Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Ветряки это – Что такое ветрогенератор — простыми словами, виды, зачем он нужен, плюсы и минусы

Содержание

описание, конструкция, принцип работы и изготовление своими руками

Подключение к магистральной сети электроснабжения до сих пор доступно не всем. Есть немалое число населенных пунктов, до которых линии электропередач не дошли. Да и подключенные поселки и деревни, вследствие общей изношенности линий, испытывают частые перебои с электроснабжением. Кроме того, дачные поселки, выстроенные недавно, зачастую не имеют возможности подключиться к линии, расположенной в солидном отдалении.

Решение вопроса с электроснабжением традиционно возлагается на бензиновые или дизельные электростанции, нуждающиеся в снабжении топливом, капризные и требующие постоянного наблюдения устройства. При этом, есть альтернативные источники, не нуждающиеся в топливе. Одним из них является ветрогенератор.

Что из себя представляет ветрогенератор?

Ветрогенератор — это устройство, использующее энергию ветра для выработки электрического тока. Воздушные потоки, свободно перемещающиеся в атмосфере, имеют гигантскую энергию, причем, совершенно бесплатную. Ветроэнергетика — это попытка извлечь ее и обратить на пользу.

Ветрогенератор представляет собой набор устройств, принимающих, обрабатывающих и подготавливающих для использования энергию. Потоки ветра взаимодействуют с ротором ветряка, заставляя его вращаться. Ротор посредством повышающей передачи (или напрямую) соединяется с генератором, который заряжает аккумуляторные батареи. Заряд через инвертор перерабатывается в стандартный вид (220 В, 50 Гц) и подается на приборы потребления.

На первый взгляд, комплекс устроен довольно сложно. Существуют и более простые конструкции, например, ветряки, питающие насосы. Тем не менее, для сложных приборов требуется полный комплект оборудования, способный обеспечить стабильное и качественное электроснабжение.

Зачем он нужен?

Отличительное свойство электроэнергии состоит в том, что ее можно производить в любых количествах, если позволяет оборудование. Ветрогенератор как раз и относится к таким устройствам — он производит электроэнергию. Таким образом, ветряк представляет собой электростанцию, способную обеспечивать как крупные участки с большим количеством потребителей, так и отдельные дома или приборы.

Возможности устройства зависят от размеров крыльчатки и мощности генератора. Эти два параметра являются определяющими и зависят друг от друга. Чем мощнее ротор, тем большей мощности генератор он сможет вращать, вырабатывая большое количество энергии.

При этом, ветряк может быть создан самостоятельно и обеспечивать потребности отдельной группы приборов — например, освещения, водоснабжения, вентиляции и т.д. Такая избирательность удобна для сокращения расходов на электроэнергию, обеспечения бесперебойной подачи питания на старых изношенных линиях.

Конструкция и принцип работы

Конструктивно ветрогенераторы сочетают механическую, электромеханическую и электрическую части. К механической относится ветряк, непосредственно принимающий энергию ветра и преобразующий ее во вращательное движение. Оно передается на электромеханическое устройство — генератор, преобразующий кинетическую энергию вращения в электрический ток. После этого действуют чисто электронные устройства:

  • выпрямитель. Генератор вырабатывает переменный ток, который не годится для заряда аккумуляторных батарей. Для дальнейшего использования его надо выпрямить, для чего используется выпрямительное устройство
  • контроллер заряда. Обеспечивает своевременное переключение аккумуляторных батарей с режима зарядки на режим питания потребителей, чтобы избежать выхода АКБ из строя
  • аккумулятор (АКБ). Накапливает заряд, необходимый для поддержания напряжения в сети при ослаблении ветра
  • инвертор. Преобразует постоянный ток аккумулятора в обычные 220В 50 Гц переменного тока, необходимых для питания стандартных потребителей.

Все перечисленные электронные устройства являются типичным комплектом оборудования, используемым с любым типом ветряка. Изменение конструкции крыльчатки не влияет на состав комплекта, если только не происходит значительного увеличения скорости вращения, требующего изменения параметров генератора.

Виды ветрогенераторов

Используются два основных вида ветряков, имеющих принципиальные различия:

  • горизонтальные
  • вертикальные

В обоих случаях речь идет об оси вращения ротора. Конструкция различных моделей горизонтальных устройств мало отличается друг от друга, представляя собой подобие бытового вентилятора или пропеллера. Вертикальные устройства обладают намного большим разнообразием типов конструкции, внешне значительно отличаясь друг от друга. Рассмотрим их подробнее:

Горизонтальные ветряки

Горизонтальные конструкции имеют большую эффективность, так как поток ветра они воспринимают только рабочей стороной лопастей. Наибольшее распространение получили трехлопастные крыльчатки, но для небольших конструкций число лопастей может быть увеличено.

Именно горизонтальные конструкции используются для изготовления больших промышленных образцов, имеющих огромный размах лопастей (больше 100 м), которые в объединенном виде образуют довольно производительные электростанции. Государства западной Европы, такие как Дания, Германия, скандинавские страны активно используют ветряки для обеспечения населения энергией.

Устройства имеют один недостаток — они нуждаются в наведении на ветер. Для небольших ветрогенераторов проблема решается установкой хвоста наподобие самолетного, который автоматически располагает конструкцию по ветру. Большие модели имеют специальное устройство наведения, контролирующее положение крыльчатки относительно потока.

Вертикальные конструкции

Ветрогенераторы вертикального типа имеют меньшую эффективность, вследствие чего используются для обеспечения энергией лишь отдельных потребителей — частный дом, коттедж, группу приборов и т.д. Для самостоятельного изготовления такие устройства подходят больше всего, так как обладают широким выбором вариантов конструкции, не нуждаются в подъеме на очень высокую мачту (хотя это им и не противопоказано).

Вертикальные роторы могут быть собраны из любых подручных материалов, в качестве образца можно использовать любой тип из множества известных:

  • роторы Савониуса или Дарье
  • более современный ротор Третьякова
  • ортогональные конструкции
  • геликоидные устройства и т.д.

Описывать все типы подробно незачем, так как их количество постоянно увеличивается. Практически все новые разработки базируются на вертикальной оси вращения и предназначены для использования в частных домах или усадьбах. Большинство разработок предлагает собственный вариант решения основной проблемы вертикальных устройств — низкого КПД. Некоторые варианты имеют довольно высокие показатели, но обладают сложным устройством корпуса (например, конструкция Третьякова).

Расчет и выбор

Расчет мощности ветряка сводится к подсчету суммарной мощности потребления осветительными, вспомогательными и бытовыми приборами. Полученное значение увеличивается на 15-20% (запас мощности необходим при возникновении непредвиденных ситуаций), и на основании этих данных рассчитывается или выбирается готовый генератор.

От его параметров ведется построение всего остального комплекта — механические требования ложатся в основу проектирования ветряка, а эксплуатационные параметры — мощность, напряжение, сила тока — используются при создании системы накопления и обработки полученного тока.

Выбирая приборы, следует также обеспечивать небольшой (15-20%) запас мощности, который обеспечит устойчивость комплекса при возникновении форс-мажорных ситуаций.

Изготовление ветряка своими руками

Основные работы, которые предстоит сделать, это — изготовление и установка вращающегося ротора. Прежде всего следует выбрать тип конструкции и ее размеры. Определиться в этом поможет знание требуемой мощности устройства и производственные возможности.

Большинство узлов (если не все целиком) придется изготовить самостоятельно, поэтому на выбор повлияет, какие познания имеются у создателя конструкции, с какими приборами и устройствами он знаком наилучшим образом. Обычно сначала делается пробный ветряк, с помощью которого проверяется работоспособность и уточняются параметры сооружения, после чего приступают к изготовлению рабочего ветрогенератора.

Рекомендуемые товары

energo.house

Принцип действия и устройство ветрогенератора (общие понятия)

В упрощенном виде принцип работы ветрогенератора можно представить следующим образом.

Сила ветра приводит в движение лопасти, которые через специальный привод заставляют вращаться ротор. Благодаря наличию статорной обмотки, механическая энергия превращается в электрический ток. Аэродинамические особенности винтов позволяют быстро крутить турбину генератора.

Принцип работы

Дальше сила вращения преобразуются в электричество, которое аккумулируется в батарее. Чем сильнее поток воздуха, тем быстрее крутятся лопасти, производя больше энергии. Поскольку работа ветрогенератора основана на максимальном использовании альтернативного источника энергии, одна сторона лопастей имеет закругленную форму, вторая – относительно ровная. Когда воздушный поток проходит по закругленной стороне, создается участок вакуума. Это засасывает лопасть, уводя её в сторону. При этом создается энергия, которая и заставляет раскручиваться лопасти.

