Па
  • группа горючести – Г3

 

Пенопласт Knauf Стена

Преимущества этого утеплителя — не проседает, не меняет форму при использовании. Knauf Стена – экологичный материал, в составе которого нет токсичных или огнеопасных добавок. Плиты высокопрочные, не поглощают влагу.

Пенопласт Knauf Стена

Применение. Подходит для трехслойной кирпичной кладки (колодезной). Плиты можно укладывать в качестве среднего слоя в конструкциях кирпичных стен, а также при производстве железобетонных панелей. 

Характеристики:

  • коэффициент теплопроводности – 0,044 Вт/(м*К)
  • группа горючести – Г3

 

Если вы заметили ошибку, не рабочее видео или ссылку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

виды теплоизоляторов и их применение в строительстве

Современные строительные магазины предоставляют достаточно широкий выбор утеплителей для дома. Они обладают хорошими теплоизоляционными характеристиками, долговечностью и многофункциональностью в использовании. Но достаточно ли всех этих «универсальных» качеств для такой конкретной задачи, как теплоизоляция мансарды или качественная звукоизоляция жилой комнаты?

Вот об этим мы сейчас и поговорим: что такое утеплитель и чем разные его виды отличаются друг от друга в процессе эксплуатации и монтажа.

Итак, то, какой именно утеплитель вам понадобится, решать нужно еще на стадии проектирования дома. Ведь от его качеств будет зависеть то, насколько комфортно будет времяпровождение в помещении, будет ли помещение пожаробезопасным и не придется ли потом иметь в будущем такие проблемы как намокание утеплителя или семейство мышей в стенах.

В общей сложности утеплители сегодня применяются в жилом доме в таких конструкциях:

От удачного выбора утеплителя напрямую зависит:

  • какие отделочные материалы нужно будет приобрести, ведь не все материалы сочетаемы;
  • здоровье домочадцев, которые будет каждый день вдыхать комнатный воздух;
  • пожаробезопасность всего здания;
  • комнатная температура и наличие в доме мостиков холода.

Вот почему к утеплителю предъявляется столько требований:

Ка вы видите из иллюстрации, по своим свойствам утеплители отличаются друг от друга. Что вполне естественно, ведь их изготавливают из самого разного сырья: начиная от газеты и заканчивая самым настоящим камнем.

Если сравнивать утеплители между собой по теплопроводности, получим такую картину:

Второй важный момент – паропроницаемость. Ведь при выборе утеплителя для крыши необходимо изначально определиться, будут ли «дышать» стены и скаты, или нет.

Вот в чем, собственно, разница:

Конечно, если в качестве кровельного покрытия у вас будет идти рубероид или гибкая черепица, тогда лучше нужно максимально защитить скаты от пара, ведь ему попросту некуда будет выходить.

Чтобы водяной пар из утеплителя мог беспрепятственно выходить, в кровельном пироге специально устраивают вентилируемый воздушный зазор. Он располагается с холодной стороны крыши:

Так

разновидности теплоизоляционных материалов и их особенности

Из года в год цены на энергоресурсы неумолимо растут, а уровень доходов населения остается практически на месте. Глядя на неподъемные счета за отопление дома или квартиры, приходит понимание, что проблему нужно решать своими силами — утеплением жилых помещений.

Для этой цели могут применяться различные виды утеплителей для стен дома изнутри и снаружи.

Давайте подробно рассмотрим возможные варианты материалов для утепления, их преимущества и недостатки.

Содержание статьи:

Выбор способа утепления

Утепление стен может быть и внутренним: вариант с внешним утеплением более предпочтителен и более эффективен.Но бывают ситуации, когда нет возможности утеплить стены снаружи.

Например, запрет комиссии по архитектуре: здание является памятником архитектуры, внешний вид которого изменять не рекомендуется. Или когда за стеной обнаруживается неотапливаемое рабочее помещение, в котором нельзя произвести изоляцию стен.

В таких случаях внутренняя изоляция стен различными видами утеплителей станет идеальным выходом из положения.

Наружное утепление стенНаружное утепление стен

Утепление стен снаружи минеральной ватой, стекловатой намного эффективнее и действеннее, чем утепление ими же внутренней поверхности помещения

Необходимо с большой ответственностью подойти к вопросу выбора утеплителя, изучить характеристики каждого из видов, и подбирать их с учетом стройматериалов из которых сделаны стены вашего дома.

Неправильно подобранный материал не поможет достичь нужной цели и может только усугубить ситуацию в худшую сторону. Так, например, после неправильного монтажа утеплителя стена не только не держит тепло, но в зимний период промерзает ещё больше, чем прежде.

В большинстве случаев при неправильной герметизации стены через какой-то промежуток времени для материала утеплителя и для самой стены становится опасным конденсат.

Влагой пропитывается материал и стена, в результате эффект изоляции сводится к нулю, а стены здания начинают постепенно разрушаться от заражения грибком.

Грибок на стенахГрибок на стенах

Неправильный монтаж конструкции и неверная герметизация, будут являться одними из ключевых моментов потери тепла в помещении и заражению поверхности грибком

Для того чтобы не столкнуться с этими проблемами на протяжении многих лет после ремонта и утепления поверхности, нужно строго придерживаться технических рекомендаций по монтажу.

Не менее важна правильная герметизация швов внутренних стен дома, стыков между плитами утеплителя и поверхностью стены при его креплении.

Виды материалов для внутренней теплоизоляции

Среди множества видов утеплителей, которые могут использоваться для теплоизоляции внутренних стен дома, мы расскажем о самых популярных и наиболее востребованных вариантах. Среди которых ДВП, стекловата, пенопласт, пробковые обои и т.д.

Остановимся более подробно на каждом из них.

Вариант #1 — плиты ДВП

ДВП плита – превосходный материал для выполнения утепления стен изнутри, достаточно дешевый, можно сказать эконом класса.

Плиты ДВП производятся на базе отходов дерево-перерабатывающей промышленности, склеиваются клеем из естественных смол при воздействии высоких температур и давления.

Материал обработан антисептическими элементами, не подвержен воздействию высоких температур и высокой влажности воздуха.

Утепление стен ДВПУтепление стен ДВП

ДВП успешно используется для звукоизоляции межкомнатных перегородок и теплоизоляции стен. Делать монтаж плитами ДВП очень просто. Крепеж листов производят на металлический каркас или деревянный

Вариант #2 – стекловата

Стекловата – самый распространенный, бюджетный материал для утепления стен. Как показывает практика, есть большой недостаток, из-за которого специалисты не рекомендуют ее применять с внутренней стороны стен.

Она очень хорошо впитывает влагу, что снижает ее теплоизолирующие свойства – материал уменьшается в объеме и размерах, что приводит к значительным теплопотерям.

Утепление стекловатойУтепление стекловатой

Стекловата не годится для изоляции внутренних стен в помещении, она лучше подойдет для утепления пола и потолка

При наружном утеплении стекловату укладывают между деревянными брусьями встык так, чтобы она плотно укрыла нужное пространство.

Вариант #3 – минеральная вата

Материал, изготовленный из некоторых видов изверженных горных пород называется в народе минеральной ватой, хотя на самом деле речь идет о каменной вате. Термин «минеральная» включает в себя не только каменную, но и стекловату и шлаковату.

Сегодня этот материал наиболее востребован, он обладает множеством положительных характеристик:

  • высокий уровень теплоизоляции;
  • не реагирует на воздействие высоких температур и горение;
  • звукоизоляция на высшем уровне;
  • прочность, практичность и долговечность.

Минеральная вата употребляется в качестве утеплителя не только для внутренних стен дома, но и для потолков чердачных помещений, внешних стен зданий.

Плиты из минеральной ваты бывают различной жесткости – чем жестче плита, тем выше ее стоимость.

Утепление стен минеральной ватойУтепление стен минеральной ватой

Минеральная вата неплохо подходит для внутреннего утепления стен. Укладывать ее нужно плотно, встык. Но специалисты склоняются к мнению, что на внешних стенах дома она принесет больше пользы

Теплоизоляционные свойства более жестких и менее жестких плит, практически одинаковы. Для внутренних работ используются менее жесткие типы.

Более жёсткие типы – актуальны для внешнего утепления фасадов. Такой материал бывает толщиной 50 мм, 100 мм. Менее толстый – 50 мм. Он используется для внутренней изоляции. Более толстый – 100 мм – для внешней изоляции фасадов.

Единственный изъян минеральной ваты – ее нужно закрывать дополнительной перегородкой из гипсокартона, пластика, плит ОСБ или других материалов. Это существенно уменьшает жилую площадь помещения.

Вариант #4 – пенопласт

Пенопласт давно применяют в строительной сфере, как дешевый материал для звуко- и гидроизоляции помещений.

Он, по сравнению с минеральной ватой, имеет лучшие теплоизоляционные свойства, поэтому внутри помещения можно монтировать плиту более тонкую. В результате жилая площадь практически не уменьшится.

Наряду с положительными качествами, пенопласт имеет ряд недостатков:

  1. Структура материала очень хрупкая, поэтому работы с ним следует проводить очень аккуратно.
  2. При малейшем нарушении целостности листа теплопотери увеличиваются в разы.
  3. Грызуны – гроза пенопластовых плит, они его просто обожают. Если есть доступ, малейшая дырочка, через некоторый промежуток времени, листы будут похожи на голландский сыр.
  4. Весьма горючий материал — при горении выделяет едкий, отравляющий дым.

Укладывают пенопласт на поверхность, используя для скрепления строительный клей, щедро наносят на всю площадь листа.

Утепление стен пенопластомУтепление стен пенопластом

Изоляцию стен пенопластом рекомендуется проводить аккуратно, впритык к поверхности, не оставляя никаких промежутков и шансов для проникновения грызунов

Вариант #5 – полистирол

Полистирол – более инновационный утеплитель для стен. Его плотность гораздо выше плотности пенопласта, что делает его монтаж гораздо проще.

С другой стороны плиты полистирола плохо прилегают друг к другу, образуя множество неровных стыков, которые нужно промазывать герметиком высокого качества.

Для плотного прилегания листов и закрепления их на стене, рекомендуется использовать раствор водонепроницаемой смеси для санузлов, ванных комнат.

При изоляции помещений полистиролом рекомендуется внимательно отнестись к герметизации швов между плитами. Это не даст теплому воздуху просочиться между ними и предотвратит образование конденсата.

Также рекомендуем прочесть о теплоизоляции помещений разновидностями пенополистирола:

Плиты полистиролаПлиты полистирола

На плитах полистирола есть заводские насечки для хорошего прилегания к стене, но мастера советуют нанести собственные насечки строительной ножовкой, для 100% крепкой и надежной конструкции

Вариант #6 – пробковые обои

Одним из самых современных экологически чистых теплоизоляционных материалов, которые используются для утепления дома изнутри, являются пробковые обои. Они изготавливаются из натуральных составляющих: кора пробкового дерева обработанная, раздробленная и спрессованная.

Пробковые обои – это не только разновидность утеплителя, но и материал, который прекрасно подходит для отделки и декорирования стен. Помещение, отделанное этим теплым даже на вид материалом, излучает ауру комфорта и уюта.

Характеристики пробкового материала:

  • имеет антибактерицидные свойства;
  • отличная звукоизоляция;
  • утраты тепла сводятся к нулю;
  • прочность и долговечность покрытия;
  • высокие антистатические свойства;
  • негорючий материал;
  • экологически чистый материал, не выделяющий вредоносных паров и соединений.

Пробковые обои подразделяются на два вида: первый – с натуральной пористой структурой, второй – покрытые слоем специального лака. Пробка как утеплитель выпускается в рулонах и плитах различных размеров.

Монтировать такой утеплитель очень просто – для этого нужно иметь рулоны обоев, острый нож и специализированный клей.

Пробковый утеплительПробковый утеплитель

Большой и единственный недостаток такого утеплителя – его цена. Стоимость листа или рулона пробки гораздо выше стоимости любых искусственных материалов

Вариант #7 – пенополиуретан

Пенополиуретан – материал, набрызгивающийся на стены в жидком виде. Он обладает отличной водонепроницаемостью и теплоизоляционными свойствами. После затвердевания он имеет рыхлую структуру, поэтому оштукатурить стену практически невозможно.

Для эффективного нанесения делается опалубка, как правило деревянная, для заполнения субстанцией пенополиуретана. После затвердевания обязательно сооружение гидро- и парозащиты из слоя полиэтиленовой пленки, которая крепится на соседних стенах, в полу и потолке.

Утепление пенополиуретаномУтепление пенополиуретаном

После нанесения раствора пенополиуретана на стену и его затвердевания, необходимо возводить дополнительную стенку из гипсокартона, плит ДВП, ОСБ, фанеры или любых других материалов

Вариант #8 – жидкая керамическая изоляция

Еще одним инновационным способом сберечь тепло в помещении является жидкая керамическая сверхтонкая теплоизоляция – ЖКТ. Она обладает высокими гидроизоляционными, термоизоляционными и шумоизоляционными свойствами.

Ее функционал востребован в жилищном фонде при подготовке к отопительному сезону.  Теплокраска подходит для утепления потолков, балконов, внутренних стен помещения, для фасадов коттеджных и многоэтажных зданий.

Востребована она для и трубопроводов, используется для герметизации теплопунктов: котельных, тепловых сетей и других сооружений.

Термокраска ЖКТ применяется для окрашивания поверхностей разного вида, например, бетон, металл, кирпич, газобетон и для других строительных материалов.

Среди достоинств производители отмечают:

  • абсолютную безопасность для здоровья человека;
  • отражающую способность материала;
  • выносливость к низким температурам – выдерживает температуру минус 60 °C;
  • материал прочный, долговечный, устойчив к солнечным лучам.

Кроме всего прочего, этот вид сверхтонкой керамической теплоизоляции обладает высокой энергоэффективностью. Толщина нанесения краски на стену составляет от 2 до 5 мм.

Теплоизоляция ЖКТТеплоизоляция ЖКТ

Применение жидкой керамической изоляции даст возможность снизить теплопотери и затраты материальных средств на энергоресурсы

Вариант #9 – эковата

Эковата – вид нового утеплителя на основе целлюлозных материалов. Изготавливается этот материал из макулатуры, антисептиков и антипирена.

Этот утеплитель является абсолютно не пожароопасным. В агрессивных условиях целлюлозная вата показывает себя прекрасно.

К плюсам эковаты можно причислить:

  • экологичность;
  • безопасность;
  • гипоаллергенность;
  • отсутствие формирования конденсата, соответственно всевозможного вида разложения, грибков.

Такой тип утеплителя имеет хорошие звукоизоляционные и теплоизоляционные свойства. Оберегает постройку от стужи в зимнее время и жары в летнее.

С изобретением целлюлозного утеплителя появилась возможность строить облегченные конструкции — давление на фундамент за счёт легкости утепляющего материала стало намного меньше.

Эковату используют для утепления любого вида конструкций: ее засыпают в любые, самые малые отверстия, она заполняет собой всё пространство, что облегчает процесс ее монтажа.

Утепление эковатойУтепление эковатой

Наносится эковата ручным способом при помощи установки для выдува, методом сухой засыпки, что позволяет получить плотный, целостный слой изоляции без швов

Вата при помощи установки для выдува под давлением подается на утепляемые ею поверхности. Перед этим она растрепывается в бункере машины для ее нанесения. Благодаря этой технологии вату можно подавать вверх до 30 м.

Существует еще один способ укладки эковаты – это способ сырого нанесения.

Для кирпичных или бетонных стен эффективным утеплением является наращивание толщины стены декоративным камнем, штукатуркой или кирпичом. Деревом дополнительно облицовывают и изолируют деревянные стены в помещении. Такие виды изоляции достаточно дорогие и требуют немалых капитальных вложений.

В некоторых случаях помимо утепления стен стоит позаботиться об и в доме.

Рекомендации по проведению изоляционных работ

Изоляционные работы лучше всего проводить в летний период, когда влажность воздуха минимальная.

Стены для утепления в помещении должны быть идеально сухими. Высушить их после дополнительных штукатурных, финишных работ по выравниванию поверхностей можно при помощи строительных фенов и тепловых пушек.

Этапы утепления поверхности:

  1. Очистка поверхности от декоративных элементов – обоев, краски.
  2. Обработка стен антисептическими растворами, грунтование поверхности с глубоким проникновением в слои штукатурки.
  3. В некоторых случаях при монтаже пенополистирола и электронагревательных элементов, стены предварительно выравнивают при помощи водонепроницаемой штукатурки для ванных комнат.
  4. должен проводиться согласно инструкции, прописанной производителем к этому виду материала.
  5. Монтирование защитной перегородки для нанесения финальной отделки, либо покрытие поверхности строительной сеткой, ее заштукатуривание.
  6. Создание единой композиции с общим дизайном помещения.

Утепление стен внутри дома – один из самых действенных способов защитить свое жилище от проникновения холода и негативного влияния конденсата, главное соблюдать технологическую последовательность этапов. Более подробно о технологии утепления жилища изнутри можно прочесть в

Выводы и полезное видео по теме

Современные виды утеплителей для стен, свойства и характеристики:

Советы по утеплению стен в квартире – разбор распространенных ошибок:

Утепление дома, выполненное при помощи даже не самых дорогих материалов, – удовольствие не дешевое. Сейчас доступно множество видов утеплителей для внутренних работ, которые представлены в обширном ценовом диапазоне. Поэтому выбрать недорогой и качественный материал не составит труда.

Теплый дом в зимний период и комфортная прохлада в жаркий сезон, а также сокращение сумм в счетах за коммунальные услуги покажут, что теплоизоляция помещения сделана хорошо и качественно.

А каким материалом для утепления стен дома воспользовались вы? Чем руководствовались при выборе и довольны ли результатом? Пожалуйста, расскажите об этом в блоке с комментариями. Там же вы можете задать вопрос по теме статьи, а мы постараемся на него оперативно ответить.

Теплоизоляционные материалы: виды,описание,фото,свойства | Строительные материалы

Чтобы защитить жилье от теплопотерь и повышенной влажности, его покрывают различными типами утеплителей. Выбрать лучший из них очень сложно, ведь у каждого изделия собственные уникальные свойства и область применения. Теплоизоляционные материалы, которые применяются в современном строительстве, с одной стороны экологичны, с другой – удобны в монтаже. Изучив основные виды утеплителей, можно выбрать лучший теплоизоляционный материал, отвечающий именно вашим потребностям.

Основные виды утеплителей

Современные теплоизоляционные материалы для применения в строительстве и ремонте делятся на множество разновидностей: промышленные и бытовые, природные и искусственные, гибкие и жесткие теплоизоляционные материалы и т.д.

К примеру, по форме современная теплоизоляция разделяется на такие образцы, как:

  • рулоны;
  • листовой;
  • единичный;
  • сыпучий.

По структуре отличают следующие типы термоизоляции со своей уникальной особенностью:

  • волокнистые;
  • ячеистые;
  • зернистые.

По виду сырья выделяют такие изделия различного класса качества:

  1. Органические, природные или натуральные утеплители — это пробковая кора, целлюлозная вата, пенополистирол, древесное волокно, пенопласт, бумажные гранулы, торф. Эти виды строительных теплоизоляционных материалов применяются исключительно внутри помещения, чтобы минимизировать высокую влажность. Однако природные строительные термоизоляторы не огнеупорны.
  2. Неорганические теплоизоляционные материалы — горные породы, стекловолокно, пеностекло, минераловатные утеплители, вспененный каучук, ячеистые бетоны, каменная вата, базальтовое волокно. Хороший изолятор тепла из данной категории отличается высокой степенью паропроницаемости и огнестойкости. Особенно эффективно утепление изделием с гидрофобизирующими добавками.
  3. Смешанные — перлит, асбест, вермикулит и другие утеплители из вспененных горных пород. Отличаются наилучшим качеством и, разумеется, повышенной стоимостью. Это самые дорогие марки лучших теплоизоляционных материалов. Поэтому таким утеплителем покрывают помещения намного реже, чем более экономными материалами.

Если нужно сделать термическую изоляцию трубопровода в стене, то для этого применяются  специальные «рукава» повышенной плотности.

Определение лучшего изделия зависит не только от цены. Их выбирают по качественным характеристикам, эргономичным свойствам и экологичности.

Какие задачи решает теплоизоляционный материал

Теплоизоляция является одним из приоритетных направлений при строительстве, поскольку ее применение позволяет многократно повысить эксплуатационные характеристики зданий. Постройка с достаточным количеством утеплителя гораздо меньше промерзает зимой, что снижает затраты на его отопление. Также она менее склонна к перегреву летом, сохраняя внутри комфортную температуру, что экономит ресурс кондиционерного оборудования.

Наличие теплоизоляции дает возможность избежать резких скачков температуры в помещении. Это очень важно, если внутри помещений применяется чувствительный к этому параметру отделочный материал, к примеру, древесина или отдельные виды пластика, в том числе и ПВХ используемый для производства натяжных потолков. Отсутствие существенных колебаний температуры дает возможность убрать благоприятные условия для образования конденсата. Именно применение теплоизоляции исключает появление сырости и развития плесени. Конечно при условии, что влага не образовывается внутри помещения слишком интенсивно от других факторов или накапливается в результате отсутствия гидроизоляции между фундаментом и фасадными стенами.

Сырость на стенах приводит к отслаиванию отделочных материалов. Как следствие наблюдается срывание обоев, а также тяжелой керамической плитки. Переизбыток влаги от отсутствия достаточной теплоизоляции также приводит к расширению изделий из дерева. Как следствие наблюдается коробление напольного покрытия, деформация дверей, от чего они неплотно входят в дверную коробку, и так далее.

Стоит также отметить, что теплоизоляционные материалы помимо своего прямого предназначения обладают звукоизоляционными свойствами. Конечно, их эффективность не столь высока как у специализированных для этой цели покрытий, но вполне достаточная, чтобы уменьшить передачу громких звуков.

Применяемые теплоизоляционные материалы

Существует довольно широкий ассортимент предлагаемых на рынке материалов, которые могут применяться в качестве удачного утеплителя. Среди них оптимальный баланс между стоимостью и эффективностью имеют:
  • Минеральная вата.
  • Пенопласт.
  • Пенополистирол.
  • Пеноплекс.
  • Вспененный пенополиэтилен.
  • Пенополиуретан.

На какие параметры обращать внимание при выборе?

Выбор качественной теплоизоляции зависит от множества параметров. Берутся во внимание и способы монтажа, и стоимость, и другие важные характеристики, на которых стоит остановиться подробнее.

Выбирая самый лучший теплосберегающий материал, необходимо тщательно изучить его основные характеристики:

  1. Теплопроводность. Данный коэффициент равен количеству теплоты, которое за 1 ч пройдет сквозь 1 м изолятора площадью 1 м2, измеряется Вт. Показатель теплопроводности напрямую зависит от степени влажности поверхности, поскольку вода пропускает тепло лучше воздуха, то есть сырой материал со своими задачами не справится.
  2. Пористость. Это доля пор во всеобщем объеме теплоизолятора. Поры могут быть открытыми и закрытыми, крупными и мелкими. При выборе важна равномерность их распределения и вид.
  3. Водопоглощение. Этот параметр показывает количество воды, которое может впитать и удержать в порах теплоизолятор при прямом контакте с влажной средой. Для улучшения этой характеристики материал подвергают гидрофобизации.
  4. Плотность теплоизоляционных материалов. Данный показатель измеряется в кг/м3. Плотность показывает соотношение массы и объема изделия.
  5. Влажность. Показывает объем влаги в утеплителе. Сорбционная влажность указывает на равновесие гигроскопической влажности в условиях разных температурных показателей и относительной влажности воздуха.
  6. Паропроницаемость. Это свойство показывает количество водяного пара, проходящее за один час через 1 м2 утеплителя. Единица измерения пара – мг, а температура воздуха внутри и снаружи принимается за одинаковую.
  7. Устойчивость к био разложению. Теплоизолятор с высокой степенью биостойкости может противостоять воздействию насекомых, микроорганизмов, грибков и в условиях повышенной влажности.
  8. Прочность. Данный параметр свидетельствует о том, какое влияние на изделие окажет транспортировка, хранение, укладка и эксплуатация. Хороший показатель находится в пределах от 0,2 до 2,5 МПа.
  9. Огнеустойчивость. Здесь учитываются все параметры пожарной безопасности: воспламеняемость материала, его горючесть, дымообразующая способность, а также степень токсичности продуктов горения. Так, чем дольше утеплитель противостоит пламени, тем выше его параметр огнестойкости.
  10. Термоустойчивость. Способность материала сопротивляться воздействию температур. Показатель демонстрирует уровень температуры, после достижения которой у материала изменятся характеристики, структура, а также уменьшится его прочность.
  11. Удельная теплоемкость. Измеряется в кДж/(кг х °С) и тем самым демонстрирует количество теплоты, которое аккумулируется слоем теплоизоляции.
  12. Морозоустойчивость. Данный параметр показывает возможность материала переносить изменения температуры, замерзать и оттаивать без потери основных характеристик.