Схема работы ветрогенератора: показан принцип преобразования энергии ветра и действия внутренних механизмов

Во время своих поворотов винты также вращают ось, соединённую с генераторным ротором. Когда двенадцать магнитиков, закреплённых на роторе, вращаются в статоре, создаётся переменный электрический ток, имеющий такую же частоту, как и в обычных комнатных розетках. Это основной принцип того, как работает ветрогенератор. Переменный ток легко вырабатывать и передавать на большие расстояния, но невозможно аккумулировать.

Принципиальная схема ветрогенератора

Для этого его нужно преобразовать в постоянный ток. Такую работу выполняет электронная цепь внутри турбины. Чтобы получить большое количество электроэнергии, изготавливаются промышленные установки. Ветровой парк обычно состоит из нескольких десятков установок. Благодаря использованию такого устройства дома, можно получить существенное снижение расходов на электроэнергию. Принцип действия ветрогенераторов позволяет применять их в таких вариантах:

  • для автономной работы;
  • параллельно с резервным аккумулятором;
  • вместе с солнечными батареями;
  • параллельно с дизельным или бензиновым генератором.

Если поток воздуха движется со скоростью 45 км/час, турбина вырабатывает 400 Вт электроэнергии. Этого хватает для освещения дачного участка. Данную мощность можно накапливать, собирая её в аккумуляторе.

Специальное устройство управляет зарядкой аккумуляторной батареи. По мере уменьшения заряда вращение лопастей замедляется. При полной разрядке батареи лопасти снова начинают вращаться. Таким способом зарядка поддерживается на определённом уровне. Чем сильнее воздушный поток, тем больше электроэнергии может произвести турбина.

Система торможения вращения лопастей

Чтобы установка не вышла из строя при сильном напоре воздуха, она снабжена специальной системой торможения. Если раньше движущиеся магниты индуцировали ток в обмотках, то теперь данная сила используется для остановки вращающихся магнитов. Для этого создается короткое замыкание, при котором замедляется движение ротора. Возникающее противодействие замедляет вращение магнитов.

Конструкция ветрогенератора и узлов

При ветре больше 50 км/час тормоза автоматически замедляют вращение ротора. Если скорость движения воздуха доходит до 80 км/час, тормозная система полностью останавливает лопасти. Все части турбины сконструированы так, чтобы максимально использовалась воздушная энергия. Когда ветер дует, лопасти вращаются, и генератор преобразует их движение в электричество. Совершая двойное преобразование энергии, турбина производит электричество из обычного перемещения воздушных масс.

Внешне ветрогенератор напоминает флюгер — направлен в ту сторону, откуда дует ветер

Данное устройство весьма полезно не только в каких-то экстремальных условиях, но и в обычной повседневной жизни. Довольно часто системы ветрогенераторов применяются на дачах или в тех населенных пунктах, где регулярно бывают перебои с подачей электроэнергии. Самостоятельно сделанный автономный источник электричества имеет такие преимущества:

  • установка экологически чистая;
  • отсутствует потребность её заправки топливом;
  • не накапливаются какие-либо отходы;
  • устройство работает очень тихо;
  • имеет большой срок эксплуатации.

Все ветрогенераторы работают по одинаковой схеме. Сначала полученное от давления ветра переменное напряжение преобразуется в постоянный ток. Благодаря этому заряжается аккумулятор. Затем инвертором снова производится переменный ток. Это нужно для того, чтобы светились лампочки; работал холодильник, телевизор и т. д. Благодаря аккумуляторной батарее, можно пользоваться электроприборами в безветренную погоду. Кроме того, во время сильных порывов ветра напряжение в сети остаётся стабильным.

Увеличение мощности установки

Конструкцию некоторых ветрогенераторов имеет ветровой датчик. Он собирает данные о направлении и скорости воздушного потока. Генератор ветряка не может выдать больше номинальной мощности, однако, в любое оборудование заложен запас он может составлять от 10-30% от расчетных. На этот «запас» рассчитывать не стоит, так как программно и конструктивно в ветрогенератор заложена защита от перегрузок.

Увеличить мощность ветроустановки можно с помощью системы резервирования электроэнергии на базе аккумуляторных батарей.

Выходная мощность (кВт) ветрогенератора определяется мощностью инвертора. Исходя из выдаваемых киловатт, можно определиться с максимальным количеством подключаемых электроприборов. Чтобы увеличить выходную мощность установки, необходимо параллельно подключить несколько инверторов.

Для трехфазных схемы электропитания необходимо установить по инвертору на каждую фазу.

Если мощности на фазе недостаточно, увеличивают количество инверторов, если это предусмотрено производителем. При отсутствии ветра продолжительность подачи электроэнергии прекращается. Генерации энергии не происходит, поэтому к ветрогенератору подключают накопители энергии, смотрите схему ниже.

Схема увеличения мощности и емкости ветрогенератора

Накопитель энергии состоит из связки инвертор-батарея. О батареях вы можете прочитать в этой рубрике, а о накопителях в этой. Увеличение ёмкости аккумуляторных батарей увеличивает запас хранимой энергии, но и длительность зарядки. Скорость зарядки аккумулятора зависит от мощности генератора и количества инверторов, которые тоже могут пропустить через себя только ту мощность, которая заложена производителем. Соответственно, скорость зарядки аккумуляторов зависит от пропускной способности инвертора и не зависит от мощности ветрогенератора.

Выбор ветрогенератора

Самые качественные ветряки производят в Германии, Франции и Дании. Эти страны делают ветровые установки для снабжения электричеством жилого частного сектора, фермерских хозяйств, школ, небольших торговых точек. В России из-за низкой стоимости электроэнергии и негласной монополии на продажу электроэнергии ветроустановки, солнечные панели и другие виды альтернативной энергии не сильно распространены.

Мобильный ветрогенератор подойдет для нефтепромышленности или монтажных бригад, которые ведут строительство в полях (прототип)

Но высокая стоимость подключения удаленных объектов от электросетей (есть до сих пор не электрифицированные деревни), хамство чиновников, длительные процедуры хождения и получения ТУ у монопольных компаний вынуждают собственников использовать альтернативную энергию своих объектов.

Прежде все вы должны понимать, что КПД ветровой установки составляет около 60%, есть зависимость от скорости ветра, и потребуется периодически проводить ТО. Если вы все-таки решили сделать выбор в пользу ветрогенератора, следует знать. Выбирать ветрогенератор нужно исходя из конкретных обстоятельств его применения. Существуют новые разработки и модели: с повышенным КПД, вертикальные, горизонтальные, ортогональные, безлопастные.

Подсчитывается активная и резистивная мощность всех потребителей энергии.

Для предприятий или частного дома эти данные могут быть в проекте или счетах за электроэнергию. Если вам необходимо обеспечить электроэнергией дачу выбирается модель ветроустановки на 1-3 кВт, инвертор нужно небольшой мощности и можно обойтись без аккумуляторных батарей. Принцип наличия дачной ветроустановки прост: есть ветер — есть электричество, нет ветра — работаем в огороде или по хозяйству. Простой ветрогенератор можно сделать самому, достаточно собрать необходимые материалы и соединить их вместе.

Для частного дома постоянного проживания, такой принцип не подойдет. При частом отсутствии ветра следует придать особое значение аккумулятору. Здесь нужна большая ёмкость. Однако, чтобы он быстрее заряжался, сам генератор электричества также должен быть большой мощности. То есть отдельные узлы установки тесно взаимосвязаны друг с другом. Более надежная комбинация — симбиоз с дизель-генератором и солнечными панелями. Это 100% гарантия наличия электричества в доме, но и более дорогая.

При наличии скважины вы будете полностью энергонезависимые от внешних сетей.

Сейчас большое распространение получили коммерческие ветровые установки. Получаемая с их помощью электроэнергия продается различным предприятиям, испытывающим недостаток в энергоснабжении. Обычно такие электростанции состоят из нескольких ветрогенераторов различной мощности. Вырабатываемое ими переменное напряжение в 380 вольт подается непосредственно в электросеть предприятия. Кроме того, ветрогенераторы могут использоваться для зарядки большого числа аккумуляторных батарей, с которых потом преобразованная в переменное напряжение энергия также подается в электрическую сеть.

Ветрогенераторы российского производства

В большинстве случаев владельцы предприятий ставят ветроустановки, солнечные панели и дизель-генераторы для нужд собственного производства. Получение разрешение на продажу электричества в России — это, скажем так, отдельная история. После проведения энергоаудита, высвобождаются мощности, например, путем замены ламп освещения на светодиодные. Подсчитывается срок окупаемости, при отсутствии бюджета можно разделить модернизацию на этапы.

Технологии развиваются. Создаются энергонезависимые дома, офисы, станции на земле и воде. Наша команда инженеров поможет вам с выбором, расчетом, проектом и монтажом оборудования. Готовы ответить на ваши вопросы в комментариях или через форму.

tcip.ru

Что такое ветряк 🚩 Разное

Инструкция

В литературе вы часто можете встретить слово «ветряк» применительно к ветровым мельницам. Действительно, ветряные мельницы были самыми первыми ветродвигателями, использующими принцип преобразования энергии.

Ветряки также применялись и применяются в настоящее время для подъема воды из скважин и колодцев. Оросительные водоподъемники имеют небольшие ветряки. Водоподъемные ветровые установки для артезианских скважин могут иметь довольно внушительные размеры — их многолопастные ветровые колеса часто достигают в диаметре нескольких десятков метров.

Особенно широкое распространение получили ветровые электростанции. Вы наверняка слышали о гигантских ветровых электростанциях Голландии, занимающих целые поля и даже заходящих в прибрежную зону моря. Они состоят из большого количества ветряков с электрогенераторами, соединенными в общую сеть.

Принцип ветровой электростанции прост. Ось ветряка непосредственно или через систему передач соединяется с осью электрического генератора (динамо-машины). Снимаемое с генератора напряжение направляется в сеть потребителя или на зарядку аккумуляторов.

Ветровые электростанции могут быть и довольно небольшими, предназначенными для электроснабжения дачного участка или частного дома. Бывают даже мобильные варианты таких устройств, применяемые в экспедициях или туристических походах.

Конструкции ветряков очень разнообразны. Описанный выше ветряк с горизонтальной осью, часто применяемый в ветряных мельницах, обычно имеет от двух и более лопастей, но может состоять и из одной, оснащенной противовесом. Лопасти ветряка иногда называют крыльями или махами. Они тоже могут отличаться по конструкции. Даже у старинных ветряных мельниц можно встретить махи, сконструированные как щелевое крыло. У некоторых ветряков лопасти гибкие, изготовленные по принципу паруса.

Ветряк с горизонтальной осью имеет ветровое колесо, мачту, на которой он монтируется, и оперение. Последнее разворачивает ветровое колесо осью вдоль ветра. Есть такие установки без оперения (например, с вертикальной осью).

Ветряки с вертикальной осью иногда называют виндроторами. Их действие основано на различии сил воздушного сопротивления у вогнутых и выпуклых поверхностей. Интересно, что первые такие устройства применялись на Востоке в качестве водоподъемников. Их ротор состоял из парусов. Причем попутный ветер наполнял и толкал лопасти, а встречный складывал, уменьшая их сопротивление.

Привлекательность ветряков заключается в том, что они используют бесплатную энергию ветра. Такие устройства не загрязняют воду и воздух продуктами горения, не потребляют кислород. Поэтому их рассматривают как альтернативный и экологически чистый способ получения энергии.

Есть у ветряков и недостатки. Большие ветровые колеса представляют угрозу для птиц. Для получения большого количества электроэнергии требуется задействовать под ветроэлектростанцию большую земельную площадь. Ветра дуют с переменной скоростью, что делает получаемую от ветряка энергию нестабильной. Последняя проблема разрешима, если часть энергии использовать для зарядки аккумуляторов.

www.kakprosto.ru

Ветряной двигатель: конструкция и применение

Рост производства энергии за счет использования не возобновляемых природных ресурсов ограничен порогом, за которым стоит полная выработка сырья. Альтернативная энергетика, включая ветрогенерацию энергии, обеспечит снижение нагрузки на среду обитания.

Движение любой массы, в том числе и воздушной, порождает энергию. Ветряной двигатель преобразует кинетическую энергию воздушного потока в механическую. Это устройство основа ветроэнергетики, альтернативного направления в использовании природных ресурсов.

к содержанию ↑

Эффективность

Оценить энергетическую эффективность агрегата определённого типа и конструкции, сравнить её с показателями подобных двигателей довольно просто. Необходимо определить коэффициент использования энергии ветра (КИЭВ). Рассчитывается он как отношение мощности, полученной на валу ветродвигателя, к мощности ветрового потока, действующего на поверхность ветроколеса.

Коэффициент использования энергии ветра для различных установок составляет от 5 до 40%. Оценка будет неполной без учёта затрат на проектирование и строительство объекта, количества и стоимости генерируемой электроэнергии. В альтернативной энергетике срок окупаемости затрат на ветродвигатель является важным фактором, но также обязателен учёт полученного экологического эффекта.

к содержанию ↑

Классификация

Ветродвигатели по принципам использования выработанной энергии делятся на два класса:
• линейные;
• циклические.

к содержанию ↑

Линейного типа

Линейный или мобильный ветродвигатель преобразует энергию потока воздуха в механическую энергию движения. Это могут быть парус, крыло. С инженерной точки зрения это не ветродвигатель, а движитель.

к содержанию ↑

Циклического типа

В циклических двигателях сам корпус неподвижен. Потоком воздуха вращаются, совершая циклические движения, его рабочие части. Механическая энергия вращения наиболее подходит для выработки электричества, универсального вида энергии. К циклическим ветродвигателям относят ветроколеса. Ветроколеса начиная от древних ветряных мельниц кончая современными ветроэнергетическими установками, различаются по конструкционным решениям, по полноте использования силы воздушного потока. Устройства делятся на быстроходные и тихоходные, а также по горизонтальному или вертикальному направлению оси вращения ротора.

к содержанию ↑

Горизонтальные

Ветродвигатели с горизонтальной осью вращения называют крыльчатыми. На вале ротора закрепляются несколько лопастей (крыльев) и маховик. Сам вал расположен горизонтально. Основные элементы устройства: ветроколесо, головка, хвост и башня. Ветроколесо монтируется во вращающейся вокруг вертикальной оси головке, в которой крепится вал двигателя, размещаются передаточные механизмы. Хвост исполняет роль флюгера, разворачивая головку с ветроколесом против направления потока ветра.

При высоких скоростях перемещения потоков воздуха (15 м/с и выше) рационально применение быстроходных горизонтальных ветродвигателей. Двух, трёх лопастные агрегаты от ведущих производителей обеспечивают КИЭВ 30%. Самостоятельно изготовленный ветродвигатель имеет коэффициент использования воздушного потока до 20%. Эффективность работы устройства зависит от тщательного расчёта и качеством изготовления лопастей.

Крыльчатые ветродвигатели и ветроустановки обеспечивают высокую скорость вращения вала, что позволяет передать мощность непосредственно на вал генератора. Существенным недостатком является, что при слабом ветре подобные ветряные двигатели не будут работать вообще. Существуют проблемы запуска при переходе от безветрия к усилению ветра.

Тихоходные горизонтальные двигатели имеют большее количество лопастей. Значительная площадь взаимодействия с воздушным потоком делает их более эффективными при слабых ветрах. Но установки обладают значительной парусностью, что требует принятия мер по их защите от порывов ветра. Лучший показатель КИЭВ 15%. В промышленных масштабах такие установки не используются.

к содержанию ↑

Вертикальные карусельного типа

В подобных устройствах на вертикальной оси колеса (роторе) устанавливаются лопасти, принимающие поток воздуха. Корпус и система заслонок обеспечивает попадание ветрового потока на одну половину ветроколеса, полученный результирующий момент приложения сил обеспечивает вращение ротора.

По сравнению с крыльчатыми агрегатами карусельный ветродвигатель вырабатывает больший момент вращения. При увеличении скорости потока воздуха он быстрее выходит на рабочий режим (по силе тяги), стабилизируется по оборотам вращения. Но такие агрегаты тихоходны. Для преобразования вращения вала в электрическую энергию требуется специальный генератор (многополюсный), способный работать на малых оборотах. Генераторы подобного типа мало распространены. Применение системы редукторов ограничено низким КПД.

Карусельный ветродвигатель проще эксплуатировать. Сама конструкция обеспечивает автоматическое регулирование числа оборотов ротора, позволяет отслеживать направление ветра.

к содержанию ↑

Вертикальные: ортогональные

Для большой энергетики наиболее перспективны ортогональные ветродвигатели и ветроустановки. Диапазон использования подобных агрегатов, по скорости ветра, от 5 до 16 м/с. Вырабатываемая ими мощность доведена до 50 тыс. квт. Профиль лопасти ортогональной установки подобен профилю крыльев самолёта. Чтобы крыло начало работать надо подать на него поток воздуха, как во время разбега самолёта при взлёте. Ветродвигатель тоже надо предварительно раскрутить, затратив энергию. После выполнения этого условия установка переходит в режим генератора.