Во время выбора теплоизоляции нужно помнить о целом спектре факторов. Надо учитывать основные параметры утепляемого объекта, условия использования и так далее. Универсальных материалов не существует, так как среди представляемых рынком панелей, сыпучих смесей и жидкостей нужно выбрать наиболее подходящий для конкретного случая тип теплоизоляции.

Теплоизоляционные материалы виды и свойства

Керамзит — один из основных пористых заполнителей, использующихся в строительстве. Это прочный и легкий материал, имеющий плотность 250—800 кг/м. Керамзит выпускается в виде песка, гравия и щебня.

Керамзитовый гравий получают в результате обжига легкоплавких вспучивающихся глин при температуре около 1200°С. В результате образуются гранулы размером 5— 40 мм. Спекшаяся оболочка на поверхности гранулы придает ей прочность. В изломе гранула керамзита имеет структуру застывшей пены.

Керамзитовый песок имеет зерна до 5 мм, его получают при производстве керамзитового гравия в небольших количествах. Кроме того, его можно получить дроблением зерен гравия диаметром свыше 50 мм.

Шлаковая пемза — искусственный пористый заполнитель ячеистой структуры — получают из отходов металлургии — расплавленных доменных шлаков. При быстром охлаждении шлаков с помощью воздуха, воды или пара происходит их вспучивание. Образовавшиеся куски шлаковой пемзы дробят и рассеивают на щебень и песок.

Гранулированный шлак представляет собой мелкозернистый пористый материал в виде крупного песка с зернами размером 5—7 мм.

Вспученный перлит — сыпучий теплоизоляционный материал в виде мелких пористых зерен белого цвета, который получают при кратковременном обжиге гранул из вулканических водосодержащих стеклообразных пород. При температуре 950—1200°С из материала энергично испаряется вода, пар вспучивает и увеличивает частицы перлита в 10—20 раз. Вспученный перлит выпускается в виде зерен диаметром 5 мм или песка и применяется для производства легких бетонов, теплоизоляционных изделий и огнезащитных штукатурок. Для производства бетонов плотность вспученного перлита должна составлять 150—430 кг/м3, для теплоизоляционных засыпок — 50—100 кг/м3. Коэффициент теплопроводности равен 0,04—0,08 Вт/(мˑ°С).

Вспученный вермикулит — сыпучий теплоизоляционный материал в виде чешуйчатых частиц серебристого цвета, получаемый в результате измельчения и обжига водосодержащих слюд. При быстром нагреве вермикулит расщепляется на отдельные пластинки, частично соединенные друг с другом. В результате его объем увеличивается в 15—20 раз. Насыпная плотность вермикулита составляет 75—200 кг/м3.

Вспученный вермикулит используется для изготовления теплоизоляционных плит для утепления облегченных стеновых панелей и легких бетонов в качестве теплоизоляционной засыпки.

Топливные шлаки — пористые кусковые материалы, образующиеся в топке в качестве побочного продукта при сжигании антрацита, каменного и бурого угля и другого твердого топлива.

Аглопорит получают в результате спекания гранул из смеси глинистого сырья с углем. Спекание гранул происходит в результате сгорания угля. Одновременно с выгоранием угля масса вспучивается. Насыпная плотность аглопоритового щебня 300—1000 кг/м.

В настоящее время широкое распространение в строительстве получил керамзитобетон, из которого изготовляют однослойные и трехслойные панели.

Пенобетоны получают из смеси цементного теста с пеной (взбитой из канифольного мыла и животного клея или другого компонента), имеющей устойчивую структуру. После затвердения ячейки пены образуют бетон ячеистой структуры. Из пенобетона выпускают ряд изделий.

Газобетон получают из смеси портландцемента, кремнеземистого компонента и газообразователя (чаще всего алюминиевой пудры). Нередко в эту смесь добавляют воздушную известь или едкий натрий. Полученную смесь заливают в формы, для улучшения структуры подвергают вибрации и обрабатывают преимущественно в автоклавах. Изделия из газобетона формуют большого размера, а затем разрезают на элементы.

Гаэосиликат автоклавного твердения получают на основе известково-кремнеземистого вяжущего, с использованием местных материалов — воздушной извести, песка, золы, металлургических шлаков. В настоящее время дома, стены которых выполнены из газосиликата, получили широкое распространение в сельской местности.

Опилкобетон также используют для строительства домов. В его состав входит известково-цементное тесто, которое смешивают со смесью опилок с песком. Получаемый бетон состава — вяжущее: песок: опилки — (1:1,1:3,2) — (1:1,3:3,3) (по объему) является хорошим теплоизоляционным материалом.

Наиболее высокими теплоизоляционными характеристиками обладают теплоизоляционные пенопласты, применяемые для утепления стен, покрытий и других элементов жилых зданий. Они представляют собой пористые пластмассы, получаемые при вспенивании и термообработке полимеров. Под действием температуры происходит интенсивное выделение газов, вспучивающих полимер. В результате образуется материал с равномерно распределенными в нем порами. В ячеистых пластмассах поры занимают 90—98% объема материала, в то время как на стенки приходится 2—10%. Поэтому пенопласты очень легки. Кроме того, они не загнивают, достаточно гибки и эластичны. Недостаток теплоизоляционных полимеров — их ограниченная теплостойкость и горючесть.

Пенопласты подразделяются на жесткие и эластичные. В строительстве для изоляции ограждающих конструкций применяют жесткие. Пенопласты легко обрабатываются, им легко можно придать любую форму. Кроме того, их можно склеивать между собой и с другими материалами: алюминием, асбестоцементом, древесиной. Для склеивания применяют дифенольные каучуковые, модифицированные каучуковые и эпоксидные клеи.

Пористые пластмассы вырабатывают на основе полистирольных, поливинилхлоридных, полиуретановых, фенольных и карбамидных смол.

Полистирольный пенопласт(пенополистирол) является наиболее распространенным теплоизоляционным материалом, состоящим из спекшихся между собой сферических частиц вспененного полистирола.

Пенополистирол является твердой пеной с замкнутыми порами. Это жесткий материал, стойкий к действию воды, большинству кислот и щелочей. Существенный недостаток пенополистирола — его горючесть. При температуре 80°С он начинает тлеть, поэтому его рекомендуют устраивать в конструкциях, замкнутых со всех сторон огнестойкими материалами. Он используется в качестве утеплителя в слоистых панелях из железобетона, алюминия, асбестоцемента и пластика.

Пенополиуретан изготовляют жестким и эластичным. Полиуретановый поропласт выпускают в виде матов из пористого полиуретана с коэффициентом теплопроводности 0,04 Вт/(м°С) размером 2×1×(0,03—0,06) м, а также твердых и мягких плит плотностью 30—150 кг/м и теплопроводностью 0,022—0,03 Вт/(м’°С). Простота изготовления позволяет получать из этого материала плиты не только в заводских условиях, но и на стройплощадке. При специальных добавках пенополиуретан не поддерживает горения.

Мипора— пористый теплоизоляционный материал белого цвета, изготовляемый на основе мочевиноформаль-дегидного полимера. Мипору выпускают в виде блоков объемом не менее 0,005 м и коэффициентом теплопроводности 0,03 Вт/(м’°С) или плиток толщиной 10 и 20 мм. Мипора не является горючим материалом. При температуре 200°С она только обугливается, но не загорается. Однако она имеет малую прочность на сжатие и представляет собой гигроскопичный материал. Мипору применяют в виде легкого заполнителя каркасных конструкций или пустот, где нет требований к влагоустойчивости.

Пеноизол относится к новым высокоэффективным теплоизоляционным материалам и представляет собой застывшую пену с замкнутыми порами. В зависимости от введенных в него добавок он может быть жестким и эластичным. При использовании в качестве наполнителя тонко молотого керамзитового песка пеноизол становится трудно возгораемым теплоизоляционным материалом. До температуры 350°С он устойчив к воздействию огня, при температуре до 500°С не выделяет токсичных веществ, кроме углекислого газа. Пеноизол имеет хорошую адгезию к кирпичу, бетонным и металлическим поверхностям. Используется для утепления дачных домов, коттеджей, гаражей, ангаров, покрытий бассейнов.

Сотопласты выпускают в виде гофрированных листов бумаги, хлопчатобумажной или стеклянной ткани, пропитанной полимером и антипиреном. Сотопласты представляют собой регулярно повторяющиеся ячейки правильной геометрической формы (в виде пчелиных сот). Его используют в качестве утеплителя в трехслойных панелях из алюминия или асбестоцемента. При заполнении ячеек крошками из мипоры теплоизоляционные характеристики сотопласта повышаются. Применяют сотопласты в виде плит и блоков толщиной 350 мм.

Наиболее рациональными для строительства являются соты из крафт-бумаги, пропитанной фенолформальдегидной смолой с размерами сот 12 и 25 мм. Сотопласты, изготовленные из обычной бумаги и пропитанные мочевино-формальдегидной смолой, хрупки и ломки. При распиловке они сильно крошатся.

Алюминиевая фольга — один из эффективных утеплителей. В то же время она является хорошей воздухоизоляцией и пароизоляцией. В настоящее время промышленность цветной металлургии выпускает фольгу толщиной 0,005—0,2 мм. Алюминиевая фольга имеет блестящую серебристую поверхность с большой отражательной способностью. Большая часть потока лучистой теплоты, падающей на конструкцию, покрытую фольгой, отражается, благодаря этому уменьшаются теплопотери через ограждения и повышается их теплозащита.

Алюминиевая фольга для строительства выпускается в рулонах диаметром 8—43 см, толщиной полотна 0,005— 0,02 мм и шириной 10—460 мм.

Минеральная вата представляет собой теплоизоляционный материал, состоящий из тончайших стекловидных волокон, получаемых путем распыления жидких расплавов шихты из металлургических и топливных шлаков, горных пород типа доломитов, мергелей, базальтов. Длина волокон составляет 2—60 мм. Теплозащитные свойства минеральной ваты обусловлены воздушными порами, заключенными между волокнами. Воздушные поры составляют до 95% общего объема скелета минеральной ваты. Минеральная вата занимает ведущее положение среди неорганических теплоизоляционных материалов благодаря простоте производства, неограниченности сырьевых запасов, малой гигроскопичности и небольшой стоимости.

Недостаток минеральной ваты для тепловой изоляции состоит в том, что при хранении она уплотняется, комкуется, часть волокон ломается и превращается в пыль. Имеющая очень малую прочность, уложенная в конструкциях минеральная вата должна быть защищена от механических воздействий. Поэтому применение в строительстве находят изделия, выпущенные на ее основе, — маты, жесткие и полужесткие плиты.

Маты минераловатные прошивные применяются для теплоизоляции наружных ограждений, а также конструкций, температура которых не менее 400°С. Они имеют при плотности 100—200 кг/м коэффициент теплопроводности 0,052—0,062 Вт/(м’°С). Прошивные маты выпускаются длиной 2 м, шириной 0,9—1,3 м при толщине полотна 0,06 м. В строительстве используются прошивные маты на металлической сетке, на обкладке из стеклохолста, на крахмальном связующем с бумажной и тканевой обкладками.

Маты минераловатные на металлической сетке получают путем прошивки ковра из минеральной ваты на металлической сетке хлопчатобумажными нитками. Маты выпускаются плотностью 100 кг/м с коэффициентом теплопроводности около 0,05 Вт/(м’°С) и размером 3×0,5×0,05 м.

Минераловатные маты на обкладке из стеклохолста изготовляют прошивкой минераловатного ковра стекложгу-том, обработанным в мыльном растворе. Они выпускаются плотностью 125—175 кг/м с коэффициентом теплопроводности 0,044 Вт/(м’°С) размером 2×06×0,04 м и могут быть использованы для изоляции конструкций с температурой до 400°С. Минераловатные маты на крахмальном связующем с бумажной обкладкой выпускают плотностью 100 кг/м с коэффициентом теплопроводности 0,044 Вт/(м’°С) длиной 1—2 м, шириной 0,95—2 м, толщиной от 0,04 до 0,07 м с шагом в 0,01 м.

Теплоизоляционные полужесткие плиты на основе синтетического связующего используют для утепления строительных конструкций и др., в основном в качестве эффективной теплоизоляции покрытий и кровель, в том числе и шиферных. Их использование возможно во всех случаях, где исключается увлажнение и деформация утеплителя во время эксплуатации.