к содержанию ↑

Выводы

Энергия ветра один из наиболее перспективных возобновляемых источников энергии. Опыт промышленного использования ветродвигателей и ветроустановок показывает, что эффективность зависит от размещения ветрогенераторов в местах, с благоприятными воздушными потоками.  Использование современных материалов в конструкциях агрегатов, применение новых схем генерации и накопления электроэнергии обеспечит дальнейшее повышение надёжности и энергоэффективности ветродвигателей.


Оцените статью:

Загрузка…

Поделитесь с друзьями:

mirenergii.ru

Различные виды и типы ветрогенераторов

Для начала давайте договоримся, что говоря о ветродвигателях мы имеем в виду ту часть ветро-силовой установки (ВСУ), которая преобразует энергию ветра в энергию вращательного движения. Ветродвигатель приводится в движение ветром, он напрямую или посредством какого-то передающего механизма связан с валом, вращение которого приводит в действие оборудование, выполняющее полезную работу (например, генератор или водяной насос). Часто ветродвигатель называют ротором или ветроколесом.

В этой заметке мы расскажем об основных типах ветродвигателей. Дилетанту, впервые столкнувшемуся с ветроэнергетикой не просто сделать правильный выбор из множества типов таких установок.

Компас выбора

В первую очередь, надо чётко знать, что тебе надо, какую желаемую мощность ожидаешь получить от своей установки, какие погодные условия местности и после всего переходить к детальному знакомству с тем или иным типом ветряка. А различные виды ветрогенераторов выдают совершенно разные результаты своей работы. В данной публикации вы узнаете, какие типы ветрогенераторов существуют на сегодняшний день, и вам нетрудно после знакомства с ними сделать правильный выбор.

Для скромных аппетитов подходящим выбором будет так называемый ортогональный ветрогенератор, который может подойти к применению в той местности, где бывают очень слабые дуновения ветерка. Он имеет несколько параллельных к оси лопастей, расположенных на некотором расстоянии от неё. (см. фото).

Итак, ветрогенераторы по своему виду различаются по:

  • количеству лопастей,
  • материалам, из которых изготовлены лопасти,
  • расположению оси вращения к поверхности земли,
  • шаговому признаку винта.

По числу лопастей они бывают одно-двух-трёх и многолопастные. Последние начинают своё вращение при малейшем движении воздуха, но применимы лишь для таких целей, где сам факт вращения важен, а не вырабатываемая электроэнергия. То есть, они незаменимы, скажем, при перекачке воды из глубоких колодцев.

По материалам, из чего сделаны лопасти, различают жёсткие и парусные ветрогенераторы. Парусные намного дешевле жёстких, сделанных из стеклопластика, или из металла, но в ходе эксплуатации можно замучиться ремонтировать их.

По расположению оси вращения к поверхности почвы различают горизонтальные ветрогенераторы и вертикальные. Их отличия настолько деликатны, что при разных условиях они меняются местами в своём превосходстве. С вертикальной осью ветряки сразу схватывают малейшие дуновения ветерка, не требуют флюгера, но они менее мощные, чем горизонтальные.

По шаговому признаку винта ветрогенераторы бывают с изменяемым и фиксированным шагом. Изменяемый шаг, бесспорно, даёт возможность увеличить скорость вращения, но какова конструкция! Она сложна, увеличивает вес ветряка, то есть, потребует неисчислимых лишних затрат. Куда более прост и надёжен фиксированный шаг.
Таков, вкратце, ваш компас, чтобы не заблудиться в выборе.

Нужно еще привести список некоторых терминов и сокращений, которые будут использованы в дальнейшемю

  • КИЭВ – коэффициент использования энергии ветра. В случае применения для расчета механистической модели плоского ветра (см. далее) он равен КПД ротора ветросиловой установки (ВСУ).
  • КПД – сквозной КПД ВСУ, от набегающего ветра до клемм электрогенератора, или до количества накачанной в бак воды.
  • Минимальная рабочая скорость ветра (МРС) – скорость его, при которой ветряк начинает давать ток в нагрузку.
  • Максимально допустимая скорость ветра (МДС) – его скорость, при которой выработка энергии прекращается: автоматика или отключает генератор, или ставит ротор во флюгер, или складывает его и прячет, или ротор сам останавливается, или ВСУ просто разрушается.
  • Стартовая скорость ветра (ССВ) – при такой его скорости ротор способен провернуться без нагрузки, раскрутиться и войти в рабочий режим, после чего можно включать генератор.
  • Отрицательная стартовая скорость (ОСС) – это значит, что ВСУ (или ВЭУ – ветроэнергетическая установка, или ВЭА, ветроэнергетический агрегат) для запуска при любой скорости ветра требует обязательной раскрутки от постороннего источника энергии.
  • Стартовый (начальный) момент – способность ротора, принудительно заторможенного в потоке воздуха, создавать вращающий момент на валу.
  • Ветродвигатель (ВД) – часть ВСУ от ротора до вала генератора или насоса, или другого потребителя энергии.
  • Роторный ветрогенератор – ВСУ, в которой энергия ветра преобразуется во вращательный момент на валу отбора мощности посредством вращения ротора в потоке воздуха.
  • Диапазон рабочих скоростей ротора – разность между МДС и МРС при работе на номинальную нагрузку.
  • Тихоходный ветряк – в нем линейная скорость частей ротора в потоке существенно не превосходит скорость ветра или ниже ее. Динамический напор потока непосредственно преобразуется в тягу лопасти.
  • Быстроходный ветряк – линейная скорость лопастей существенно (до 20 и более раз) выше скорости ветра, и ротор образует свою собственную циркуляцию воздуха. Цикл преобразования энергии потока в тягу сложный.

Два вида, два соперника

Как уже было отмечено, в продаже пока существуют ветрогенераторы двух видов (по расположению вала вращения к поверхности земли) – горизонтальные и вертикальные. Поговорим вначале о вертикальных.

Ветросиловые установки (ВСУ) с вертикальной осью вращения имеют неоспоримое для быта преимущество: их узлы, требующие обслуживания, сосредоточены внизу и не нужен подъем наверх. Там остается, и то не всегда, упорно-опорный самоустанавливающийся подшипник, но он прочен и долговечен. Поэтому, проектируя простой ветрогенератор, отбор вариантов нужно начинать с вертикалок.

Ротор Савониуса

На первой позиции – самый простейший, чаще всего называемый ротором Савониуса.

В начале октября 1924 года русские изобретатели братья Я. А. и А. А. Воронины получили советский патент на поперечную роторную турбину, в следующем году финский промышленник Сигурд Савониус организовал массовое производство подобных турбин. За нам и осталась слава изобретателя этой новинки.

Ротор Ворониных-Савониуса, или для краткости, ВС, это, как минимум, два полуцилиндра на вертикальной оси вращения (см. фото). И какое бы направление ветра не было, как бы резко он не изменял свои порывы, такой ветряк будет спокойно вращаться вокруг своей оси, вырабатывая энергию. Это единственное и главное преимущество вертикального ветряка перед горизонтальным.

А главный его недостаток – низкое использование ветровой энергии. Объясняется это тем, что лопасти-полуцилиндры работают только в четверть оборота, а остальную часть окружности вращения они как бы тормозят своим движением скорость вращения. Расчёты показали, что при этом используется лишь третья часть ветровой энергии.

Примечание: двухлопастный ВС не крутится, а дергается рывками; 4-лопастный лишь немного плавнее, но много теряет в КИЭВ. Для улучшения 4-«корытные» чаще всего разносят на два этажа – пара лопастей внизу, а другая пара, повернутая на 90 градусов по горизонтали, над ними. КИЭВ сохраняется, и боковые нагрузки на механику слабеют, но изгибные несколько возрастают, и при ветре более 25 м/с у такой ВСУ на древке, т.е. без растянутого вантами подшипника над ротором, «срывает башню».

Вертикальные ветрогенераторы с ротором Дарье

В 1931 году французский конструктор Жорж Дарье (George Darrieus) предложил свой вариант ротора, который имеет от двух и более плоских лопастей. Он еще проще, чем ВС: лопасти – из простой упругой ленты безо всякого профиля. Прост в изготовлении и монтаже, но с малой эффективностью — КИЭВ – до 20%.

Теория ротора Дарье еще недостаточно разработана. Ясно только, что начинает он раскручиваться за счет разности аэродинамического сопротивления горба и кармана ленты, а затем становится вроде как быстроходным, образуя собственную циркуляцию. Вращательный момент мал, а в стартовых положениях ротора параллельно и перпендикулярно ветру вообще отсутствует, поэтому самораскрутка возможна только при нечетном количестве лопастей (крыльев?) В любом случае на время раскрутки нагрузку от генератора нужно отключать.