Полужествие плиты состоят из минерального волокна, пропитанного при распылении растворов фенолоспиртов с последующим охлаждением. Плиты марки ПП производят плотностью 100 кг/м с коэффициентом теплопроводности 0,046 Вт/(м’°С) длиной 1 м, шириной 0,5 м, толщиной 0,03; 0,04 и 0,06 м.

Полужесткие плиты на синтетическом вяжущем изготовляют из минераловатного ковра, пропитанного синтетическим связующим (например, карбамидными смолами) с последующей теплообработкой. Их выпускают плотностью 80—100 кг/м с коэффициентом теплопроводности 0,031—0,058 Вт/(м°С).

Жесткие минераловатные плиты на битумном связующем, имеющие коэффициент теплопроводности 0,042 Вт/(м°С), выпускаются размером 1×0,5×0,06 м. Они имеют низкую гигроскопичность, высокую водостойкость и мало подвержены поражению грибками и насекомыми.

Жесткие минераловатные плиты типа ПЭ на синтетическом связующем имеют коэффициент теплопроводности 0,04 Вт/(м’°С) и выпускаются размером 1×0,05×0,06 м. Они обладают повышенной прочностью и могут использоваться для утепления совмещенных кровель и крупнопанельных ограждающих конструкций.

Минераловатные мягкие плиты называют минеральным войлоком. Его выпускают в виде рулонов, упакованных в жесткую тару или водонепроницаемую бумагу. Полотнища минерального войлока выпускают длиной 1; 1,5 и 2 м, шириной 0,45; 0,5 и 1 м, толщиной 0-,05—0,1 м с шагом в 0,01 м. Мягкие минераловатные плиты на битумном связующем используют для утепления строительных конструкций. Серьезным их недостатком является способность войлока уплотняться при незначительных нагрузках, в первую очередь от собственного веса. При этом происходит резкое увеличение плотности, иногда вдвое, что приводит к снижению его теплозащитных качеств.

Строительный войлок получают из низкосортной шерсти животных, к которой добавляют растительные волокна и крахмальный клейстер. Полученные полотнища пропитывают 3%-ным раствором фтористого натрия для защиты от повреждения молью и высушивают. Строительный войлок — хороший утепляющий и звукоизоляционный материал, используется при штукатурке стен и потолков, утепления зазоров между дверными или оконными коробками и стеной.

Стеклянная вата является теплоизоляционным материалом, получаемым вытягиванием расплавленного стекла и состоящим из шелковистых, тонких, гибких стеклянных нитей белого цвета.

Маты из стекловолокна на синтетической связке плотностью 350 кг/м3 с коэффициентом теплопроводности 0,045 Вт/(м°С) выпускают длиной 1—1,5 м, шириной 0,5; 1; 1,5 м, толщиной 0,03—0,06 м.

Базальтовое супертонкое стекловолокно БСТВ является высокоэффективным теплоизоляционным материалом, обладающим малой плотностью 17—25 кг/м3 и коэффициентом теплопроводности 0,027—0,036 Вт/(м’°С). Из него изготовляют маты, обладающие хорошей теплозащитой и звукоизоляцией.

Пеностекло представляет собой материал, изготовляемый из стекольного боя или кварцевого песка, известняка, соды, т.е. тех же материалов, из которых производят различные виды стекол. Пеностекло образуется в результате спекания порошка стеклобоя с коксом или известняком, которые при высокой температуре выделяют углекислый газ. Благодаря этому в материале образуются крупные поры, стенки которых содержат мельчаший замкнутые микропоры. Двоякий характер пористости позволяет получить пеностекло, имеющее в зависимости от плотности низкий коэффициент теплопроводности 0,058— 0,12 Вт/(м°С). Оно обладает водостойкостью, морозостойкостью, несгораемостью и высокой прочностью. Пеностекло используют для утепления стен, перекрытий, кровель, для изоляции подвалов и холодильников.

Цементный фибролит является хорошим теплоизоляционным материалом, состоящим из смеси тонких древесных стружек длиной 20—50 см (древесной шерсти), портландцемента и воды. Полученную массу формуют, подвергают тепловой обработке и разрезают на отдельные плиты. Древесные стружки, приготовленные из неделовой древесины хвойных пород на специальных станках, выполняют в плитах роль армирующего каркаса. Цементно-фибролитовые плиты выпускают марками по плотности М 300, 350, 400 и 500 с коэффициентом теплопроводности 0,09—0,12 Вт/(м°С), длиной 2—2,4 м и шириной 0,5— 0,55 м и толщиной 5; 7,5 и 10 см.

Арболит изготовляют из смеси портландцемента, дробленой стружки и воды.

Древесно-стружечные плиты изготовляют в результате прессования специально подготовленных стружек с жидкими полимерами. Стружки изготовляют на станках из неделовой древесины, используя отходы фанерного и мебельного производства. Плиты представляют своего рода слоистую конструкцию, средний слой которой состоит из толстых стружек толщиной около 1 мм, а наружные слои из тонких стружек толщиной 0,2 мм. Для обеспечения биостойкости плит в массу из стружек и полимеров вводят антисептик (буру, фтористый натрий и др.), а также антипирены и гидрофобизирующие вещества. Применение гидрофобизаторов позволяет уменьшить набухание плит под действием влаги воздуха.

Плиты снаружи отделывают полимерными пленочными материалами, бумагой, пропитанной смолой, что также защищает их от увлажнения и истирания. Иногда поверхность плит покрывают водостойкими лаками.

Древесно-стружечные плиты выпускают различной плотности от 350 до 1000 кг/м3. Плиты средней (510— 650 кг/ ) и высокой (660—800 кг/м) плотностей используют в качестве конструкционного и отделочного материала, а малой плотности (350 кг/м) — как теплоизоляционный, а также звукоизоляционный материал. Плиты изготовляют длиной 1,8—3,5 м, шириной 1,22—1,75 м, толщиной 0,5—1 см.

Древесно-волокнистые плиты изготовляют из древесины или растительных волокон, получаемых из отходов деревообрабатывающих производств, неделовой древесины, а также костры, камыша, хлопчатника. Наибольшее распространение получили плиты на основе древесных отходов. Древесно-волокнистые плиты выпускают различной плотности — от 250 до 950 кг/м3. Твердые плиты (плотностью больше 850 кг/м) применяют для устройства перегородок, подшивки потолков, настилки полов, изготовления полотен и встроенной мебели.

Изоляционные древесно-волокнистые плиты плотностью до 250 кг/м с коэффициентом теплопроводности 0,07 Вт/(м’°С) используют для тепло- и звукоизоляции помещений. Они имеют длину 1,2—3 м, ширину 1,2— 1,6 м, толщину 0,8—2,5 мм.

Оргалит представляет собой теплоизоляционные древесно-волокнистые плиты из измельченной и химически обработанной древесины. При плотности 150 кг/м3 они имеют коэффициент теплопроводности 0,055 Вт/(м’°С) и используются для теплоизоляции стен, кровель и т.д.

Торфяные изоляционные плиты изготовляют прессованием из малоразложившегося торфа, имеющего волокнистую структуру. Торфяные плиты выпускают плотностью 170 и 250 кг/м с коэффициентом теплопроводности в сухом состоянии 0,06 Вт/(м’°С), длиной 1 м, шириной 0,5 м, толщиной 30 мм и используют для изоляции ограждающих конструкций зданий.

Асбестовый картон получают из асбеста 4-го и 5-го сортов, каолина и крахмала. Его изготовляют на листо-формовочных машинах в виде листов длиной и шириной 0,9—1 м, толщиной 2—10 мм. Коэффициент теплопроводности в сухом состоянии равен 0,157 Вт/(м’°С).

Опилки древесные получают в результате обработки древесины, в мебельном производстве, при распиловке. Опилки плотностью около 150 кг/м используют в качестве утепляющей засыпки, а также для производства арболита, ксилолита, при изготовлении опилкобетона и других строительных материалов.

Пакля представляет собой коротковолокнистый материал, получаемый из отходов пеньки и льна, имеет плотность 160 кг/м, коэффициент теплопроводности 0,047 Вт/(м°С) и применяется для конопатки стен и зазоров оконных коробок.

Гипсовые плиты для перегородок огнестойки, обладают высокими звукоизоляционными качествами, в них легко забиваются гвозди. Плиты применяются для перегородок в помещениях с относительной влажностью не более 70%. Гипсовые перегородки выпускают сплошными и пустотелыми, длиной 0,8—1,5 м, шириной 0,4, толщиной 80, 90 и 100 мм.

Гипсокартонные листы представляют собой отделочный материал, изготовленный из строительного гипса, армированного растительным волокном. Поверхность листов с обеих сторон оклеена картоном. Сухая штукатурка легко режется, не горит, хорошо прибивается гвоздями. Гипсокартонные листы лопаются при изгибе. Как и все изделия на основе гипса они разрушаются под действием влаги.

Сухая штукатурка выпускается листами длиной 2,5— 3,3 м, шириной 1,2 м, толщиной 10—12 мм и применяется для внутренней отделки помещений. Ее приклеивают к поверхности стен и потолков специальными мастиками. Швы между листами заделывают безусадочной шпатлевкой.

Гипсобетонные камни являются местным строительным материалом, их применяют для наружных стен малоэтажных зданий в районах, где нет других эффективных стеновых материалов.

Гипсобетон изготовляют на основе строительного, высокопрочного гипса или гипсоцементно-пуццоланового вяжущего. В его состав вводят пористые заполнители — керамзитовый гравий, топливные шлаки, а также смесь из кварцевого песка и древесных опилок. В зависимости от заполнителя гипсобетон имеет плотность 1000—1600 кг/м. Из него изготовляют сплошные и пустотелые плиты перегородок.

ПОХОЖИЕ СТАТЬИ:

  • Кислотоупорный кирпич: описание,видео,фото,виды,размеры,параметрыКислотоупорный кирпич: описание,видео,фото,виды,размеры,параметры
  • Силикатные бетоны: виды,свойства фото,изготовление,применениеСиликатные бетоны: виды,свойства фото,изготовление,применение
  • Вредны ли натяжные потолки для здоровья?Вредны ли натяжные потолки для здоровья?
  • Строительный клей: обзор,описание,виды,применение,назначение,фото,видео.Строительный клей: обзор,описание,виды,применение,назначение,фото,видео.
  • Как выбрать вентилятор — какой мощности?Как выбрать вентилятор — какой мощности?
  • Силикатный кирпич: описание,фото,видео,виды,характеристики,составСиликатный кирпич: описание,фото,видео,виды,характеристики,состав
  • Газобетон: описание,виды,фото,видео,производители,прочностьГазобетон: описание,виды,фото,видео,производители,прочность
  • Тротуарная плитка: описание,характеристики,маркировка,виды,фото,видеоТротуарная плитка: описание,характеристики,маркировка,виды,фото,видео
  • Швеллер: описание,виды,обзор,фото,видео,обозначение,применениеШвеллер: описание,виды,обзор,фото,видео,обозначение,применение
  • Выгодное ограждениеВыгодное ограждение
  • Сэндвич панели:описание,виды,размер,предназначение,фото,применениеСэндвич панели:описание,виды,размер,предназначение,фото,применение
  • Швеллер 10: характеристики,размер,вес,масса,виды,фото,видеоШвеллер 10: характеристики,размер,вес,масса,виды,фото,видео
Виды утеплителей бывают и какой выбрать для дома? Обзор +Видео

Виды утеплителей для стенШирок выбор утеплителей для деревянных домов, ими можно утеплять дом снаружи, а некоторыми даже внутри дома.  Какие виды подходят для каркасного дома? Какой самый лучший, рассмотрим их характеристики в этой статье! Правильно проведенная теплоизоляция не будет лишней в любых климатических условиях.

[contents]

Когда она сделана грамотно, то под ее «защитой» не только зимой в доме будет теплее, но и летом заметно прохладней.

Монтаж утеплителя создаст комфортный микроклимат в помещении любого назначения – в жилом доме, офисе или в производственном цехе.

К тому же, экономия тепла – это очевидная экономия финансов. Совершенно неразумно отапливать улицу при том, что используемые сегодня технологии предоставляют возможность заняться экономией энергетических ресурсов уже на начальной стадии строительных работ. Более всего в применении утеплителей нуждаются те части здания, которые больше соседствуют с внешней средой – пол, стены и крыша.

Какие виды утеплителей и для чего использовать?

Вата, пенопласт самые популярные утеплителиОсновные виды утеплителей

Сегодня существует разделение материалов этой группы непосредственно по месту их назначения. Также они отличаются по внешнему виду и своей форме.

В продаже имеются довольно жесткие штучные утеплители (плиты, сегменты, цилиндры и т. д.), гибкие изделия (шнуры, широкие и узкие маты, жгуты), а также сыпучие (перлитовый песок, вермикулит и вата).

По структуре их можно подразделить на волокнистые, зернистые и ячеистые.

По характеру основного сырья материалы для теплоизоляции традиционно разделяют на органические и неорганические.

Какой следует вывод из всего изложенного? Каждый отдельный современный утеплитель можно классифицировать по нескольким, совершенно разным критериям. Сравнивать теплоизоляционные материалы безотносительно места их применения не имеет смысла.

Как выбрать утеплитель?

Это зависит то, что вы хотите утеплять и сколько средств готовы потратить.

Утепление пола

утеплитель для полаУтепляем пол

Решение об утеплении пола бывает обусловлено желанием иметь дома более постоянную температуру. Выбирая утеплитель для пола, сравнивая характеристики различных материалов, предпочтению отдают тому, который сумеет выдержать оказываемое на него немалое давление. В данном случае важными будут его показатели при сжатии.

Ну, и непременное требование – способность сохранять изоляционные качества, даже при воздействии сильных нагрузок и воздействии влаги.

Нередко для этой цели используется керамзит, если имеется возможность использовать его при заливке пола из бетона. При наличии в доме подвала, чтобы утеплить в комнатах пол, изоляцию удобно крепить со стороны погреба или подвала. В таком случае удобнее воспользоваться пенополистиролом.

Виды утеплителей стен

Виды утеплителей стен каркасного домаУтеплители для стен дома

Теплоизоляция для этой категории совсем другая, к тому же, ее тип зависит от конкретного места применения – снаружи или внутри дома.

Для наружного применения идеальным считается использование базальтовой минваты, отличающейся способностью держать форму и долговечностью. В процессе даже длительной эксплуатации она не истончается, не слеживается и не уплотняется.

Изнутри строения утепления проводят исходя от возможно допустимого изоляционного слоя: особенности планировки не всегда позволяют сделать его достаточно объемным.

 Какой утеплитель выбрать? Наиболее оптимальные варианты – минеральная вата или пенопласт, но они же являются и наиболее объемными из возможных вариантов.

Более современный способ – использование краски с керамической основой. Ее слой может быть небольшим, да и условия герметичности соблюсти гораздо проще.

Выбор подходящего материала усложняется еще и тем, что у каждого из них имеется собственный показатель точки росы. Если место, которое необходимо укрыть, имеет показатели, превышающие допустимые, то его изоляция не принесет желаемого результата.

Потолок и его утепление

Утепление_потолка_минеральной ватойМинеральная вата для утепления потолка

Для утепления потолка, постоянно высоким спросом пользуется минеральная вата.

Это совсем не удивительно: ее достаточно просто можно выложить в межэтажные перекрытия или в стропильный каркас, в необходимом для этого количестве. В процессе эксплуатации там ей ничто не угрожает, тем самым обеспечивается изначально высокое качество изоляции.

Если же пренебречь уникальными качествами ваты и простотой ее монтажа, то другими подходящими средствами для теплоизоляции могли бы стать опилки с глиной или обычный шлак. Однако эти вещества так и не нашли широкого применения из-за их немалой стоимости и довольно сложного процесса установки.

Минеральные ваты

Это название объединяет несколько различных подвидов теплоизоляционных материалов такого типа. Это шлаковая, каменная и стеклянная вата. Изготавливают данный изолятор путем переработки металлургических сплавов или расплавов различных горных пород: в полученное стекловидное волокно вводят особую синтетическую связку.виды_минеральной_ваты_для_утепления

Произведенный этим способом материал имеет отличные звуко- и теплоизоляционные качества, к тому же он не горюч, и поэтому не представляет опасности в пожарном отношении. Но громадная часть замечательных качеств утеплителя может быть безвозвратно потеряна при его намокании. Это следует учитывать.

Вата каменная

Преимущества каменной ватыКаменная вата

Это волокнистый материал, который поступает в продажу в виде рулонов и порционных плит, и имеющий крайне низкий показатель теплопроводности.

Самый качественный продукт делается из горных пород, называемых габбро-базальтовыми. Этот негорючий материал с равным успехом применяется при строительстве частных объектов и возведении различных производственных. Широкий спектр использование объясняется так же возможностью его использовании при чрезвычайно высоких t, достигающих показателя в одну тысячу градусов.

Полная невосприимчивость изоляции к огню дополняется ее отличной устойчивостью к влажности. Это гидрофобный материал, особенность которого заключается в том, что он не впитывает воду, а отталкивает ее.

Это гарантирует то, что изоляция останется по-прежнему сухой даже спустя длительный период времени. Это, в свою очередь, позволит ей сохранить свои высокие рабочие качества. Уникальные свойства базальтовой ваты позволяют использовать ее даже в котельных, банях и саунах, где сочетаются и большая влажность, и высокая температура. Прочность в данном случае не находится в прямой зависимости от плотности материала.

Это довольно мягкий материал, обладающий при этом достаточным запасом прочности. Его структурная устойчивость обусловливается особенным расположением отдельных составляющих волокон – хаотичным и вертикальным. Материал отличается высокими антикоррозийными свойствами.

Он может довольно мирно соседствовать с бетоном и металлом, без возникновения разного рода химических реакций. Высокая биологическая устойчивость обеспечивает ему невосприимчивость к различным биологическим вредителям: порче насекомыми и грызунами, возникновению грибковых заболеваний, развитию гнили и плесени.

На фото видно, что базальтовый утеплитель не подвергается горениюТест горения базальтовый утеплитель выдержал, а органические утеплители сгорели

Базальтовая порода является главным сырьем для производства данного типа ваты. Обработка смолами формальдегидов придает материалу достаточный уровень прочности, а используемые при этом современные технологии гарантируют полное устранение вредных фенолов еще на этапе производства материала.

Окончательный продукт, попадающий к потребителю, является безвредным и экологичным материалом, обладающим высокими изоляционными качествами.

Его активно используют для утепления полов жилых и производственных помещений, для теплоизоляции кровли и фасадов, в том числе в качестве наружного утеплителя.

Нашел он широкое применение и в помещениях с экстремальными показателями влажности и температуры. Лучший базальтовый утеплитель, каменная вата, изготовленная из горных пород – залог качественной теплоизоляции на длительный срок.

Вата стеклянная

Сравнение ваты в микроскопЭтот волокнистый материал делают из массы расплавленного стекла. На его основе, в продаже можно найти изоляцию двух видов – мягкие маты, скатанные в рулоны, и твердые плиты.

Продукт отличается высокой прочностью и отличной упругостью. В качестве сцепки, или связывающего вещества, как и в предыдущем случае, используется переработанные смолы-формальдегиды.

Хотя далеко не все замечательные свойства базальтовой ваты присущи стеклянному аналогу, она имеет свои особенные качества. У нее высокая пластичность, заметно облегчающая этапы работы с ней, и позволяющая существенно сжимать материал при его укладке. Но при эксплуатации стекловата может слеживаться и терять начальную форму. Волокно из стекла обладает высокой гигроскопичностью, и может аккумулировать влагу из внешней среды, накапливая ее в своей толще.

Чтобы избежать таких негативных явлений, его прикрывают фольгой или водонепроницаемой мембраной-пленкой, устраняя чрезмерно высокую влагоемкость. Материал обладает высокой биологической и химической стойкостью, используется там, где он не будет подвергаться значительным механическим нагрузкам. Это пространства кровли, фасады, подпол. Нередко ее используют в сочетании с дополнительной защитой – рубероидом или стеклотканью.

Пенопласт

Утепление каркасного дома пенопластомУтепляем каркасный дом пенопластом

Пенопласт достаточно твердый, держащий форму, плитовой материал, широко используемый для теплоизоляции крыш, стен, полов и перекрытий: и снаружи, и изнутри. Его основу составляют вспененные гранулы из пенополистирола.

Поступает в продажу плитами 1 на 2 метра, с различной толщиной: от двух сантиметров до полуметра. Его характеристики могут заметно варьироваться, из-за чего материал подбирается в каждом конкретном случае строго индивидуально.

В зависимости от процесса изготовления, можно получить два разных типа пенопласта, используя фактически одно и то же сырье:

  • поропластом называют пористое вещество, отдельные полости которого между собой сообщаются. Далее они также подразделяются на мипору, пенополивинилхлорид, пенополиуретан и пенополистирол;
  • непосредственно пенопласт – содержимое отдельных гранул в нем не контактирует с окружающей средой и соседними полостями.

Пенополистирол

Утеплитель в виде кирпичей пенополистиролПенополистирол в виде кирпичей

Пенополистирол это материал относится к пластмассам с ячеистой структурой, обладает почти всеми качествами, необходимыми для теплоизоляции, он :

  • легкий;
  • жесткий;
  • не боится воды;
  • биологических заражений.
  • Но из-за низкой пожароустойчивости его рекомендуется применять при t не выше 150 градусов.

Для улучшения данного качества в утеплитель добавляют специальные антипирены еще на этапе производства. К названию такого материала добавляется условный знак «С», и он называется самозатухающим. Эксплуатационные качества пенопласта сделали его достаточно востребованным материалом.

Пенополиуретан напыляемый

Напыляемый пенополиуретанНапыляем на стену

Представляет собой пеноматериал, который можно наносить посредством распыления через специальный аппарат. В его состав входит полиизоцианат, полиэфир полиол и разные добавки.

Адгезионные свойства материала позволяют безбоязненно наносить его даже на вертикальные поверхности. Он имеет отличное сцепление с бетоном, штукатуркой, рубероидом, металлом, газосиликатными блоками.

Материал вполне успешно используется для изоляции:

  1. внутренних;
  2. наружных стен;
  3. плоских и скатных крыш;
  4. цокольных этажей;
  5. фундаментов;
  6. подвалов;
  7. стыков между конструкциями.

Используемый метод нанесения с помощью напыления гарантирует максимальное заполнение всех отверстий, отсутствие щелей и стыков. Отсутствие потенциальных точек холода повышает теплоизоляционные качества такой обработки.

Если говорить о недостатках материала, то таковым, несомненно, является его непригодность для обработки деревянных элементов. Обработанная таким методом древесина очень скоро потеряет присущие ей качества, в ней начнутся процессы гниения и порчи. Обусловливает данный процесс нарушение воздухообменных процессов в глубине древесной массы. Аккумулирующаяся внутри породы влага не находит выхода, и начинаются необратимые процессы.

Эковата

Этот целлюлозный утеплитель производится на основе картонной и бумажной макулатуры. Его свойства фактически определяются входящими в состав веществами. Кроме привычной вторичной целлюлозы, некоторые зарубежные изготовители используют так же сено, отходы хлопкового производства, древесные опилки. На на 81% материал состоит из тщательно обработанной целлюлозы, 12 же составляет обязательный антисептик.

Эковата- целлюлозный утеплительНедостающие 7 % приходятся на долю специально добавляемых антипиренов. Волокна утеплителя содержат лигнин, при повышении влажности делающийся клейким. Все входящий в состав утеплителя элементы нетоксичны, абсолютно не летучи и безвредны для здоровья. Изоляция из целлюлозы не поддается горению, процессам гниения, имеет отличные звукоизоляционные и теплоизоляционные показатели.

Эковата может удерживать примерно 20% влажности, сохраняя при этом свои рабочие качества. Материал отдает влагу вовне и быстро сохнет, сохраняя все свои эксплуатационные качества. Недостатком эковаты можно считать трудность ее ручного нанесения на поверхность, а также невозможность обустройства «плавающего пола» из-за присущей ей мягкости.

Пеноизол

Другое название материала – пенопласт карбамидный. Это современный материал с высокими звуко- и теплоизолирующими характеристиками, являющийся дешевым утеплителем. Это ячеистый органический пенопласт с особо низкой плотностью и низкой теплопроводностью. Материал имеет высокую сопротивляемость огню, устойчивость к воздействиям микроорганизмов, низкую цену. Его легко обрабатывать, содержание воздуха достигает в нем 90%.

пеноизол для утепленияУтепление чердака пеноизолом

Проведенные испытания продемонстрировали возможности материала. Оказалось, что время его эксплуатации, в качестве среднего слоя конструкции каркасного строения, фактические ничем не ограничено. Испытания его огнестойкости показали, что материал можно смело отнести к трудногорючим.