Есть у ротора Дарье еще два нехороших качества. Во-первых, при вращении вектор тяги лопасти описывает полный оборот относительно ее аэродинамического фокуса, и не плавно, а рывками. Поэтому ротор Дарье быстро разбивает свою механику даже при ровном ветре. Во-вторых, Дарье не то что шумит, а вопит и визжит, вплоть до того, что лента рвется. Происходит это вследствие ее вибрации. И чем больше лопастей, тем сильнее рев. Так что Дарье если и делают, то двухлопастными, из дорогих высокопрочных звукопоглощающих материалов (карбона, майлара), а для раскрутки посередине мачты-древка приспосабливают небольшой ВС.

Геликоидный ротор

Ещё один вид ветрогенератора с вертикальной осью вращения – с геликоидным ротором. Он способен равномерно вращаться благодаря закрутке лопастей. Достоинство: уменьшает нагрузку на подшипник и увеличивает срок службы. Но из-за сложной технологии слишком дорогой. (См. рисунок).

И, наконец, существуют ветрогенераторы с многолопастным ротором. Это один из самых эффективных типов из разряда вертикальных ветрогенераторов. (См. рисунок).

Ветрогенераторы с горизонтальной осью

Переходим к описанию горизонтальных ветрогенераторов. По количеству лопастей их разделяют на одно-двух-трёх и многолопастные. Достоинства горизонтальных – более высокий КПД по сравнению со своими вертикальными соперниками. Недостаток: необходимость устройства флюгера для постоянного поиска направления ветра. Кроме того, при повороте к ветру скорость вращения снижается, что уменьшает его КПД.

Главное достоинство однолопастных – высокие обороты вращения. У них вместо второй лопасти установлен противовес, мало влияющий на сопротивляемость движению воздуха, что даёт возможность использовать их для генераторов с высокими оборотами вращения. А это позволяет уменьшить массу и габариты всей установки. (См. рисунок однолопастной ВЭУ).

Двухлопастные ВЭУ мало чем отличаются по мощности с однолопастными и рассматривать их более подробно не имеет смысла.

Трёхлопастные горизонтальные ветряки – самые распространённые на рынках сбыта. Их мощность на выходе может достигать семи мегаватт.

Многолопастные установки с числом лопастей до пяти десятков обладают большой инерцией, за счёт чего при небольших оборотах вращения развивают большой крутящий момент. Такое преимущество позволяет использовать установки для работы водяных насосов, где они и занимают лидирующее положение.

Как курицу превратили в страуса

Кто не в курсе, что ветровые установки используют в качестве дополнительного источника? Все в курсе. Но как всегда, человечеству этого показалось мало, курицу пытаются превратить в страуса и, представьте себе, фигурально выражаясь, такое удаётся. В результате неустанных поисков появились совершенно новые типы ветрогенераторов, которые способны производить электричество…без лопастей. А есть и такие, которые обходятся даже без воздуха и ветра! Сейчас более подробно.

Уже выпущен довольно результативный ветрогенератор, который ловит ветер без лопастей. Такой ветрогенератор действует по принципу парусника (см. фото). «Парус», который скорее смахивает на тарелку, ловит напор воздуха, за счёт чего начинают двигаться поршни, которые находятся сразу за тарелкой, в верхней части установки.

Поршни приводят в действие гидросистему, которая и вырабатывает электричество. Такое сооружение не имеет ни шестерёнок, ни передатчиков и почти не шумит. КПД намного выше, чем у классического ветрогенератора. Кроме всего прочего, расходы при эксплуатации наполовину ниже, чем у привычных установок. Страна рождения такого проекта – Тунис.

Но и этого оказалось мало! В Португалии решили не прибегать к ветровым услугам, а использовать морскую воду. Ведь море постоянно движется, волнуется, иногда штормит, но никогда не останавливается. Налицо кинетическая энергия пропадает даром.

И пять лет тому назад, в нескольких километрах от берега, на воды Атлантического океана была спущена установка, которая даёт более 2 мегаватт электроэнергии, что вполне хватает для освещения более полутора тысяч домов.

Схематическое устройство таково. Сооружение состоит из трёх секций, между которыми находятся поршни. Внутри секций вмонтированы гидродвигатели и генераторы. Принцип работы простой до безобразия. Секции качаются на волнах, которые их изгибают, что приводит в движение гидропоршни. Те давят на масло, оно поступает в гидравлические двигатели и далее движение передаётся на генераторы. Всё, электроэнергия пошла на берег.

Сейчас работает три секции, к ним планируют подсоединить ещё 25 таких конверторов и тогда проектная мощность морской установки увеличится до 20 мегаватт, что даст возможность снабдить током около 15000 домов.

Теперь вы верите в то, что из курицы можно сотворить настоящего страуса!

В.Ильин

Поплавковые электростанции конструируют во всем мире, в том числе и в России:

altenergiya.ru

Энергия ветра. — Мастерок.жж.рф

Давайте посмотрим на нетрадиционые варианты выработки энергии, а именно ветровые электростанции. Пока еще вопрос спорный в возможности существования этого вида энергодобычи без серьезных дотаций, возможность широкого и повсеместного применения этих устройств (а не только для специфических случаев). Однако не оспорим вопрос экологичности. Ну и это еще к тому же красиво 🙂

Давайте посмотрим …

В Европе и США огромные ветряки — привычный элемент загородного пейзажа. Эти красивые гиганты устанавливаются не только на земле, но и на водных просторах.

Идея использовать силу ветра для получения электрической энергии не нова. Она родилась ещё в конце 19 века, а именно зимой 1887-88 годов, когда один из основателей американской электрической индустрии, Чарльз Ф. Браш построил прототип автоматически управляемой ветровой турбины для производства электроэнергии. На тот момент она была гигантской — диаметр ротора равнялся 17 метрам, и состоял из 144 лопастей, изготовленных… из кедра.

В Европе первая ветряная электрическая станция была пущена в 1900 году, а к началу ІІ-ой мировой войны на планете работало несколько миллионов ветряков.

Современный ветряк — это стальная башня высотой от 70 до 125 м, на вершине которой установлены генератор и ротор с лопастями из композиционных материалов. Сегодня используют 56-метровые лопасти.

Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры. Климатические условия позволяют развивать ветроэнергетику на огромной территории.

На первый взгляд ветер кажется одним из самых доступных и возобновляемых источников энергии. В отличие от Солнца он может «работать” зимой и летом, днем и ночью, на севере и на юге. Но ветер — это очень рассеянный энергоресурс.

Ветровая энергия практически всегда «размазана” по огромным территориям. Основные параметры ветра — скорость и направление — меняются подчас очень быстро и непредсказуемо, что делает его менее «надежным”, чем Солнце. Таким образом, встают две проблемы, которые необходимо решить для полноценного использования энергии ветра. Во-первых, это возможность «ловить” кинетическую энергию ветра с максимальной площади. Во-вторых, еще важнее добиться равномерности, постоянства ветрового потока. Вторая проблема пока решается с трудом.

К решению первой проблемы привлекли специалистов самолета строения умеющих выбрать наиболее целесообразный профиль лопасти, для получения максимальной энергии ветра. Усилиями ученых и инженеров созданы самые разнообразные конструкции современных ветровых установок.

Это многолопастные «ромашки» и винты вроде самолетных пропеллеров с тремя, двумя и даже одной лопастью. Вертикальные конструкции хороши тем, что улавливают ветер любого направления; остальным приходится разворачиваться по ветру. Такой вертикальный ротор напоминает разрезанную вдоль и насаженную на ось бочку. Встречаются и оригинальные решения. Например, тележка с парусом ездит по кольцу из рельс, а ее колеса приводят в действие электрогенератор.

Кликабельно 1700 рх

Среди десятков тысяч ветряков есть огромные, а есть и маленькие, на один домик. А это как раз гигантские ветряки. Один из самых больших ветряков на сегодня построен в сентябре 2002 под Магдебургом в Германии. Его мощность — 4.5 мегаватт, каждая из трех лопастей достигает 52 метров в длину и 6 в ширину, и весит по 20 тонн. Крепится ротор на 120-метровой башне.

Последнее достижение ветроэнергетики — ветряки, диаметр ротора которых превышает размах крыла самолетов-гигантов, даже нашего «Руслана». Такая установка имеет мощность 1–2 мегаватта и способна обеспечивать электроэнергией 800 современных жилых домов.

Наиболее распространенным типом ветровых энергоустановок (ВЭУ) является турбина с горизонтальным валом и числом лопастей от 1 до 3. По оценкам различных авторов, ветроэнергетический потенциал Земли равен 1200 ТВт, однако использования этого вида энергии в различных районах Земли неодинаковы. В России валовой потенциал ветровой энергии — 80 трлн. кВт/ч в год, а на Северном Кавказе — 200 млрд. кВт/ч (62 млн. т усл. топлива). Эти величины существенно больше соответствующих величин технического потенциала органического топлива. Среднегодовая скорость ветра на высоте 20–30 м над поверхностью Земли должна быть достаточно большой, чтобы мощность воздушного потока, проходящего через надлежащим образом ориентированное вертикальное сечение, достигала значения, приемлемого для преобразования.

Ветровые электростанции выгодны, как правило, в регионах, где среднегодовая скорость ветра составляет 6 метров в секунду и выше и которые бедны другими источниками энергии, а также в зонах, куда доставка топлива очень дорога.

Норвегия объявила о планах построить самый большой в мире ветряк в 2011 году. Работы уже ведутся. Высота ветряной турбины будет составлять 533 фута, а диаметр ротора — 475 футов. Как ожидается, турбина будет обеспечивать электроэнергией 2 000 домов. Рекордный опытный образец стоит $67,5 миллионов.

Ветроэнергетическая установка, расположенная на площадке, где среднегодовая удельная мощность воздушного потока составляет около 500 Вт/м2 (скорость воздушного потока при этом равна 7 м/с), может преобразовать в электроэнергию около 175 из этих 500 Вт/м2. следует также учитывать те изменения, которые вносятся ветровыми установками в ландшафт местности, их размещение должно соответствовать не только стандартам безопасности и эффективности, но и правильного размещения на местности (мельницы ВЭУ, расположенные хаотично менее эффективны, чем те, которые расположены в определенной геометрической последовательности).

Малые ВЭУ обычно предназначаются для автономной работы. Системы, которым они выдают энергию, привередливы, требуют подачи энергии более высокого качества и не допускают перерывов в питании, например, в периоды безветрия. Поэтому им необходим дублер, то есть резервные источники энергии, например, дизельные двигатели той же, как у ветроустановок, или меньшей мощности.

Что касается более мощных ветроустановок (свыше 100кВт), то они применяются как электростанции и включаются обычно в энергосистемы. Обычно на одной площадке устанавливаются достаточно большое количество ВЭУ, образующих так называемую ветровую ферму. На одном краю (фермы) может дуть ветер, на другом в это время тихо. Ветряки нельзя ставить слишком тесно, чтобы они не загораживали друг друга. Поэтому (ферма) занимает много место.

Ветроэнергетика сильно зависит от капризов природы. Скорость ветра бывает настолько низкой, что ветра агрегат совсем не может работать, или настолько высокой, что ветра агрегат необходимо остановить и принять меры по его защите от разрушения. Если скорость ветра превышает номинальную рабочую скорость, часть извлекаемой механической энергии ветра не используется, с тем чтобы не превышать номинальной электрической мощности генератора. Для эффективной работы ВЭУ их размещают на открытых пространствах, реже на территориях сельскохозяйственных угодий, что повышает их продуктивность. В горных районах ветра установки работают эффективно из-за природных особенностей данных местностей, там преобладает движение воздушных масс с большой силой и скоростью, к тому же это дает энергию в труднодоступные районы.

Правильная установка влияет на КПД ветра агрегатов поэтому удельная выработка электрической энергии в течение года составляет 15 – 30% энергии ветра или даже меньше в зависимости от место положения и параметров установки.

В настоящее время рекорд по размеру и мощности (141 метр и 7 мегаватт) принадлежит ветрогенератору Enercon E-126, расположенному около немецкого городка Эмден.

Установка ветряка Enercon E-126:

Ветряные двигатели не загрязняют окружающую среду, отсутствие влияния на тепловой баланс атмосферы Земли, отсутствие потребления кислорода, выбросов углекислого газа и других загрязнителей. Чтобы производить с их помощью много электроэнергии, необходимы огромные пространства земли. Лучше всего они работают там, где дуют сильные ветры.

Сегодня ветроэлектрические агрегаты надежно снабжают током нефтяников; они успешно работают в труднодоступных районах, на дальних островах, в Арктике, на тысячах сельскохозяйственных ферм, где нет поблизости крупных населенных пунктов и электростанций общего пользования.

В проектировании установки самая трудная проблема состояла в том, чтобы при разной силе ветра обеспечить одинаковое число оборотов пропеллера. Ведь при подключении к сети генератор должен давать не просто rкакую-то электрическую энергию, а только переменный ток с заданным числом циклов в секунду, т. е. со стандартной частотой 50 — 60 Гц. Поэтому угол наклона лопастей по отношению к ветру регулируют за счет попорота их вокруг продольной оси: при сильном ветре этот угол острее, воздушный поток свободнее обтекает лопасти и отдает им меньшую часть своей энергии. Помимо регулирования лопастей весь генератор автоматически поворачивается на мачте против ветра.

Одна из возникших проблем ветра агрегатов это избыток энергии в ветреную погоду и не достаток ее период без ветрея. Способов хранения ветреной энергии очень много рассмотрим наиболее простые один из способов: состоит в том, что ветряное колесо движет насос, который накачивает воду в расположенный выше резервуар, а потом вода, стекая из него, приводит в действие водяную турбину и генератор постоянного или переменного тока. Существуют и другие способы, и проекты: от обычных, хотя и маломощных аккумуляторных батарей до раскручивания гигантских маховиков или нагнетания сжатого воздуха в подземные пещеры и вплоть до производства водорода в качестве топлива. Особенно перспективным представляется последний способ. Электрический ток от ветра агрегата разлагает воду на кислород и водород. Водород можно хранить в сжиженном виде и сжигать в топках тепловых электростанций по мере надобности.

Ветряки ставят не только на суше, но и на водных просторах:

Самый высокий ветряк в мире находится в провинции Сан-Хуан на высоте 4 110 метров над уровням моря. Его установила самая крупная золотодобывающая компания в мире — Баррик. Ветряк занесен в книгу рекордов Гиннеса.

Ветроустановка — дорогая техника, но расходы на ее приобретение окупятся в течение первых 7 лет эксплуатации. Расчетный срок службы — 25 лет.

Европейский лидер по использованию энергии ветра — Дания. В этой стране их обычно размещают на скалистых рифах и мелководье, на расстоянии до 2 км от берега.

Кликабельно

Самым ветреным местом в Европе считают шотландские Внешние Гибриды. Северная часть этих островов продувается постоянно. Ветер там практически никогда не утихает.

В конце прошлого года компания Deepwater Wind объявила о планах создания крупнейшей в мире глубоководной ветровой электростанции.

Предполагается, что она будет возведена на протяжении от 29 до 43 км от побережья штата Род-Айленд и Массачусетс и будет производить до 1 000 мегаватт, что сопоставимо с ядерным энергоблоком. Ветряки будут установлены в океане с глубиной дна 52 м — это значительно глубже, чем любая другая современная ветроэлектростанция.

Кликабельно

А вот еще есть такой интересный ветряк

Первая в мире плавучая ветряная турбина была установлена в Северном море у побережья Норвегии. Об этом сообщила во вторник норвежская энергетическая компания StatoilHydro. Турбина, названная Hywind, достигает в высоту 65 метров и весит 5.300 тонн. Ее установили примерно в 10 километрах от острова Кармой, у юго-западного побережья страны, говорится в пресс-релизе компании.

«Ветряк» установлен на плавающей платформе, которая закреплена тремя якорями. В качестве балласта выступают вода и камни, помещенные внутрь платформы.

StatoilHydro планирует проводить испытания Hywind в течение последующих двух лет, прежде чем примет решение о производстве большего числа плавучих ветровых турбин.

По мнению специалистов StatoilHydro, данная технология может представлять интерес для Японии, Южной Кореи, американского штата Калифорния, части Восточного побережья Соединенных Штатов и Испании. Это лишь часть потенциальных рынков.

Hywind может устанавливаться на большем удалении от берега, чем статические ветровые турбины, уже находящиеся в эксплуатации. Речь идет о глубинах от 120 метров до 700 метров, что позволяет размещать новую турбину значительно дальше от берега.

В создание 2,3-мегаваттной плавающей турбины было вложено в общей сложности 400 млн. крон (46 миллионов евро), что делает ее дороже наземных аналогов. Теперь главная задача компании-производителя – удешевить свою разработку.

Ветровая энергия это огромная энергия, надо только правильно ее получать и хранить.

Рассмотрим теперь отрицательное влияние ВЭУ на среду обитания человека и животных, на телевизионную связь и пути сезонной миграции птиц. Действительно крупные ВЭУ влияют на телесигнал. На расстоянии до 0.5 км, они вызывают помехи в телесигнале, это связано с тем, что лопасти ветрового колеса ВЭУ отражают сигналы, вызывая помехи при передачи телевизионного сигнала. Вследствие работы крупных ВЭУ больше 20 кВт возникает достаточное количества инфразвука, которое влияет на состояние человека и животных. При работе крупных ВЭУ возникает и естественный шум от работы ветрового колеса. Поэтому размещение ВЭУ больше 10 кВт нежелательно в переделах черты города. С этими отрицательными факторами пытаются бороться, в частности применяя новые виды материала, которые способны пропускать сигналы в большом спектре и т.д.

Ветровая энергетика вызывает все больше интерес и стремление к усовершенствованию установок для максимальной эффективности. Во многих страна начинают их применять в домах, на фермах, на небольшом производстве.

А вот такой проект :

Необычная ветровая электростанция, имеющая не три, а две лопасти, в скором времени появится у восточного побережья Шотландии. Экстравагантный ветряк, видимо, будет славен ещё и тем, что сможет принимать вертолёты.По данным Inhabitat, шотландский министр энергетики Фергюс Юинг (Fergus Ewing) на днях объявил, что правительство одобрило строительство инновационной ветровой турбины по проекту голландской компании 2-B Energy. Гигантский двухлопастный ветряк мощностью 6 мегаватт будет возведён в составе комплекса Energy Park Fife примерно в 20 метрах от берега.

Вызывающая немало вопросов вертолётная площадка присутствует только на проектных картинках в разделе «общее впечатление». В шотландском правительстве посадка геликоптеров на ветряк не обсуждается (иллюстрации 2-B Energy).

2-B Energy с нуля разработала новый тип турбин в 2007 году. Её ветряки предназначены именно для работы на воде, в прибрежной зоне, где нет строгих требований к шуму и жёстких ограничений по размеру конструкции. Что касается двух лопастей вместо трёх, то компания поясняет: чем меньше движущихся частей, тем лучше в плане ремонтопригодности.

Как сообщает BusinessGreen, 2-B Energy хотела установить в Шотландии два ветряка, но получила одобрение только на один.

«Тот факт, что инновационные компании решают проверить свои новые идеи именно в Шотландии, в лишний раз подтверждает репутацию нашей страны как места для разработки и внедрения всех типов новых „зелёных“ энергетических технологий», – заявил министр Юинг. Судя по всему, строительство экспериментальной турбины начнётся в 2014 году.

Кликабельно

Ну и еще один проектик:

Небольшая американская фирма Joby Energy разработала проект установки в виде огромного летающего змея. Змей представляет собой прямоугольный металлический каркас, несущий на себе десяток небольших лопастей. Сначала лопасти приводятся в действие моторами и, подобно пропеллеру самолета, поднимают каркас на высоту 400-500 метров.

Там в дело вступают мощные высотные ветры, которые вращают лопасти, вырабатывая электрическую энергию. Часть ее идет на поддержание каркаса в воздухе, а основная часть передается на землю по той металлической «нити», которая соединяет каркас с местом запуска. Конечно, для этого требуются прочные и легкие материалы, необходимые для создания летающего (и подвергающегося мощнейшим давлениям) гигантского, в десятки метров длиной, каркаса, и электроника, которая должна обеспечивать автоматическое управление полетом и маневрированием, и датчики, непрерывно измеряющие скорость, направление ветра и ориентацию аппарата, и компьютеры, которые по указаниям этих датчиков автоматически и непрерывно контролируют и нужным образом меняют ориентацию каркаса к ветру, чтобы обеспечить максимальный кпд, и многое другое, чего не было еще 10 лет назад.

Кликабельно 3000 рх

Новый план не просто реален. Он еще и достаточно перспективен, о чем говорит одна, но весьма красноречивая цифра: нынешняя потребность человечества в энергии составляет, по подсчетам, 17 тераватт, между тем как мощность ветров в тропосфере равна 870 тераваттам, то есть в 50 с лишним раз больше. (Напомним, что тропосферой называется приземный слой атмосферы до высоты в 20-30 километров, отделенный от выше лежащей стратосферы переходным слоем; под этим слоем образуются характерные для тропосферы постоянные «струйные потоки» (jet streams) со скоростями ветра от 100 до 400 километров в час. Для сравнения: на земле ураганной считается скорость выше 117 километров в час.) Далеко не случайно эта фирма так энергично испытывает одну систему за другой. Агентство НАСА в ближайшее время проводит нечто вроде всеамериканского конкурса на лучший проект надежной и безопасной летающей турбины мощностью в 300 киловатт. Тот факт, что на этом конкурсе фирма будет лишь одним из нескольких десятков конкурентов, свидетельствует об интересе, проявляемом к новому виду «чистой» энергии. Но еще более ярко о том же говорит интерес, проявляемый к новому плану американским правительством. Это именно оно выделило НАСА деньги для координации и проверки всех этих частных проектов.

Сейчас на предварительном испытании находятся самые разные варианты летающих турбин — в виде воздушного змея, подвесного аэростата, летающего крыла, парашюта и так далее. Отбор поручен НАСА, уже имеющему опыт такой работы. Предстоит прежде всего найти наиболее эффективный вид носителя турбины. Для этого все они будут проверяться в одинаковых условиях полета на высоте до 600 метров — это предел, который для начала установило федеральное правительство.

Даже на этой высоте летающие турбины вполне могут показать свои преимущества перед наземными, ведь сила ветра, как уже говорилось, растет с высотой, а мощность ветряков, как уже выяснила практика, пропорциональна кубу силы ветра. Это значит, что даже при удвоенной за счет высоты силе ветра летающая турбина может дать в 8 раз больше мощности, чем наземная, а при утроенной — даже в 27 раз больше. Как полагают расчетчики, в будущем, когда такие турбины будут летать на высоте 8-9 километров, на уровне самых низких «струйных течений» с их средней скоростью ветра 240 километров в час, они смогут давать 20 000-40 000 ватт на квадратный метр лопастей вместо 500 ватт, которые дают нынешние наземные ветряки.

Кроме того, у них есть еще то преимущество, что установка запуска, где крепится нанотрубочная «нить» (она же — кабель для приема тока), занимает очень малую площадь. Да и стоимость турбины-змея много меньше, чем, скажем, того норвежского гиганта, который сейчас готовится выплыть в море. С другой стороны, летающие ветряки, конечно, уступают таким гигантам по максимальной мощности каждой отдельной установки. Чтобы сравняться с мощностью норвежского плавучего ветряка, летающий ветряк должен иметь рабочую площадь в несколько сот квадратных метров, а это ставит перед конструкторами очень трудные — и пока неразрешимые — технические задачи (в смысле прочности, подъемной силы и так далее.) Так что перегнать наземные ветряки по суммарной мощности можно только за счет я количества, и поэтому энтузиасты нового плана говорят сегодня о создании огромной сети таких летающих ветряков, пусковые установки которых будут собраны на определенных участках той или иной страны — нечто вроде проекта «Дезертек», предлагающего покрыть Сахару сплошными солнечными зеркалами.

В отличие от «Дезертека», в данном случае возникает, однако, сложный вопрос о воздушном пространстве. Каждая летающая турбина требует своей нити, а поскольку эта турбина не стоит на одном месте, а под воздействием ветра и нити описывает определенные траектории в небе, ей нужен также свой «воздушный коридор» — этакий колодец, на дне которого находится ее пусковая установка, а «стены» заданы границами беспрепятственного перемещения этой турбины под действием ветра. Но ведь в воздухе сегодня летают самолеты: частные — на малой высоте, военные, грузовые и пассажирские — на большой, и каждому из них требуется свой воздушный коридор. Система этих коридоров устанавливается в национальном и международном масштабе, и наличие множества «нитей» и самих летающих турбин может создать огромную опасность. В силу этого развитие сети летающих турбин требует сложных диспетчерских расчетов и системы международных соглашений. Поэтому НАСА предполагает провести свои конкурсные испытания уже существующих проектов летающих турбин и проверку проектов их дальнейшего совершенствования в одном единственном месте — на побережье Калифорнии (с тем, чтобы нити проходили над морем) и не выше 600 метров, чтобы не мешать рейсам обычной авиации.

И все же, несмотря на все эти трудности, можно сказать, что план добычи энергии из воздуха начинает обретать реальные очертания. Свой и, возможно, весьма существенный со временем вклад в освобождение мира от нефтяной удавки и опасности глобального потепления летающие ветряки будущего, наверное, внесут.

Кликабельно

Кликабельно 2000 рх

Кликабельно

masterok.livejournal.com

Для чего вам нужен ветрогенератор?

Начнём с ответа на вопрос, вынесенный в заголовок: для чего вам нужен ветрогенератор? И смотря для кого он потребовался? Пенсионеру он нужен, чтобы лампочки горели, телевизор работал и в доме было тепло. Предпринимателю, владельцу небольшой, на 10 номеров, придорожной гостиницы потребуется намного больше электроэнергии, а владельцу загородного дома, когда он там бывает только утром и вечером, надо даже меньше, чем пенсионеру. Когда вы точно рассчитаете потребность, тогда можно и разбираться с вопросом о том, как работает ветрогенератор с горизонтальной или вертикальной осью вращения ротора. Для этого нелишне знать и климатические условия данной местности, какое направление и с какой среднегодовой скоростью дует ветер.

Получив ответ, нетрудно рассчитать, какую по мощности установку выбрать, как подобрать инвертор, какие аккумуляторные батареи приобрести и сколько. Потребляемая энергия не может превышать мощность инвертора и скорость зарядки аккумулятора и так далее. Технических вопросов много, о которых мы сейчас и поговорим.

Если вам необходима электроэнергия редко, но с большой нагрузкой, то здесь особое внимание надо уделить выбору инвертора. Попросту говоря, преобразователя тока из переменного в постоянный. Возможно, что вам потребуется не один подобный агрегат.

Зная, что в вашей местности бывают частые случаи полного безветрия, тогда надо придать значение выбору аккумуляторов с большой ёмкостью. А чтобы они быстрее заряжались, надо делать ставку на выбор более мощного ветрогенератора. То есть, устройство одного агрегата тесно связано с характеристикой другого. Всё надо тщательно рассчитать, начиная от среднегодовой скорости ветра и до мощности каждого прибора в отдельности.

И в том случае, если вы будете знать, сколько электроэнергии вам надо в сутки, сколько часов занимает самое пиковое потребление и сколько в эти часы надо киловатт, вы можете точно сделать выбор, какой вид ветрогенератора вам потребуется.

Анатомия ветряной установки

Из чего состоит и как работает «организм» ветрогенератора в целом. Перечисляем: лопасти (пропеллер), ротор турбины (вращающаяся часть), генератор, ось генератора, инвертор, превращающий переменный ток в постоянный для зарядки батарей, аккумулятор. Схематический чертёж ветрогенератора наглядно показывает схема. Смотрите рисунок.

При вращении ротора создаётся трёхфазный переменный ток, затем идущий через контроллер на аккумуляторную батарею постоянный ток для его зарядки, далее инвертор, преобразующий ток в стабильно-переменный для подачи на потребители (освещение, телевизор, радиоприёмник, отопительные батареи и т.д.). Таково схематическое устройство ветряных установок.

Принцип работы любого вида ветрогенератора следующий: вращение вызывает три вида физического воздействия на лопасти винта – импульсную силу и подъёмную, в результате которых начинает приходить в движение маховик, и тормозящую силу. Две силы против одной преодолевают сопротивление и маховик раскручивается, ротор создаёт магнитное поле на неподвижной части генератора. Этого достаточно, чтобы по проводам пошёл электрический ток.

Как работает ветрогенератор, и из чего он состоит, узнаете из видео:

Перед покупкой ветрогенератора необходимо учесть все нюансы. Если воздушный поток по какой-либо причине обходит стороной вашу местность, то установка мощного ветрогенератора вряд ли целесообразна. Тогда для вас подойдёт генератор небольшой мощности. А бывает и так, что направление ветра меняется постоянно. Тогда, конечно же, стоит подумать о том, есть ли смысл устанавливать ветряные установки. И в случае расчётов в пользу установок, то предпочтение надо отдавать использованию ветрогенератора вертикального вида вращения оси. Чем же они отличаются друг от друга – вертикальные и горизонтальные ветряки, какие их преимущества и недостатки, разговор в следующем разделе.

Плюс пишем, минус в уме держим

До каких пор мы будем гоняться за европейскими товарами! Неужели у нас хуже мастера, или такое допотопное оборудование, чтобы выпускать на рыночный прилавок низкосортную продукцию? Конечно же, нет. Стоимость ветрогенератора напрямую зависит от суммарной мощности, какой обладает ветроэлектростанция в сборе.

Цена обычно колеблется и зависит от производителя. Зарубежный производитель – о! Тогда можно и три шкуры содрать с покупателя. Не поддавайтесь на эту дешёвую приманку. Цена от нашего, отечественного производителя, в три раза дешевле, чем от зарубежных мастеров. А разницу в качестве и под микроскопом не отличишь. Пора бы уж научиться уважать своего соотечественника, мужественно, вопреки всяким препонам, занимающегося производством товаров.

Ветряные установки по своему устройству делятся на два вида: с горизонтальным валом генератора и с вертикальным. Ветрогенераторная установка с вертикальным валом имеет следующие неоспоримые преимущества перед горизонтальной:

  1. Отпадает необходимость обустраивать флюгер. И никаких подшипников для вращения верхней коробки при изменении направления ветра. Вертикальная конструкция стоит незыблемо при всяком ветре и улавливает любое его направление.
  2. Устроена с минимальным количеством передающих редукторов.
  3. Способна улавливать малейшие колебания ветра, что даёт возможность приблизить конструкцию к поверхности земли и намного удешевить монтаж и обслуживание.
  4. Генератор меньше реагирует на изменение направления и скорость ветра.

Как и в каждом обсуждаемом деле не обошлось и без ложки дёгтя в бочке мёда. Недостатки:

  1. Лопасть турбины с вертикальным валом устроена так, чтобы достигать площади раза в три больше, чем занимают лопасти винта горизонтальной установки. Явный минус.
  2. И, как следствие, КПД станций вертикальной конструкции в три раза меньше, чем горизонтальных установок.

Уходим завтра в море

Несколько слов о конструкции «моряков», а потом о самом «морском походе». Итак, схема ветроустановок принципиально везде одинакова, разве что, с некоторыми отклонениями от нормы. Вот основные элементы ветрогенератора:

  • Роторная часть (вращающаяся). Её задача преобразовать силу ветра во вращательное движение. Сюда входят лопасти и вал.
  • Редуктор. Его задача увеличить скорость вращения вала до двух и более тысяч оборотов в минуту и передать это вращение на генератор. Простейшая схема ветряков выполнена без редуктора. Там генератор напрямую соединён валом с лопастями.
  • Генератор. Здесь с помощью магнитных полей вращение вала создаёт электроэнергию.
  • Анемометр. Это прибор, измеряющий скорость ветра. Находится сзади корпуса, рядом с флюгером, который отвечает за направление лопастей против движения ветра.
  • Башня, на которой монтируется вся система выработки электроэнергии.
  • Преобразователь напряжения (см. схему).

Такова конструкция «моряков» — ветрогенераторов.


А теперь вспомним, какое самое уязвимое место ветрогенератора любого типа, будь то вертикального или горизонтального? – Точно, это возможное безветрие, когда ветроэлектростанция полностью прекращает свою работу. И где же выход? Он есть. Как в любой жизненной ситуации. В данном случае – это выход в море. Туда, где ветра дуют практически круглый год и круглые сутки.

Вечером дует ветерок с суши на море, утром – с моря на сушу. «Бриз» называется. Вблизи высоких прибрежных гор господствует «Бора» — холодный ветер, устремляющийся в море со стороны горных вершин. «Муссон» — довольно постоянный сезонник, дующий в летнее время с моря, а зимой в противоположную сторону. У западных берегов Чёрного моря господствует восточный ветер «Абаза». А так называемый «Свежак» постоянно разгуливает над поверхностью моря вдали от пляжных берегов. Бывает и всем известный грозный «Шторм».

Вы только посмотрите, какое богатство ветровой энергии пропадает даром! Практически ветер над морем и береговой линией не утихает ни на минуту. Поэтому и пришла в голову конструкторов идея подумать над сооружением ветрогенераторов морского базирования. Задача была сделать надёжную опору. Сделали. А потом пришла идея не вкапывать в глубину дна капитальные опоры, а ставить на воде качающиеся электростанции (см. рисунок). И снова удача.

Но и на этом не остановились датские изобретатели. Они пришли к выводу, что самой дешёвой в установке будет морская плавучая ветроэлектростанция. Ветряки расположены на такую высоту от палубы, чтобы до них не доставала даже штормовая волна. И снова успех оказался налицо.

Французские специалисты сконструировали морскую установку мощностью более двух мегаватт, которую запускают в декабре этого года в Средиземное море. Отличительной особенностью её будет то, что винт расположен вертикально. То есть, вертикальные виды ветрогенераторов шагнули на морские просторы.

Так пошли в море офшорные электростанции добывать дешёвую электроэнергию. (Офшор – находящийся далеко от берега, вне территории страны). И лидером в этом морском нашествии оказалась Дания. Мы об этом расскажем в следующих выпусках.

В. Ильин

Ветрогенератор в Челябинске:

altenergiya.ru

admin

Отправить ответ

avatar
  Подписаться  
Уведомление о