Это единственный из используемых теплоизоляционных материалов полимерной природы, который совсем не приспособлен к самостоятельному горению. Его показатель пожароустойчивости относит его к подгруппе горючести Г2.

Даже при возникновении высочайшей температуры при пожаре, когда начинает плавиться металл, карбидный пенопласт всего лишь станет испаряться, причем без выделения ядовитых или вредных веществ.

Изоком

Это особый фольгированный материал (с обеих сторон или только с одной). Он представляет собой ткань из вспененного полиэтилена, покрытую снаружи хорошо отполированной фольгой из алюминия. Это многослойных паро- звуко- и теплоизолирующий материал, сочетающий в себе совершенно разные качества.

Изоком утеплитель с фольгойИзоком утеплитель с фольгой

При минимальной толщине изоляционного слоя, он обеспечивает замечательные свойства отражения потока тепла, удачно сочетающиеся с высочайшими (практически максимальными) показателями термического сопротивления. Для правильно установленного материала характерна исключительно эффективная теплоизоляция здания по всему его контуру.

Это безвредный, экологичный материал, не несущий угрозы озоновому слою. Он не содержит стекла или других волокон, небезопасных для здоровья людей и животных.

Не меняя своих исключительных свойств, он служит порядка 50 лет, не деформируясь и не подвергаясь порче в течение всего этого времени.

В монтаже довольно прост и весьма удобен: не нуждается в специальной технике. Отличная защита от пара и влаги. Применяется практически повсеместно.

Отзывы: Жидкая теплоизоляция, как утеплитель для дома

Жидкая теплоизоляция,  жидкий утеплитель, теплоизоляционная краска

— под такими названиями на строительном рынке предлагают составы, которые, по утверждению продавцов, при нанесении на стену могут служить для утепления дома или квартиры. Причем, тонкий слой краски толщиной в 1 мм., по их словам, может по теплосберегающим свойствам заменить 5 см. минеральной ваты или пенопласта.

Теплоизоляционная краска — это обман!?

Жидкая теплоизоляция как утеплительТонкий слой жидкой теплоизоляции на стене не принесет существенной экономии затрат на отопление, не приведет к заметному повышению температуры в доме, квартире.

 На строительном рынке многие продавцы назойливо предлагают купить теплоизоляционную краску. Чаще всего эту краску называют примерно так: жидкое керамическое тонкопленочное теплоизоляционное покрытие, или короче — жидкая теплоизоляция или жидкий утеплитель.

Теплоизоляционная краска представляет собой суспензию из керамических или стеклянных микросфер (полых или полнотелых) размером 10-50 мкм. перемешанных с акриловой краской. Слой краски после высыхания имеет толщину 0,3-0,5 мм. и состоит из нескольких слоев микросфер, связанных тонкой акриловой пленкой.

Продукт предлагают под разными торговыми названиями.

Продавцы утверждают, что эта краска разработана на основе модных теперь нанотехнологий для применения в космических проектах, и обладает исключительными свойствами. Слой краски толщиной 1 мм. по теплосберегающим свойствам якобы заменяет 50 мм. пенопласта.

Рекомендуют её для утепления всего, чего угодно. Могут даже показать сертификаты и другие документы. Внимательный и дотошный читатель не найдет в этих документах подтверждения выдающихся теплосберегающих свойств покрытия по сравнению с другими утеплителями.

Известно, что на планете Земля тепловая энергия путешествует с помощью трех физических процессов: теплопроводности, теплового излучения и конвекции.

Традиционные утеплители (минвата, пенополимеры), которые используют для тепловой защиты ограждающих конструкций зданий, имеют низкую теплопроводность.

Показателем теплопроводности служит коэффициент теплопроводности. Этот коэффициент равен количеству тепла, проходящего через образец материала толщиной 1 м, площадью 1 м2 в течение 1 часа при разности температур образца в 1°С. Чем он больше, тем хуже теплоизоляционная способность материала.

Например, измеренная по стандартной методике теплопроводность жидкой теплоизоляции марки Mascoat (Made in USA) по данным производителя – всего 0,0698 Вт/(м*°К). Для сравнения, теплопроводность пенопласта, в зависимости от формы выпуска, варьируется от 0,037 до 0,043 Вт/(м*°К). Теплопроводность покрытия из жидкого утеплителя примерно в 1,5 раза выше, чем пенопласта.

Практика применения также не подтверждает чудесных теплосберегающих свойств жидкой теплоизоляции при утеплении стен, потолков и других строительных конструкций дома.

жидкая свехтонкая теплоизоляция на стене домаТонкий слой жидкой теплоизоляции на стене не принесет существенной экономии затрат на отопление, не приведет к заметному повышению температуры в квартире.

Где выгодно использовать жидкую теплоизоляцию

В отличие от большинства теплоизоляционных материалов жидкие керамические теплоизоляционные покрытия эффективно работают в условиях низкой теплоотдачи с наружной поверхности. Теплоотдача — теплообмен (конвективный или лучистый) между поверхностью нагретого твердого тела и окружающей средой.

Теплоотдача с поверхности сильно зависит от того, с каким материалом соприкасается данная поверхность. Лучше, если таким материалом будет воздух. Кроме того, передача тепла излучением или конвекцией характерна для сильно нагретых поверхностей.

Это говорит о том, что покрытие из теплоизоляционной краски эффективно использовать в качестве финишного покрытия и для сильно нагретых поверхностей.

Жидкую керамическую теплоизоляцию рекомендуют применять для эффективной теплоизоляции «горячих» поверхностей с температурой до 200 ºС. Покрытие теплоизоляционной краской позволяет  снизить температуру поверхности до безопасной по санитарным нормам величины (до 45-55 ºС ).

На промышленных предприятиях жидкую теплоизоляцию так и используют — для теплоизоляции тепло и паропроводов, котлов, объектов энергетического назначения, резервуаров для хранения нефтепродуктов и других металлических конструкций. 

Попытки продавцов и производителей навязать покупателям применение жидкой теплоизоляции для утепления стен, фасадов, потолков в доме, утверждая, что тонкий слой краски заменяет традиционные утеплители, являются обманом.

Применение теплоизоляционной краски в домашнем хозяйстве

Жидкая теплоизоляция, нанесенная на стальные трубы водопровода, поможет предотвратить появление конденсата на их поверхности, защитит трубы от коррозии.

Известно, что зимой температура поверхности наружной стены всегда ниже температуры воздуха в помещении. Для повышения теплового комфорта бывает достаточно увеличить со стороны помещения температуру поверхности наружной стены или перекрытия буквально на несколько градусов. Нанесение на внутреннюю поверхность жидкой теплоизоляции толщиной 1-2,5 мм. часто достаточно для устранения промерзания оконного откоса, стены или перекрытия, ликвидации конденсата и плесени на их поверхности.

Жидкая теплоизоляция легко колеруется в любой цвет, на слой краски можно клеить обои.

Жидкий утеплитель, как правило, приходится наносить в несколько слоев. Учитывая достаточно высокую стоимость материала, применение его в домашнем хозяйстве, в указанных выше случаях, выгодно, если площадь покрытия невелика.

Рекламный ролик одного из производителей жидкой теплоизоляции:

Эффект впечатляет! Краску надо брать! Правда?

Обратите внимание на то, что диктор в видеоролике сообщает толщину жидкой теплоизоляции: 3 мм. А это, примерно, 6 слоев краски!

В конце ролика диктор делает вывод о замечательных «огнезащитных» и «теплосберегающих» свойствах жидкой теплоизоляции.

Подобный опыт проделывал каждый из нас, когда брал в руки раскаленную сковородку через тряпку. Но я нигде не слышал, чтобы кто-то утверждал, что тряпка толщиной 1 мм. по теплосберегающим свойствам эквивалентна 50 мм. пенопласта!

Во всех этих экспериментах, со льдом и сковородкой, на процесс передачи тепла влияет сочетание  теплопроводности, теплоемкости и плотности применяемых материалов.

Выше в статье, в качестве примера, указана величина теплопроводности жидкой теплоизоляции одного из производителей (0,0698 Вт/(м*°К)). Теплопроводность жидкой теплоизоляции больше, чем у традиционных утеплителей (0,043 Вт/(м*°К)). По этой причине, тонкий слой жидкого утеплителя никак не может заменить слой в 50 мм. минваты или пенопласта.

Обратите внимание, что указанная выше теплопроводность жидкой теплоизоляции определена по стандартной методике. Дело в том, что производители теплоизоляционной краски в рекламных документах часто указывают чудесно низкую величину теплопроводности, которую определяют расчетным путем. Например, в документах встречал расчетный коэффициент теплопроводности для жидкой теплоизоляции 0,0012 Вт/(м*°С). Покупатели обычно не обращают внимания на эту разницу в методиках. Это обстоятельство позволяет продавцам вводить покупателя в заблуждение. Сравнивать показатели теплопроводности и утверждать, что краска в 50 раз эффективнее пенопласта.

Для экономии тепла в доме, снижения затрат на отопление выгоднее, эффективнее и надежнее утеплить стену одним из традиционных способов — слоем минераловатного или пенополимерного утеплителя.

Удалось найти результаты испытаний теплоизоляционных свойств краски одной известной торговой марки. Краску нанесли на лист гипсокартона и определили, как покрытие изменило коэффициент теплопроводности листа. Результаты свидетельствуют о том, что при комнатной температуре слой такой краски толщиной 1 мм. может заменить собой только 1,6 мм. пенопласта.

Еще статьи на эту тему:

Еще статьи на эту тему

90000 How does heat insulation trap heat? 90001 90002 Advertisement 90003 90002 90003 90006 90007 90008 90009 90010 90002 by Chris Woodford. Last updated: June 2, 2019. 90003 90013 If you’re out and about in winter and you’re feeling cold, chances are you’ll put on a hat or another layer of clothing. If you’re sitting at home watching television and the same thought strikes you, you’re more likely to turn on your heating. Now what if we switched the logic around? What if you ate more food whenever you felt cold and stuck a woolly hat on top of your house each winter? The first would not make much difference: food supplies the energy your body needs, but it does not necessarily make you any warmer right there and then.But putting «clothes» on your house-by insulating it-is actually a very good idea: the more heat insulation you have, the less energy escapes, the lower your fuel bills, and the more you help the planet in the fight against global warming. Let’s take a closer look! 90003 90002 Photo: Aerogel is one of the world’s most exciting insulating materials. Put a slab of aerogel between a gas flame and some wax crayons and the crayons will not melt: the aerogel stops virtually any heat flowing through. One day, we could make all our windows out of aerogel-but scientists have to figure out how to make it transparent first! Photo by courtesy of NASA Jet Propulsion Laboratory (JPL).90003 90017 Why do we need insulation? 90018 90002 Compared to using age-old technology such as an open-coal fire, most modern heating appliances are actually pretty efficient; look at the red bars in the chart below and you’ll see that, for every joule (the standard modern unit of measuring energy) of fuel you feed into them, you typically get about 70 percent back again as heat (in practical terms, that’s what the fuel efficiency percentage means). 90003 90002 90003 90002 Chart: Comparing the cost and efficiency of different fuels.How efficiently you can heat your home (and how much it will cost) depends to a large extent on the fuel you use-which is not always something you can change easily. As this chart shows, home heating fuels vary dramatically in cost (with electricity the most expensive and coal the cheapest), though most are about 70 percent efficient or better. Wood is the least efficient fuel, but given its low cost, availability, and sustainability, that does not always bother people. Even though coal is the cheapest fuel, it’s dirtiness and other environmental drawbacks have made it much less popular in recent decades.Natural gas owes its popularity to its relativity low cost and high efficiency. The blue bars in this chart show the cost in dollars per million btu of nine common residential fuels (read the vertical axis on the left). The red bars alongside show the efficiency of each fuel as a percentage (read the vertical axis on the right). Drawn using data for 2014 courtesy of US Energy Administration. (This still appears to be the newest comparative data from the EIA as of 2019. The efficiency data does not really change, but please bear in mind that the prices may be slightly inaccurate now.) 90003 90025 Holding onto your heat 90026 90002 The real problem with home heating is retaining the heat you produce: in winter, the air surrounding your home and the soil or rock on which it stands are always at a much lower temperature than the building so, no matter how efficient your heating is, your home will still lose heat sooner or later. The answer is, of course, to create a kind of buffer zone in between your warm house and the cold outdoors. This is the basic idea behind heat insulation, which is something most of us think about far too little.According to the US Department of Energy, only a fifth of homes built before 1980 are properly insulated; so, as you can see from the chart below, most of us believe our properties are better insulated than they actually are. 90003 90002 90003 90002 Chart: Over 95 percent of homes built in the 1990s and after are either well- or adequately insulated, according to the perceptions of their owners, compared to just 68 percent built before 1950. (In reality, many homes are much more poorly insulated than their owners believe.) Drawn using data from [PDF] Householder’s Perceptions of Insulation Adequacy and Drafts in the Home in 2001 by Behjat Hojjati, US Energy Information Administration, 2004. 90003 90017 How does heat escape from your home? 90018 90002 90003 90002 Artwork: Where does the heat escape in a typical home? It varies from building to building, but these are some rough, typical estimates. The walls give the biggest heat loss, followed by the doors and windows, the roof, and the floor. 90003 90002 Why does heat escape from your home in the first place? To understand that, it helps to know a little bit about the science of heat.As you probably know, heat travels in three different ways by processes called conduction, convection, and radiation. (If you’re not sure of the difference, take a look at our main article on heat for a quick recap.) Knowing about these three types of heat flow, it’s easy to see lots of ways in which your cozy warm home is leaking heat to the freezing cold world all around it: 90003 90041 90008 Your house is standing on cold soil or rock, so heat flows down directly into the Earth by conduction.90009 90008 Heat travels by conduction through the solid walls and roof of your home. On the outside, the outer walls and the roof tiles are hotter than the atmosphere around them, so the cold air near to them heats up and flows away by convection. 90009 90008 Your house may seem like a big complex space with lots going on inside in but, from the point of view of physics, it’s exactly the same as a camp fire in the middle of vast, cold surroundings: it constantly radiates heat into the atmosphere.90009 90048 90002 The more heat escapes from your home, the colder it gets inside, so the more you have to use your heating and the more it costs you. The more you use your heating, the more fuel has to be burned somewhere (either in your own home or in a power plant up-state), the more carbon dioxide gas is produced, and the worse global warming becomes. It’s far better to insulate your home and reduce the heat losses. That way, you’ll need to use your heating much less. The great thing about home insulation is that it usually pays for itself quite quickly in lower fuel bills.Before long, it’s even making you money! And it’s helping the planet too. 90003 90017 How heat insulation works 90018 90002 Suppose you’ve just poured yourself a hot cup of coffee. A fundamental rule of physics called the second law of thermodynamics says it’s never going to stay that way: pretty soon, it’s going to be a cold cup of coffee instead. What can you do to postpone the inevitable? Somehow you need to stop heat escaping by conduction, convection, and radiation. 90003 90002 The first thing you could do is put a lid on.By stopping hot air rising and falling above the cup, you’ll be cutting down heat losses by convection. Some heat is also going to be disappearing through the bottom of the hot cup into the cold table it’s standing on. What if you could surround the cup with a layer of air? Then very little conduction could take place. So maybe have a second cup outside the first one with an air gap (or, better still, a vacuum) in between. That’s convection and conduction just about licked, but what about radiation? If you were to wrap aluminum foil round the outer cup, most of the infrared radiation the hot coffee gives off will be reflected back inside it, so that should solve that problem too.Apply all three of those solutions-a lid, an air gap, and a metallic coating-and what you have is effectively a vacuum flask: a really effective way of keeping hot drinks hot. (It’s also good at keeping cold drinks cold, because it stops heat flowing in just as effectively as it stops heat flowing out.) It’s worth noting, just in passing, that most takeaway stores give you hot drinks in nasty-tasting polystyrene containers. Ever wondered why? The answer is simply that polystyrene (and especially expanded polystyrene, filled with air-the crumbly kind you get in packaging materials) is a superb heat insulator (check out the table below and you’ll see it rates better than double- and triple-glazing).90003 90002 90003 90002 Photo: Above: Vacuums coated with metal are among the best insulators, but they’re not always suitable for everyday uses. In the late 1980s, two scientists working at the National Renewable Energy Laboratory, David Benson and Thomas Potter, developed a more practical way to use this technology called compact vacuum insulation (CVI). The outer metal plates, held apart by ceramic spacers, seal an insulating vacuum inside. Photo by Warren Gretz courtesy of US Department of Energy / National Renewable Energy Laboratory (DOE / NREL).90003 90002 Photo: Below: A similar idea is at work in products like Superfoil, an affordable insulating material that (if you peel it apart) is much like bubble-wrap, only it’s sandwiched between thin layers of aluminum foil instead of paper. According to the manufacturers, the basic version has an R-value of around 0.97-2.33 (depending on where you use it), though the thicker versions manage somewhat better. 90003 90002 90003 90017 The best way to insulate your home 90018 90002 Now, unfortunately, we can not build our houses exactly like a vacuum flask.We have to have air to breathe, so a vacuum’s out of the question. Most people like windows too, so living in a sealed box lined with metallic foil is not that practical either. But the basic principle of cutting down heat losses from conduction, convection, and radiation still applies nevertheless. 90003 90002 If you want to improve your insulation, you need to take a very systematic approach, considering every possible way in which cold air can enter your home and heat can escape. You need to work your way around the entire building looking at every door, wall, window, roof, and other potential source of heat loss in turn.How much loft insulation do you have and could you do with some more? Is your home suitable for cavity-wall insulation and have you worked out the likely savings and payback period? How much energy are you losing through those drafty old sash windows? Have you thought about investing in caulking, secondary glazing, heavy curtains, magnetically attached plastic sheets, or some other means of keeping out the cold? 90003 90025 Walls 90026 90002 90003 90002 Photo: Reduce the energy losses from your home by filling the walls full of foam insulation.This eco-home is being insulated with Icynene, a plastic insulation material similar to that used in pillows and mattresses. Photo by Paul Norton courtesy of US Department of Energy / National Renewable Energy Laboratory (DOE / NREL). 90003 90002 Many homes have what are called cavity walls with two layers of brick or blocks between the inner rooms and the world outside and an air gap between the walls. The air gap reduces heat losses from the walls by both conduction and convection: conduction, because heat can not conduct through gases; convection, because there’s relatively little air between the walls and it’s sealed in, so convection currents can not really circulate.90003 90002 By itself, air is not the best insulating material to have between your walls. It’s actually far more effective to have the cavities in your walls filled with expanding foam or another really good insulating material that stops heat escaping. Cavity-wall insulation, as this is known, takes only hours to install and costs relatively little. Cavity walls are often filled with loosely packed, air-filled materials such as vermiculite, shredded recycled paper, or glass fibers (Specially treated to make them fireproof).These materials work in exactly the same way that your clothes work: extra layers of clothing make you warmer by trapping air-and it’s the air, as much as (or more than) the clothes themselves, that stops heat escaping. 90003 90017 Which are the best home insulation materials? 90018 90002 Some forms of insulation are better than others, but how can you compare them? The best way is to look out for measurements called R-values ​​and U-values. 90003 90025 R-values ​​90026 90002 The R-value of a material is its thermal resistance: how effectively it resists heat flowing through it.The bigger the value, the greater the resistance, and the more effective the material is as a heat insulator. 90003 90006 90008 Single glass: 0.9. 90009 90008 Air: 1 (0.5-4 inch air gap). 90009 90008 Double-glazing: 2.0 (with 0.5 inch air gap). 90009 90008 Vermiculite: 2.5 per inch. 90009 90008 Fiberglass: 3 per inch. 90009 90008 Triple-glazing: 3.2 (with 0.5 inch air gap). 90009 90008 Expanded polystyrene: 4 per inch. 90009 90008 Polyurethane: 6-7 per inch 90009 90008 Polyisocyanurate (foil-faced): 7 per inch.90009 90008 Aerogel: Space-age insulating material: 10 90009 90010 90002 90003 90002 Photo: You can reduce heat losses through your floor by building your home on a thick insulating material like this, which has an R value of 30. Photo by Paul Norton courtesy of US Department of Energy / National Renewable Energy Laboratory (DOE / NREL). 90003 90025 U-values ​​90026 90002 Another common measurement you’ll see is called the U-value, which is the total amount of heat lost through a certain thickness of insulating material.The lower the U-value, the lower the heat flow and the better the material does it job as an insulator (so that’s the opposite of R-value, where higher values ​​are better). U-values ​​and R-values ​​are obviously related concepts, but U-values ​​are more accurate. Where R-values ​​only consider conduction losses, U-values ​​take account of losses due to conduction, radiation, and convection. The conduction loss is the reciprocal of the R-value (that’s one divided by the R-value), then you add radiation and convection losses onto that to get the total U-value.90003 90002 Generally, we’re only interested in 90120 comparing 90121 different materials, so all you really need to remember is that high R-values ​​and low U-values ​​are good things. 90003 90025 Roof 90026 90002 Since warm air rises, plenty of heat escapes through the roof of your home (just as lots of heat escapes from your body through your head, if you do not wear a hat). Most people also have insulation inside the roof (loft area) of their homes, but there’s really no such thing as too much insulation.Loft insulation is generally made from the same materials as cavity-wall fillings-such things as rock wool and fiberglass. 90003 90025 Radiation losses 90026 90002 90003 90002 Photo: Double glazing: the air gap between the two panes of glass provides heat insulation-and soundproofing too. 90003 90002 Wall and roof insulation cuts down on heat losses by convection and conduction, but what about radiation? In a vacuum flask, that problem’s solved by having a reflective metallic lining-and the same idea can be used in homes too.Some homeowners install thin sheets of reflective metallic aluminum in the walls, floors, or ceilings to cut down on radiation losses. Good products of this kind can reduce radiation losses by as much as 97 percent. You can find out more by searching on «reflective insulation «or» radiant barrier «in one of the search boxes on this page. 90003 90002 That still leaves the windows as a major source of heat loss, but there are ways to tackle that problem too. Double-glazed windows have two panes of glass separated by a sealed air gap.The air stops heat losses by conduction and convection, while the extra pane of glass reflects more light and heat radiation back into your home and reduces heat losses that way too. You can have your windows treated with a very thin reflective metallic coating or made from special thermal glazing (Such as Pilkington-K, which traps heat a bit like a greenhouse) that reduces heat losses even further. (Read more in our main article on heat-reflective windows.) 90003 90002 Generally, the more insulation you have, the warmer you’ll be.But the amount you need varies depending on where you live and how cold it gets. 90003 90002 90003 90002 Chart: Switching from single- to double- or even triple glazing can make a big difference (darker blue), especially if you use low-e, heat-reflective glass (lighter blue). The numbers shown are R-values, with a 0.5 inch air gap. 90003 90025 Curtains and blinds 90026 90002 If you can not insulate your windows, for any reason, curtains and blinds can make a difference. Remember that the purpose of curtains is not simply to give you privacy: good curtains should trap a significant volume of air between the fabric and the window and stop it from moving; it’s the air that gives you the insulation and not (generally) the fabric of the curtains themselves.So you need curtains that seal at the sides and reach snugly to the floor (or touch the windowsill). The more air you trap between the fabric and the window the better your curtains will be as heat insulators. You might prefer the convenience of blinds, but they are almost never as effective as curtains, partly because most blinds have air gaps in them (so they do not create any kind of an air seal) and also because blinds tend to be fitted closer to the glass so the volume of air they trap is greatly reduced.90003 90025 Insulate yourself 90026 90002 If your heating bills are really starting to get to you, or your home is so old and drafty that you simply can not keep heat in it for any length of time, why not shift your focus away from heating the building to keeping your own body warm? Use a moderate amount of heating each day to keep your home in good condition and avoid problems such as damp and condensation, but do not have your heating on as long or as high as you would normally. Instead, buy yourself some thermal underwear (merino wool is particularly good-and often sold as «base layer» garments in outdoor activity shops) and put on more layers of clothing on top.Another option is to keep one or two rooms in your home comfortably warm and only heat the others occasionally, in rotation, when you feel they’re becoming too cold. 90003 90025 Insulation versus ventilation 90026 90002 The better insulated your home, the less well ventilated it’s likely to be. Although that does not sound like a problem, it certainly can be: the air in a home needs to be changed reasonably often to avoid problems like condensation and damp, and potentially dangerous indoor pollution (from things like cooking and heating).Exactly how often the air needs to be refreshed depends on how big the space is, how many people are inside it, and what sorts of things they’re doing (a bathroom or kitchen generally needs more ventilation than a living space, for example) . Insulation and ventilation do not have to be enemies, however; there are technical solutions to the problem, notably heat-recovery ventilation (HRV) systems that use heat exchangers to catch the warm, stale air flowing out of a building and reheat the cool, fresh air flowing in the other way.90003 90006 90007 90008 90009 90010 90017 Find out more 90018 90025 On this website 90026 90006 90008 Heat: The science of heat energy explored in more detail. 90009 90008 Heat-recovery ventilation: Explores ways to ventilate a home without losing the heat locked inside. 90009 90008 Passive solar: Stopping heat from escaping is a good thing, but so is letting in heat from the Sun to reduce your energy bills. That’s the basic idea behind passive-solar buildings.90009 90010 90025 On other websites 90026 90025 Books 90026 90025 Articles 90026 90006 90008 Heating Your Home Helps Warm the Planet by Vaclav Smil. IEEE Spectrum, May 19, 2016. Why better insulation will matter more as we focus more attention on tackling climate change. 90009 90008 90% Of U.S. Homes Under Insulated, Research Finds: Clean Technica, October 2, 2015. A study by the North American Insulation Manufacturers Association (NAIMA) reveals massive scope for improvement in the United States.90009 90008 Could Norway’s home insulation methods save lives elsewhere: BBC News, December 31 2013. Colder countries such as Norway have lower winter death rates because their homes are better insulated. 90009 90008 Insulating your home? Try recycled materials from curtains to carpets by Joanne O’Connell. The Guardian. April 24, 2014. Waste from the textile industry could make perfect insulation, killing two eco birds with one stone. 90009 90008 Home Green Home: Insulation Materials by Tom Zeller Jr.The New York Times, October 15, 2009. A comparison of the most common insulating materials. 90009 90010 90002 Please do NOT copy our articles onto blogs and other websites 90003 90002 Articles from this website are registered at the US Copyright Office. Copying or otherwise using registered works without permission, removing this or other copyright notices, and / or infringing related rights could make you liable to severe civil or criminal penalties. 90003 90002 Text copyright © Chris Woodford 2008, 2019.All rights reserved. Full copyright notice and terms of use. 90003 90017 Follow us 90018 90006 90008 90009 90008 90009 90010 90017 Save or share this page 90018 90002 Press CTRL + D to bookmark this page for later or tell your friends about it with: 90003 90017 Cite this page 90018 90002 Woodford, Chris. (2008/2019) Heat insulation. Retrieved from https://www.explainthatstuff.com/heatinsulation.html. [Accessed (Insert date here)] 90003 90017 More to explore on our website… 90018 .90000 Liquid heat insulation, waterproofing, thermal insulation AKTERM 90001 90002 90003 90004 90005 AKTERM 90006 is a synonym to innovation and leadership in the market of thermal insulating materials. We produce warmth to care about the future. For 90005 6 years 90006 of dynamic work AKTERM, being the pioneer in the development and production of liquid thermal insulating materials, has earned its reputation of the leading manufacturer of 90005 multifunctional heat and thermal insulating coatings 90006 in the markets of Russia and the former Soviet Union countries.The innovative production formulae developed by the company have no complete parallels in Russia or Europe. The AKTERM 90005 liquid thermal insulation 90006 is in high demand in both private and industrial sectors in small, medium and large businesses. 90013 90004 The leading position of AKTERM is based on the practical requirements of the market, frequently introduced innovations and high quality services. The products that we develop and manufacture are basically 90005 advanced insulation solutions 90006 designed for protection against condensed water and corrosion, as well as water and fire protection, heat retention and thermal insulation.90013 90004 90005 Product Certification 90006 90013 90004 AKTERM’s production premises are located in Moscow Oblast. The production is certified according to ISO 9001 and ISO 14001 standards, which allows us to guarantee the quality and safety of our product, its environmental compatibility, its compliance to the norms of production. 90013 90004 90025 90013 90004 AKTERM has its own testing laboratory, complete with state-of-the-art equipment, which is used for elaborate tests and detailed inspections of raw materials and end product.In our production we use raw materials from leading global manufacturers such as ROHM & HAAS, 3M, BASF, AKZO NOBEL, DUPONT, UNION CARBIDE, BYK-CHEMIE. 90013 90004 90030 90031 90032 90013 90034 90004 90030 AKTERM® Laboratory 90032 90013 90004 Our company professionals regularly take advanced professional training courses in leading research institutes of Moscow. We perform continuous monitoring of the thermal insulation coatings market, study both Russian and European innovations, follow the actual standard regulation requirements for this type of products and commit to these requirements.Modification formulae are continuously improved by our specialists on the basis of the practical experience of their use and according to the current trends of the consumer market. 90013 90004 90005 Cooperation Geography 90006 90013 90004 Today AKTERM is a reliable manufacturer and supplier of 90005 liquid insulating coatings 90006 for private consumers as well as for enterprises working in all industries with no exceptions, including oil and gas, power, motor vehicles, construction, railroad industries, agricultural industry, as well as housing and public utility sector.AKTERM’s unique product formulae and substantial production facilities help us to satisfy the demands of customers in Russia, former Soviet Union, countries of Europe and Asia. We ship our products to any part of the world using any type of transportation convenient for the customer: by railway, by air or by road. AKTERM storage facilities have a 20 000 liters monthly stock of finished products. 90013 90004 90005 AKTERM® … more than just paint 90006 90013 90004 A lot of terms and expressions today are used synonymously to «liquid thermal insulation»: thermal paint, heat paint, liquid thermal coating, liquid heat insulation, extra thin insulation, thin film coating, thermal insulant, etc.90013 90004 90005 90030 AKTERM® 90032 90006 90030 coatings are unique 90032 90030 because the thin extra strong liquid coating can be used together with «traditional» thermal insulation materials to supplement the end result with the features that can not be provided by these «traditional» materials . AKTERM® becomes the «second skin» of the surface it is applied to, allowing for using any additional insulation, decoration or top coatings. 90032 90013 90004 When traditional insulation materials do not work it is advisable to try 90030 AKTERM® 90032 liquid insulation materials to either supplement the traditional insulation or substitute it with them.90030 AKTERM® 90032 is a high quality alternative means of insulation designed for a variety of uses and surfaces. 90013 90004 90005 90030 The innovation of AKTERM® 90032 90006 90005 90030 is in the professional, unique development of combining its three main ingredients. 90032 90006 90013 90004 90005 Practical goals of using AKTERM ™ extra strong insulation coatings 90006 90013 90085 90086 thermal insulation 90087 90086 water protection 90087 90086 heat retention 90087 90086 protection against condensed water and corrosion 90087 90086 fire protection 90087 90096 90004 90005 Social and cultural goals 90006 90005: 90006 90013 90085 90086 providing comfortable housing conditions 90087 90086 health preservation 90087 90086 improvement of life quality 90005 90110 90006 90087 90096 90004 90005 Environmental goals 90006 90005: 90006 90013 90085 90086 preservation of environmental balance 90087 90086 prevention of warmth loss in buildings 90087 90086 minimizing construction waste when applying the product 90087 90096 [Uptolike].90000 Heat insulation 90001 90002 Do you have a specific question about GEALAN or are you searching for further information? We are pleased to provide you with our assistance. Just fill out the contact form below and we make sure, that you will be contacted by our team as soon as possible. 90003 90002 Are you looking for window manufacturers in your area? Use our manufacturer locator .. 90003 * Country: Germany Afghanistan Albania Algeria American Samoa Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia Bosnia-Herzegovinia Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo (Dem.Republic) Cook Islands Costa Rica Croatia Cuba Cyprus Czech Republic Denmark Djibouti Dominica East Timor Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guam Guatemala Guernsey and Alderney Guinea Guinea-Bissau Guyana Haiti Heard and McDonald Islands Honduras Hong Kong Hungary Iceland India Indonesia Iran Iraq Ireland Island of Man Israel Italy Ivory Coast Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea (Democratic Republic of) Korea (Republic of) Kosovo Kuwait Kyrgyz Republic Laos Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macau Macedonia Madagascar Malawi Malaysia Maldives Mali Malta Marshall Islands Martinique Mauritania Mauritius Mayotte Mexico Micronesia Moldavia Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands Netherlands Antilles New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Northern Mariana Islands Norway Oman Pakistan Palau Palestinian Territory Panama Papua-New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Puerto Rico Qatar Re union Republic of Dominica Romania Russian Federation Rwanda Saint Barthelemy Saint Helena Saint Kitts and Nevis Saint Lucia Saint Martin Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and South Sandwich Islands Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Islands Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania Thailand Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Minor Outlying Islands Uruguay USA Uzbekistan Vanuatu Vatican (Holy See) Venezuela Vietnam Virgin Islands (British) Virgin Islands (U.S.) Wallis and Futuna Islands Western Sahara Yemen Zambia Zimbabwe Construction project Products: Object: I am a: 90002 * Message: 90003 90002 I agree to let GEALAN share the personal data entered here with the appropriate window manufarcturer near me. 90003 Privacy statement: .90000 Insulation 90001 90002 Heat transfer and heat loss from buildings and technical applications — heat transfer coefficients and insulation methods and to reduce energy consumption 90003 90004 Arithmetic and Logarithmic Mean Temperature Differences in Heat Exchangers 90005 90006 Arithmetic Mean Temperature Difference — 90007 AMTD 90008 — and Logarithmic Mean Temperature Difference — 90007 LMTD 90008 — formulas with examples — Online Mean Temperature Calculator 90011 90004 Building Elements — Heat Loss and Thermal Resistivity 90005 90006 Thermal resistance in common building elements — like walls, floors and roofs above and below the ground 90011 90004 Building Materials — Vapour Resistance 90005 90006 Diffusion of vapor through building materials 90011 90004 Calcium Silicate Insulation 90005 90006 Thermal conductivity of calcium silicate insulation — temperature and k-values ​​90011 90004 Conductive Heat Transfer 90005 90006 Heat transfer takes place as conduction in a solid if there is a temperature gradient 90011 90004 Copper Tubes — Insulation and Heat Loss 90005 90006 Heat loss to surrounding air from insulated copper tubes 90011 90004 Duct Wrap Insulation — Thermal Resistance 90005 90006 Thermal resistance to heat flow of unfaced and faced duct wrap insulation 90011 90004 Emissivity Coefficients for some common Materials 90005 90006 Radiation emissivities of some common materials like water, ice, snow, grass and more 90011 90004 Fiberglass Insulation 90005 90006 Thermal conductivity of fiberglass insulation — temperature and k-values ​​90011 90004 Heat Loss from Bare Pipe Surface 90005 90006 Heat losses from bare pipe surfaces 90011 90004 Heat Loss from Uninsulated Copper Tubes 90005 90006 Heat loss from uninsulated copper pipes — dimensions ranging 90007 1/2 — 4 inches 90008 90011 90004 Heat Traced Pipes — Wrapping Factor 90005 90006 Wrapping factor when heat loss from a pipe or tube is higher than the heat trace cable capacity 90011 90004 Insulated Pipes — Heat Loss Diagrams 90005 90006 Heat loss 90007 (W / m) 90008 from insulated pipes — ranging 90007 1/2 — 6 inches 90008 — insulation thickness 90007 10 — 80 mm 90008 — temperature differences 90007 20 — 180 deg C 90008 90011 90004 Insulated Pipes — Heat Loss Diagrams 90005 90006 Heat loss 90007 (W / ft) 90008 diagrams for insulated pipes — ranging 90007 1/2 — 6 inches 90008 — insulation thickness 90007 0.5 — 4 inches 90008 — temperature difference 90007 50 — 350 deg F 90008 90011 90004 Insulation Materials — Temperature Ranges 90005 90006 Temperature limits for some commonly used insulation materials 90011 90004 Insulation of Cooling Systems 90005 90006 Cooling systems and insulation thickness 90011 90004 Mineral Wool Insulation 90005 90006 Thermal conductivity — temperature and k-values ​​90011 90004 Overall Heat Transfer Coefficient 90005 90006 Calculate overall heat transfer coefficients for walls or heat exchangers 90011 90004 perlite Insulation 90005 90006 Thermal conductivity of perlite insulation — temperature and k-values ​​90011 90004 Piping — Recommended Insulation Thickness 90005 90006 Recommended insulation thickness of heating systems like hot water, low, medium or high pressure steam systems 90011 90004 Polyurethane Insulation 90005 90006 Thermal conductivity of polyurethane insulation — temperatures and k-va lues 90011 90004 Radiation Heat Transfer 90005 90006 Heat transfer due to emission of electromagnetic waves is known as thermal radiation 90011 90004 Steel Pipes — Heat Loss Diagram 90005 90006 Heat loss from steel pipes and tubes — dimensions ranging 90007 1/2 — 12 inches 90008 90011 90004 Thermal Conductivity of selected Materials and Gases 90005 90006 Thermal conductivity of some selected gases, insulation products, aluminum, asphalt, brass, copper, steel and other common materials 90011 .

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *