Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Расчет мощности радиатора отопления: Как рассчитать радиаторы отопления

Содержание

Как рассчитать мощность радиатора отопления

При устройстве отопительной системы в частном доме или квартире очень важно знать, как рассчитать мощность радиатора отопления. От правильного подбора батарей по этому параметру зависит эффективность и экономичность обогрева комнат.

Теплоотдача радиатора

Теплоотдача или тепловая мощность является основным параметром, для отопительных приборов. Эта величина характеризует количество тепловой энергии, которую батарея отдает воздуху в помещении. Измеряется теплоотдача в ваттах.

Для секционных батарей указывается мощность на одну секцию. В среднем одна секция алюминиевого радиатора с межосевым расстоянием имеют мощность 190-205 Вт. Аналогичные биметаллические батареи имеют мощность 180-185 Вт на одну секцию. Соответственно, общая мощность радиатора определяется по следующей формуле:

Pрад=N*P, где

Pрад — общая мощность отопительного прибора, Вт;

N — количество секций;

P — мощность одной секции, Вт.

Комплектуя радиатор необходимым количеством секций, можно подобрать требуемую общую мощность, достаточную для обогрева конкретного помещения. Таким образом, определение числа секций батареи является ключевой задачей при подборе отопительного прибора.

Простой расчет количества секций

Считается, что на 1 квадратный метр площади помещения с высотой потолков 2,7 метра необходимо 100 Вт тепловой мощности. Это позволяет задействовать самый простой метод расчета количества секций, который можно сделать по следующей формуле:

N=S/P*100, где

N — количество секций;

S — площадь комнаты, м2;

P — мощность одной секции, Вт.

Сравнительные данные необходимого количества секций для алюминиевых и биметаллических радиаторов приведены в следующей таблице:

Тип радиатора

Межосевое расстояние, мм

Мощность, Вт

Площадь комнаты, м2 (высота потолка 2,7 м)

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

Требуемое количество секций

Алюминий

350

138

6

7

8

9

12

13

14

15

16

17

18

19

20

21

22

23

24

Биметалл

350

130

7

8

9

10

12

13

14

15

16

17

18

19

20

21

22

23

24

Алюминий

500

185

5

6

7

8

10

11

12

13

14

15

16

17

18

19

20

21

22

Биметалл

500

180

6

7

8

9

11

12

13

14

15

16

17

18

19

20

21

22

23

Однако данный метод не учитывает много дополнительных параметров и дает только приблизительные результаты. Погрешность может достигать 20% и более, что является существенным отклонением, особенно для помещений большой площади. При недостаточном количестве секций мощности радиатора будет не хватать, и в помещении будет слишком холодно. Если установить слишком большое количество секций, то мощность батареи будет избыточной. Это приведет к чрезмерному обогреву. Для автономных систем отопления это значит нерациональное расходование энергоносителя и повышенные нагрузки на оборудование.

Уточненный расчет

Если вас интересует, как рассчитать мощность батареи отопления и определить требуемое количество секций с максимальной точностью, то необходимо использовать поправочные коэффициенты. Эти коэффициенты учитывают индивидуальные характеристики конкретного помещения, например, материал и толщину стен, тип остекления, климатические условия и т.д.

Наиболее важными являются следующие поправочные коэффициенты:

  • К1 — коэффициент, учитывающий тип остекления. При двойном остеклении деревянными рамами его значение принимается 1,27; при остеклении пластиковыми окнами с однокамерным стеклопакетом — 1,0; с двухкамерным стеклопакетом — 0,85.
  • К2 — коэффициент, который учитывает теплоизоляционную способность стен. При слабой теплоизоляции — 1,27; хорошая теплоизоляция (например, кирпичные стены в два слоя) — 1,0; высокая теплоизоляция (например, утепленные стены) — 0,85.
  • К3 — коэффициент для учета отношения площади остекления к площади помещения: при соотношении 0,5 — коэффициент 1,2; при соотношении 0,4 — 1,1; при соотношении 0,3 — 1,0; при соотношении 0,2 — 0,9; при соотношении 0,1 — 0,8.
  • К4 — коэффициент который учитывает среднестатистические показатели температуры для конкретного региона в течение отопительного сезона. Значения К4 при разных температурных показателях: при -35 — 1,5; при -25 °С — 1,3; при -20 °С — 1,1; при -15 °С — 0,9; при -10 °С — 0,7.
  • К5 — коэффициент, который учитывает количество внешних стен в помещении: четыре стены — 1,4; три стены — 1,3; две стены — 1,2; одна стена — 1,1.
  • К6 — коэффициент, который учитывает тип помещения, которое расположено выше: неотапливаемое чердачное помещение — 1,0; отапливаемый чердак — 0,9; жилые отапливаемые помещения — 0,8.
  • К7 — коэффициент, который учитывает высоту потолка в комнате: 2,7 м — 1; 3 м — 1,05 м; 3,5 м — 1,1; 4 м — 1,15.

Требуемая мощность для отопления помещения с учетом данных поправочных коэффициентов рассчитывается по следующей формуле:

КТ = 100 Вт/м2*S*К1*К2*К3*К4*К5*К6*К7, где

КТ — требуемая тепловая мощность, Вт;

S — площадь помещения, м2;

К1…К7 — поправочные коэффициенты.

После определения требуемой тепловой мощности остается только рассчитать необходимое количество секций по формуле:

N=КТ/P, где

N — количество секций, необходимое для эффективного обогрева помещения;

КТ — требуемая тепловая мощность, Вт;

P — тепловая мощность одной секции по паспорту, Вт.

Воспользовавшись этим расчетом, вы сможете легко подобрать радиаторы, которые оптимально подойдут для отопления ваших помещений.

по площади, по объему, в зависимости от температурного режима, материалов и размеров

Для расчета количества радиаторов существует несколько методик, но суть их одна: узнать максимальные теплопотери помещения, а затем рассчитать количество отопительных приборов, необходимое для их компенсации.

Методы расчета есть разные. Самые простые дают приблизительные результаты. Тем не менее, их можно использовать, если помещения стандартные или применить коэффициенты, которые позволяют учесть имеющиеся «нестандартные» условия каждого конкретного помещения (угловая комната, выход на балкон, окно во всю стену и т.п.). Есть более сложный расчет по формулам. Но по сути это те же коэффициенты, только собранные в одну формулу.

Есть еще один метод. Он определяет фактические потери.  Специальное устройство — тепловизор — определяет реальные потери тепла. И на основании этих данных рассчитывают сколько нужно радиаторов для их компенсации. Чем еще хорош этот метод, так это тем, что на снимке тепловизора точно видно, где тепло уходит активнее всего. Это может быть брак в работе или в строительных материалах, трещина и т.д. Так что заодно можно выправить положение.

Расчет радиаторов зависит от потерь тепла помещением и номинальной тепловой мощности секций

Расчет радиаторов отопления по площади

Самый простой способ. Посчитать требуемое на обогрев количество тепла, исходя из площади помещения, в котором будут устанавливаться радиаторы. Площадь каждой комнаты вы знаете, а потребность тепла можно определить по строительным нормам СНиПа:

  • для средней климатической полосы на отопление 1м2 жилого помещения требуется 60-100Вт;
  • для областей выше 60о требуется 150-200Вт.

Исходя из этих норм, можно посчитать, сколько тепла потребует ваша комната. Если квартира/дом находятся в средней климатической полосе, для отопления площади 16м2, потребуется 1600Вт тепла (16*100=1600). Так как нормы средние, а погода постоянством не балует, считаем, что требуется 100Вт. Хотя, если вы проживаете на юге средней климатической полосы и зимы у вас мягкие, считайте по 60Вт.

Расчет радиаторов отопления можно сделать по нормам СНиП

Запас по мощности в отоплении нужен, но не очень большой: с увеличением количества требуемой мощности возрастает количество радиаторов. А чем больше радиаторов, тем больше теплоносителя в системе. Если для тех, кто подключен к центральному отоплению это некритично, то для тех у кого стоит или планируется индивидуальное отопление, большой объем системы означает большие (лишние) затраты на обогрев теплоносителя и большую инерционность системы (менее точно поддерживается заданная температура). И возникает закономерный вопрос: «Зачем платить больше?»

Рассчитав потребность помещения в тепле, можем узнать, сколько потребуется секций. Каждый из отопительных приборов выделять может определенное количество тепла, которое указывается в паспорте. Берут найденную потребность в тепле и делят на мощность радиатора. Результат — необходимое количество секций, для восполнения потерь.

Посчитаем количество радиаторов для того же помещения. Мы определили, что требуется выделить 1600Вт. Пусть мощность одной секции 170Вт. Получается 1600/170=9,411шт. Округлять можно в большую или меньшую сторону на ваше усмотрение. В меньшую можно округлить, например, в кухне — там хватает дополнительных источников тепла, а в большую — лучше в комнате с балконом, большим окном или в угловой комнате.

Система проста, но недостатки очевидны: высота потолков может быть разной, материал стен, окна, утепление и еще целый ряд факторов не учитывается. Так что расчет количества секций радиаторов отопления по СНиП — ориентировочный. Для точного результата нужно внести корректировки.

Как посчитать секции радиатора по объему помещения

При таком расчете учитывается не только площадь, но и высота потолков, ведь нагревать нужно весь воздух в помещении. Так что такой подход оправдан. И в этом случае методика аналогична. Определяем объем помещения, а затем по нормам узнаем, сколько нужно тепла на его обогрев:

Рассчитаем все для того же помещения площадью 16м2 и сравним результаты. Пусть высота потолков 2,7м. Объем: 16*2,7=43,2м3.

Дальше посчитаем для вариантов в панельном и кирпичном доме:

  • В панельном доме. Требуемое на отопление тепло 43,2м3*41В=1771,2Вт. Если брать все те же секции мощностью 170Вт, получаем: 1771Вт/170Вт=10,418шт (11шт).
  • В кирпичном доме. Тепла нужно 43,2м3*34Вт=1468,8Вт. Считаем радиаторы: 1468,8Вт/170Вт=8,64шт (9шт).

Как видно, разница получается довольно большая: 11шт и 9шт. Причем при расчете по площади получили среднее значение (если округлять в ту же сторону) — 10шт.

Корректировка результатов

Для того чтобы получить более точный расчет нужно учесть как можно больше факторов, которые уменьшают или увеличивают потери тепла. Это то, из чего с деланы стены и как хорошо они утеплены, насколько большие окна, и какое на них остекление, сколько стен в комнате выходит на улицу и т.п. Для этого существуют коэффициенты, на которые нужно умножить найденные значения теплопотерь помещения.

Количество радиаторов зависит от величины потерь тепла

Окна

На окна приходится от 15% до 35% потерь тепла. Конкретная цифра зависит от размеров окна и от того, насколько хорошо оно утеплено. Потому имеются два соответствующих коэффициента:

  • соотношение площади окна к площади пола:
    • 10% — 0,8
    • 20% — 0,9
    • 30% — 1,0
    • 40% — 1,1
    • 50% — 1,2
  • остекление:
    • трехкамерный стеклопакет или аргон в двухкамерном стеклопакете — 0,85
    • обычный двухкамерный стеклопакет — 1,0
    • обычные двойные рамы — 1,27.

Стены и кровля

Для учета потерь важен материал стен, степень теплоизоляции, количество стен, выходящих на улицу. Вот коэффициенты для этих факторов.

Степень теплоизоляции:

  • кирпичные стены толщиной в два кирпича считаются нормой — 1,0
  • недостаточная (отсутствует) — 1,27
  • хорошая — 0,8

Наличие наружных стен:

  • внутреннее помещение — без потерь, коэффициент 1,0
  • одна — 1,1
  • две — 1,2
  • три — 1,3

На величину теплопотерь оказывает влияние отапливаемое или нет помещение находится сверху. Если сверху обитаемое отапливаемое помещение (второй этаж дома, другая квартира и т.п.), коэффициент уменьшающий — 0,7, если отапливаемый чердак — 0,9. Принято считать, что неотапливаемый чердак никак не влияет на температуру в и (коэффициент 1,0).

Нужно учесть особенности помещений и климата чтобы правильно рассчитать количество секций радиатора

Если расчет проводили по площади, а высота потолков нестандартная (за стандарт принимают высоту 2,7м), то используют пропорциональное увеличение/уменьшение при помощи коэффициента. Считается он легко. Для этого реальную высоту потолков в помещении делите на стандарт 2,7м. Получаете искомый коэффициент.

Посчитаем для примера: пусть высота потолков 3,0м. Получаем: 3,0м/2,7м=1,1. Значит количество секций радиатора, которое рассчитали по площади для данного помещения нужно умножить на 1,1.

Все эти нормы и коэффициенты определялись для квартир. Чтобы учесть теплопотери дома через кровлю и подвал/фундамент, нужно увеличить результат на 50%, то есть коэффициент для частного дома 1,5.

Климатические факторы

Можно внести корректировки в зависимости от средних температур зимой:

  • -10оС и выше — 0,7
  • -15оС — 0,9
  • -20оС — 1,1
  • -25оС — 1,3
  • -30оС — 1,5

Внеся все требуемые корректировки, получите более точное количество требуемых на обогрев комнаты радиаторов с учетом параметров помещений. Но это еще не все критерии, которые оказывают влияние на мощность теплового излучения. Есть еще технические тонкости, о которых расскажем ниже.

Расчет разных типов радиаторов

Если вы собрались ставить секционные радиаторы стандартного размера (с осевым расстоянием 50 см высоты) и уже выбрали материал, модель и нужный размер, никаких сложностей с расчетом их количества быть не должно. У большинства солидных фирм, поставляющих хорошее отопительное оборудование, на сайте указаны технические данные всех модификаций, среди которых есть и тепловая мощность. Если указана не мощность, а расход теплоносителя, то перевести в мощность просто: расход теплоносителя в 1 л/мин примерно равен мощности в 1 кВт (1000 Вт).

Осевое расстояние радиатора определяется по высоте между центрами отверстий для подачи/отведения теплоносителя.

Чтобы облегчить жизнь покупателям на многих сайтах устанавливают специально разработанную программу-калькулятор. Тогда расчет секций радиаторов отопления сводится к внесению данных по вашему помещению в соответствующие поля. А на выходе вы имеете готовый результат: количество секций данной модели в штуках.

Осевое расстояние определяют между центрами отверстий для теплоносителя

Но если просто пока прикидываете возможные варианты, то стоит учесть, что радиаторы одного размера из разных материалов имеют разную тепловую мощность. Методика расчета количества секций биметаллических радиаторов от расчета алюминиевых, стальных или чугунных ничем не отличается. Разной может быть только тепловая мощность одной секции.

Чтобы считать было проще, есть усредненные данные, по которым можно ориентироваться. Для одной секции радиатора с осевым расстоянием 50см приняты такие значения мощностей:

  • алюминиевые — 190Вт
  • биметаллические — 185Вт
  • чугунные — 145Вт.

Если вы пока только прикидываете, какой из материалов выбрать, можете воспользоваться этими данными. Для наглядности приведем самый простой расчет секций биметаллических радиаторов отопления, в котором учитывается только площадь помещения.

При определении количества отопительных приборов из биметалла стандартного размера (межосевое расстояние 50см) принимается, что одна секция может обогреть 1,8м2 площади. Тогда на помещение 16м2 нужно: 16м2/1,8м2=8,88шт. Округляем — нужны 9 секций.

Аналогично считаем для чугунные или стальные баратери. Нужны только нормы:

  • биметаллический радиатор — 1,8м2
  • алюминиевый — 1,9-2,0м2
  • чугунный — 1,4-1,5м2.

Это данные для секций с межосевым расстоянием 50см. Сегодня же в продаже есть модели с самой разной высоты: от 60см до 20см и даже еще ниже. Модели 20см и ниже называют бордюрными. Естественно, их мощность отличается от указанного стандарта, и, если вы планируете использовать «нестандарт», придется вносить коррективы. Или ищите паспортные данные, или считайте сами. Исходим из того, что теплоотдача теплового прибора напрямую зависит от его площади. С уменьшением высоты уменьшается площадь прибора, а, значит, и мощность уменьшается пропорционально. То есть, нужно найти соотношение высот выбранного радиатора со стандартом, а потом при помощи этого коэффициента откорректировать результат.

Расчет чугунных радиаторов отопления. Считать может по площади или объему помещения

Для наглядности сделаем расчет алюминиевых радиаторов по площади. Помещение то же: 16м2. Считаем количество секций стандартного размера: 16м2/2м2=8шт. Но использовать хотим маломерные секции высотой 40см. Находим отношение радиаторов выбранного размера к стандартным: 50см/40см=1,25. И теперь корректируем количество: 8шт*1,25=10шт.

Корректировка в зависимости от режима отопительной системы

Производители в паспортных данных указывают максимальную мощность радиаторов: при высокотемпературном режиме использования — температура теплоносителя в подаче 90оС, в обратке — 70оС (обозначается 90/70) в помещении при этом должно быть 20оС. Но в таком режиме современные системы отопления работают очень редко. Обычно используется режим средних мощностей 75/65/20 или даже низкотемпературный с параметрами 55/45/20. Понятно, что требуется расчет откорректировать.

Для учета режима работы системы нужно определить температурный напор системы. Температурный напор — это разница между температурой воздуха и отопительных приборов. При этом температура отопительных приборов считается как среднее арифметическое между значениями подачи и обратки.

Нужно учесть особенности помещений и климата чтобы правильно рассчитать количество секций радиатора

Чтобы было понятнее произведем расчет чугунных радиаторов отопления для двух режимов: высокотемпературного и низкотемпературного, секции стандартного размера (50см). Помещение то же: 16м2. Одна чугунная секция в высокотемпературном режиме 90/70/20 обогревает 1,5м2. Потому нам потребуется 16м2/1,5м2=10,6шт. Округляем — 11шт. В системе планируется использовать низкотемпературный режим 55/45/20. Теперь найдем температурный напор для каждой из систем:

  • высокотемпературная 90/70/20- (90+70)/2-20=60оС;
  • низкотемпературный 55/45/20 — (55+45)/2-20=30оС.

То есть если будет использоваться низкотемпературный режим работы, понадобится в два раза больше секций для обеспечения помещения теплом. Для нашего примера на комнату 16м2 требуется 22 секции чугунных радиаторов. Большая получается батарея. Это, кстати, одна из причин, почему этот вид отопительных приборов не рекомендуют использовать в сетях с низкими температурами.

При таком расчете можно принять во внимание и желаемую температуру воздуха. Если вы хотите, чтобы в помещении было не 20оС а, например, 25оС просто рассчитайте тепловой напор для этого случая и найдите нужный коэффициент. Сделаем расчет все для тех же чугунных радиаторов: параметры получатся 90/70/25. Считаем температурный напор для этого случая (90+70)/2-25=55оС. Теперь находим соотношение 60оС/55оС=1,1. Чтобы обеспечить температуру в 25оС нужно 11шт*1,1=12,1шт.

Зависимость мощности радиаторов от подключения и места расположения

Кроме всех описанных выше параметров теплоотдача радиатора изменяется в зависимости от типа подключения. Оптимальным считается диагональное подключение с подачей сверху, в таком случае потерь тепловой мощности нет. Самые большие потери наблюдаются при боковом подключении — 22%. Все остальные — средние по эффективности. Приблизительно величины потерь в процентах указаны на рисунке.

Потери тепла на радиаторах в зависимости от подключения

Уменьшается фактическая мощность радиатора и при наличии заграждающих элементов. Например, если сверху нависает подоконник, теплоотдача падает на 7-8%, если он не полностью перекрывает радиатор, то потери 3-5%. При установке сетчатого экрана, который не доходит до пола, потери примерно такие же, как и в случае с нависающим подоконником: 7-8%. А вот если экран закрывает полностью весь отопительный прибор, его теплоотдача уменьшается на 20-25%.

Количество тепла зависит и от установкиКоличество тепла зависит и от места установки

Определение количества радиаторов для однотрубных систем

Есть еще один очень важный момент: все вышеизложенное справедливо для двухтрубной системы отопления, когда на вход каждого из радиаторов поступает теплоноситель с одинаковой температурой. Однотрубная система считается намного сложнее: там на каждый последующий отопительный прибор вода поступает все более холодная. И если хотите рассчитать количество радиаторов для однотрубной системы, нужно каждый раз пересчитывать температуру, а это сложно и долго. Какой выход? Одна из возможностей — определить мощность радиаторов как для двухтрубной системы, а потом пропорционально падению тепловой мощности добавлять секции для увеличения теплоотдачи батареи в целом.

В однотрубной системе вода на каждый радиатор поступает все более холодная

Поясним на примере. На схеме изображена однотрубная система отопления с шестью радиаторами. Количество батарей определили для двухтрубной разводки. Теперь нужно внести корректировку. Для первого отопительного прибора все остается по-прежнему. На второй поступает уже теплоноситель с меньшей температурой. Определяем % падения мощности и на соответствующее значение увеличиваем количество секций. На картинке получается так: 15кВт-3кВт=12кВт. Находим процентное соотношение: падение температуры составляет 20%. Соответственно для компенсации увеличиваем количество радиаторов: если нужно было 8шт, будет на 20% больше — 9 или 10шт. Вот тут и пригодится вам знание помещения: если это спальня или детская, округлите в большую сторону, если гостиная или другое подобное помещение, округляете в меньшую. Принимаете во внимание и расположение относительно сторон света: в северных округляете в большую, в южных — в меньшую.

В однотрубных системах нужно в расположенных дальше по ветке радиаторах добавлять секции

Этот метод явно не идеален: ведь получится, что последняя в ветке батарея должна будет иметь просто огромные размеры: судя по схеме на ее вход подается теплоноситель с удельной теплоемкостью равной ее мощности, а снять все 100% на практике нереально. Потому обычно при определении мощности котла для однотрубных систем берут некоторый запас, ставят запорную арматуру и подключают  радиаторы через байпас, чтобы можно было отрегулировать теплоотдачу, и таким образом компенсировать падение температуры теплоносителя. Из всего этого следует одно: количество или/и размеры радиаторов в однотрубной системе нужно увеличивать, и по мере удаления от начала ветки ставить все больше секций.

Итоги

Приблизительный расчет количества секций радиаторов отопления дело несложное и быстрое. А вот уточнение в зависимости от всех особенностей помещений, размеров, типа подключения и расположения требует внимания и времени. Зато вы точно сможете определиться с количеством отопительных приборов для создания комфортной атмосферы зимой.

Возможно, вам интересно будет прочитать про расчет мощности котла или определение диаметра труб для системы отопления.

 

 

методика + встроенный калькулятор,объем батареи,для панорамных окон, объем воды в радиаторе отопления таблица, отопительные приборы систем водяного отопления,теплоотдача,конвекторные радиаторы, еврочугун,водяное отопление в гараже своими руками схемы,размеры радиаторов, акт опрессовки системы, обарзец,ошибка 27 котел навьен, навьен делюкс ошибка 13 как исправитькак рассчитать мощность радиатора,на квадратный метр, расчёт количества секций,расчёт количества секций, алюминиевые радиаторы,как расчитать сколько надо батарей в дом, 1 секция радиатора сколько м2 отапливаемой площадиэлектрический радиатор.

Один из наиболее важных вопросов создания комфортных условий проживания в доме или квартире – это надежная, правильно рассчитанная и смонтированная, хорошо сбалансированная система отопления. Именно поэтому создание такой системы – главнейшая задача при организации строительства собственного дома или при проведении капитального ремонта в квартире многоэтажки.

Несмотря на современное разнообразие систем отопления различных типов, лидером по популярности все же остается проверенная схема: контуры труб с циркулирующим по ним теплоносителем, и приборы теплообмена – радиаторы, установленные в помещениях. Казалось бы – все просто, батареи стоят под окнами и обеспечивают требуемый нагрев… Однако, необходимо знать, что теплоотдача от радиаторов должна соответствовать и площади помещения, и целому ряду других специфических критериев. Теплотехнические расчеты, основанные на требованиях СНиП – достаточно сложная процедура, выполняемая специалистами. Тем не менее, можно выполнить ее и своими силами, естественно, с допустимым упрощением. В настоящей публикации будет рассказано, как самостоятельно провести расчет батарей отопления на площадь обогреваемого помещения с учетом различных нюансов.

Расчет батарей отопления на площадь

Но, для начала, нужно хотя бы бегло ознакомиться с существующими радиаторами отопления – от их параметров во многом будут зависеть и результаты проводимых расчетов.

Кратко о существующих типах радиаторов отопления

Содержание статьи

Современный ассортимент радиаторов, представленных в продаже, включает следующие их виды:

  • Стальные радиаторы панельной или трубчатой конструкции.
  • Чугунные батареи.
  • Алюминиевые радиаторы нескольких модификаций.
  • Биметаллические радиаторы.
Стальные радиаторы

Этот тип радиаторов не снискал себе особой популярности, несмотря на то, что некоторым моделям придается весьма элегантное дизайнерское оформление. Проблема в том, что недостатки таких приборов теплообмена существенно превышают их достоинства – невысокую цену¸ относительно небольшую массу и простоту монтажа.

Стальные радиаторы отопления имеют немало недостатков

Тонкие стальные стенки таких радиаторов недостаточно теплоёмки – быстро нагреваются, но и столь же стремительно остывают. Могут возникнуть проблемы и при гидравлических ударах – сварные соединения листов иногда дают при этом течь. Кроме того, недорогие модели, не имеющие специального покрытия, подвержены коррозии, и срок службы таких батарей невелик – обычно производители дают им довольно небольшую по длительности эксплуатации  гарантию.

В подавляющем большинстве случаев стальные радиаторы представляют собой цельную конструкцию, и варьировать теплоотдачу изменением числа секций не позволяют. Они имеют паспортную тепловую мощность, которую сразу же нужно выбирать, исходя из площади и особенностей помещения, где они планируются к установке. Исключение – некоторые трубчатые радиаторы имеют возможность изменения количества секций, но это обычно делается под заказ, при изготовлении, а не в домашних условиях.

Чугунные радиаторы

Представители этого типа батарей наверняка знакомы каждому еще с раннего детства – именно такие гармошки устанавливались ранее буквально повсеместно.

Знакомый всем с детских лет чугунный радиатор МС-140-500

Возможно, такие батареи МС-140—500 и не отличались особым изяществом, но зато верно служили не одному поколению жильцов. Каждая секция подобного радиатора обеспечивала теплоотдачу в 160 Вт. Радиатор сборный, и количество секций, в принципе, ничем не ограничивалось.

Современные чугунные батареи отопления

В настоящее время в продаже немало современных чугунных радиаторов. Их уже отличает более элегантный внешний вид, ровные гладкие наружные поверхности, которые облегчают уборку. Выпускаются и эксклюзивные варианты, с интересным рельефным рисунком чугунного литься.

При всем этом, такие модели в полной мере сохраняют основные достоинства чугунных батарей:

  • Высокая теплоемкость чугуна и массивность батарей способствуют длительному сохранению и высокой отдаче тепла.
  • Чугунные батареи, при правильной сборке и качественном уплотнении соединений, не боятся гидроударов, перепадов температур.
  • Толстые чугунные стенки мало восприимчивы к коррозии и к абразивному износу.  Может использоваться практически любой теплоноситель, так что такие батареи одинаково хороши и для автономной, и для центральной систем отопления.

Если не принимать в расчёт внешние данные старых чугунных батарей, то из недостатков можно отметить хрупкость металла (недопустимы акцентированные удары), относительную сложность монтажа, связанную в больше мере с массивностью. Кроме того, далеко не любые стеновые перегородки смогут выдержать вес таких радиаторов.

Алюминиевые радиаторы

Алюминиевые радиаторы, появившись сравнительно недавно, очень быстро завоевали популярность. Они относительно недороги, имеют современный, достаточно элегантный внешний вид, обладают отменной теплоотдачей.

При выборе алюминиевых радиаторов нужно учитывать некоторые важные нюансы

Качественные алюминиевые батареи способны выдерживать давление в 15 и более атмосфер, высокую температуру теплоносителя – порядка 100 градусов. При этом тепловая отдача от одной секции у некоторых моделей достигает порой 200 Вт. Но при этом они небольшой массой (вес секции – обычно до 2 кг) и не требуют большого объема теплоносителя (емкость – не более 500 мл).

Алюминиевые радиаторы представлены в продаже как наборными батареями, с возможностью изменения количества секций, так и цельными изделиями, рассчитанными на определенную мощность.

Недостатки алюминиевых радиаторов:

  • Некоторые типы весьма подвержены кислородной коррозии алюминия, с высоким риском газообразования при этом. Это предъявляет особы требования к качеству теплоносителя, поэтому такие батареи обычно устанавливают в автономных системах отопления.
  • Некоторые алюминиевые радиаторы неразборной конструкции, секции которых изготавливаются по технологии экструзии, могут при определенных неблагоприятных условиях дать течь на соединениях. При этом провести ремонт – попросту невозможно, и придется менять всю батарею в целом.

Изо всех алюминиевых батарей самые качественные – изготовленные с применением анодного оксидирования металла. Этим изделиям практически не страшна кислородная коррозия.

Внешне все алюминиевые радиаторы примерно похожи, поэтому необходимо очень внимательно читать техническую документацию, делая выбор.

Биметаллические радиаторы отопления

Подобные радиаторы по своей надежности оспаривают первенство с чугунными, а по тепловой отдаче – с алюминиевыми. Причина тому заключается в их особой конструкции.

Строение биметаллического радиатора отопления

Каждая из секций состоит из двух, верхнего и нижнего, стальных горизонтальных коллекторов (поз. 1), соединенных таким же стальным вертикальным каналом (поз.2). Соединение в единую батарею производится высококачественными резьбовыми муфтами (поз. 3). Высокая теплоотдача обеспечивается наружной алюминиевой оболочкой.

Стальные внутренние трубы выполнены из металла, которые не подвержен коррозии или имеет защитное полимерное покрытие. Ну а алюминиевый теплообменник ни при каких обстоятельствах не контактирует с теплоносителем, и коррозия ему абсолютно не страшна.

Таким образом, получается сочетание высокой прочности и износоустойчивости с отличными теплотехническими показателями.

Цены на популярные радиаторы отопления

Радиаторы отопления

Такие батареи не боятся даже очень больших скачков давления, высоких температур. Они, по сути, универсальны, и подходят для любых систем отопления, правда, наилучшие эксплуатационные характеристики они все же показывают в условиях высокого давления центральной системы – для контуров с естественной циркуляцией они малопригодны.

Пожалуй, единственных их недостаток – высокая цена по сравнению с любыми другими радиаторами.

Для удобства восприятия размещена таблица, в которой приведены сравнительные характеристики радиаторов. Условные обозначения в ней:

  • ТС – трубчатые стальные;
  • Чг – чугунные;
  • Ал – алюминиевые обычные;
  • АА – алюминиевые анодированные;
  • БМ – биметаллические.
 ЧгТСАлААБМ
Давление максимальное (атмосфер)
рабочее6-96-1210-2015-4035
опрессовочное12-15915-3025-7557
разрушения20-2518-2530-5010075
Ограничение по рН (водородному показателю)6,5-96,5-97-86,5-96,5-9
Подверженность коррозии под воздействием:
кислороданетданетнетда
блуждающих токовнетдаданетда
электролитических парнетслабоеданетслабое
Мощность секции при h=500 мм; Dt=70 ° , Вт16085175-200216,3до 200
Гарантия, лет1013-10303-10
Видео: рекомендации по выбору радиаторов отопления

Возможно, вас заинтересует информация о том, что собой представляет батарея биметаллическая

Как рассчитать нужное количество секций радиатора отопления

Понятно, что установленный в помещении радиатор (один или несколько) должен обеспечить прогрев до комфортной температуры и компенсировать неизбежные теплопотери, независимо от погоды на улице.

Базовой величиной для вычислений всегда выступает площадь или объем комнаты. Сами по себе профессиональные расчеты – весьма сложны, и учитывают очень большое число критериев. Но для бытовых нужд можно воспользоваться упрощенными методиками.

Самые простые способы расчета

Принято считать, что для создания нормальных условий в стандартном жилом помещении достаточно 100 Вт на квадратный метр площади. Таким образом, следует всего лишь вычислить площадь комнаты и умножить ее на 100.

Q = S × 100

Q– требуемая теплоотдача от радиаторов отопления.

S– площадь обогреваемого помещения.

Если планируется установка неразборного радиатора, то это значение и станет ориентиром для подбора необходимой модели. В случае, когда будут устанавливаться батареи, допускающие изменение количества секций, следует провести еще один подсчет:

N = Q/ Qус

N– рассчитываемое количество секций.

Qус – удельная тепловая мощность одной секции. Эта величина в обязательном порядке указывается в техническом паспорте изделия.

Как видите, расчеты эти чрезвычайно просты, и не требуют каких-либо особых знаний математики – достаточно рулетки чтобы измерить комнату и листка бумаги для вычислений. Кроме того, можно воспользоваться и таблицей, расположенной ниже – там приведены уже рассчитанные значения для комнат различной площади и определённых мощностей обогревательных секций.

Таблица секции

Однако, нужно помнить, что эти значения – для стандартной высоты потолка (2,7 м) многоэтажки. Если высота комнаты иная, то лучше просчитать количество секций батареи, исходя из объема помещения. Для этого применяется усредненный показатель – 41 Вт тепловой мощности на 1 м³ объема в панельном доме, или 34 Вт – в кирпичном.

Q = S × h× 40 (34)

где – высота потолка над уровнем пола.

Дальнейший расчет – ничем не отличается от представленного выше.

Подробный расчет  с учетом особенностей помещения

А теперь перейдем к более серьезным расчетам. Упрощенная методика вычисления, приведенная выше, может преподнести хозяевам дома или квартиры «сюрприз». Когда установленные радиаторы не будут создавать в жилых помещениях требуемого комфортного микроклимата. И причина тому – целый перечень нюансов, которых рассмотренный метод просто не учитывает. А между тем, подобные нюансы могут иметь весьма важное значение.

Итак, за основу вновь берется площадь помещения и всё те же 100 Вт на м². Но сама формула уже выглядит несколько иначе:

Q = S × 100 × А × В × С × D× Е × F× G× H× I× J

Буквами от А до J условно обозначены коэффициенты, учитывающие особенности помещения и установки в нем радиаторов. Рассмотрим их по порядку:

А – количество внешних стен в помещении.

Понятно, что чем выше площадь контакта помещения с улицей, то есть, чем больше в комнате внешних стен, тем выше общие теплопотери. Эту зависимость учитывает коэффициент А:

  • Одна внешняя стена – А = 1,0
  • Две внешних стены – А = 1,2
  • Три внешний стены – А = 1,3
  • Все четыре стены внешние – А = 1,4

В – ориентация помещения по сторонам света.

Максимальные теплопотери всегда в комнатах, в которые не поступает прямого солнечного света. Это, безусловно, северная сторона дома, и сюда же можно отнести восточную – лучи Солнца здесь бывают только по утрам, когда светило еще «не вышло на полную мощность».

Прогреваемость помещений во многом зависит от их расположения относительно сторон света

Южная и западная стороны дома всегда прогреваются Солнцем значительно сильнее.

Отсюда – значения коэффициента В:

  • Комната выходит на север или восток – В = 1,1
  • Южная или западная комнаты – В = 1, то есть, может не учитываться.

С – коэффициент, учитывающий степень утепленности стен.

Понятно, что теплопотери из отапливаемого помещения будут зависеть от качества термоизоляции внешних стен. Значение коэффициента С принимают равным:

  • Средний уровень — стены выложены в два кирпича, или предусмотрено их поверхностное утепление другим материалом – С = 1,0
  • Внешние стены не утеплены – С = 1,27
  • Высокий уровень утепления на основе теплотехнических расчетов – С = 0,85.

D – особенности климатических условий региона.

Естественно, что нельзя равнять все базовые показатели требуемой мощности обогрева «под одну гребенку» — они зависят и от уровня зимних отрицательных температур, характерного для конкретной местности. Это учитывает коэффициент D. Для его выбора берутся средние температуры самой холодной декады января – обычно это значение несложно уточнить в местной гидрометеорологической службе.

  • — 35 °С и ниже – D= 1,5
  • — 25  ÷ — 35 °С – D= 1,3
  • до – 20 °С – D= 1,1
  • не ниже – 15 °С – D= 0,9
  • не ниже – 10 °С – D= 0,7

Е – коэффициент высоты потолков помещения.

Как уже говорилось, 100 Вт/м² — это усредненное значение для стандартной высоты потолков. Если она отличается, следует ввести поправочный коэффициент Е:

  • До 2,7 м – Е = 1,0
  • 2,8 – 3,0 м – Е = 1,05
  • 3,1 – 3,5 м – Е = 1,1
  • 3,6 – 4,0 м – Е = 1,15
  • Более 4,1 м – Е = 1,2

F– коэффициент, учитывающий тип помещения, расположенного выше

Устраивать систему отопления в помещениях с холодным полом – бессмысленное занятие, и хозяева всегда в этом вопросе принимают меры. А вот тип помещения, расположенного выше, часто от них никак не зависит. А между тем, если сверху жилое или утепленное помещение, то общая потребность в тепловой энергии значительно снизится:

  • холодный чердак или неотапливаемое помещение – F= 1,0
  • утепленный чердак (в том числе – и утепленная кровля) – F= 0,9
  • отапливаемое помещение – F= 0,8

G– коэффициент учета типа установленных окон.

Различные оконные конструкции подвержены теплопотерям неодинаково. Это учитывает коэффициент G:

  • обычные деревянные рамы с двойным остеклением – G= 1,27
  • окна оснащены  однокамерным стеклопакетом (2 стекла) – G= 1,0
  •  однокамерный стеклопакет с аргоновым заполнением или двойной стеклопакет (3 стекла) — G= 0,85

Н – коэффициент площади остекления помещения.

Общее количество теплопотерь зависит и от суммарной площади окон, установленных в помещении. Эта величина рассчитывается на основании отношения площади окон к площади помещения. В зависимости от полученного результата находим коэффициент Н:

  • Отношение менее 0,1 – Н = 0,8
  • 0,11 ÷ 0,2 – Н = 0,9
  • 0,21 ÷ 0,3 – Н = 1,0
  • 0,31÷ 0,4 – Н = 1,1
  • 0,41 ÷ 0,5 – Н = 1,2

I– коэффициент, учитывающий схему подключения радиаторов.

От того, как подключены радиаторы к трубам подачи и обратки, зависит их теплоотдача. Это тоже следует учесть при планировании установки и определения нужного количества секций:

Схемы врезки радиаторов в контур отопления

  • а – диагональное подключение, подача сверху, обратка снизу – I = 1,0
  • б – одностороннее подключение, подача сверху, обратка снизу – I = 1,03
  • в – двустороннее подключение, и подача, и обратка снизу – I = 1,13
  • г – диагональное подключение, подача снизу, обратка сверху – I = 1,25
  • д – одностороннее подключение, подача снизу, обратка сверху – I = 1,28
  • е – одностороннее нижнее подключение обратки и подачи – I = 1,28

J– коэффициент, учитывающий степень открытости установленных радиаторов.

Многое зависит и от того, насколько установленные батареи открыты для свободного теплообмена с воздухом помещения. Имеющиеся или искусственно созданные преграды способны существенно снизить теплоотдачу радиатора. Это учитывает коэффициент J:

На теплоотдачу батарей влияет место и способ их установки в помещении

а – радиатор расположен открыто на стене или не прикрыт подоконником – J= 0,9

б – радиатор прикрыт сверху подоконником или полкой – J= 1,0

в – радиатор прикрыт сверху горизонтальным выступом стеновой ниши – J= 1,07

г – радиатор сверху прикрыт подоконником, а с фронтальной стороны — частично прикрыт декоративным кожухом – J= 1,12

д – радиатор полностью прикрыт декоративным кожухом  – J= 1,2

  ⃰⃰⃰⃰⃰⃰⃰⃰⃰   ⃰⃰⃰⃰⃰⃰⃰⃰⃰   ⃰⃰⃰⃰⃰⃰⃰⃰⃰   ⃰⃰⃰⃰⃰⃰⃰⃰   ⃰⃰⃰⃰⃰⃰⃰⃰⃰   ⃰⃰⃰⃰⃰⃰⃰⃰⃰   ⃰⃰⃰⃰⃰⃰⃰⃰⃰   ⃰⃰⃰⃰⃰⃰⃰⃰

Ну вот, наконец, и все. Теперь можно подставлять в формулу нужные значения и соответствующие условиям коэффициенты, и на выходе получится требуемая тепловая мощность для надежного обогрева помещения, с учетом все нюансов.

После этого останется или подобрать неразборный радиатор с нужной тепловой отдачей, или же разделить вычисленное значение на удельную тепловую мощность одной секции батареи выбранной модели.

Наверняка, многим такой подсчет покажется чрезмерно громоздким, в котором легко запутаться. Для облегчения проведения вычислений предлагаем воспользоваться специальным калькулятором – в него уже заложены все требуемые величины. Пользователю остается лишь ввести запрашиваемые исходные значения или выбрать из списков нужные позиции. Кнопка «рассчитать» сразу приведет к получению точного результата с округлением в большую сторону.

Калькулятор для точного расчета радиаторов отопления

Перейти к расчётам

 

Последовательно введите запрашиваемые значения или отметьте нужные варианты в предлагаемых списках

Установите ползунком значение площади помещения, м²

Сколько внешних стен в помещении?

однадветричетыре

В какую сторону света смотрят внешние стены

Север, Северо-Восток, ВостокЮг, Юго-Запад, Запад

Укажите степень утепленности внешних стен

Внешние стены не утепленыСредняя степень утепленияВнешние стены имеют качественное утепление

Укажите среднюю температуру воздуха в регионе в самую холодную декаду года

— 35 °С и нижеот — 25 °С до — 35 °Сдо — 20 °Сдо — 15 °Сне ниже — 10 °С

Укажите высоту потолка в помещении

до 2,7 м2,8 ÷ 3,0 м3,1 ÷ 3,5 м3,6 ÷ 4,0 мболее 4,1 м

Что располагается над помещением?

холодный чердак или неотапливаемое и не утепленное помещениеутепленные чердак или иное помещениеотапливаемое помещение

Укажите тип установленных окон

Обычные деревянные рамы с двойным остеклениемОкна с однокамерным (2 стекла) стеклопакетомОкна с двухкамерным (3 стекла) стеклопакетом или с аргоновым заполнением

Укажите количество окон в помещении

Укажите высоту окна, м

Укажите ширину окна, м

Выберите схему подключения батарей

Укажите особенности установки радиаторов

Радиатор располжен открыто на стене или не прикрыт подоконникомРадиатор полностью прикрыт сверху подоконником или полкойРадиатор установлен в стеновой нишеРадиатор частично прикрыт фронтальным декоративным экраномРадиатор полностью закрыт декоративным кожухом

 

Ниже будет предложено ввести паспортную мощность одной секции выбранной модели радиатора.
Если целью расчетов стоит определение потребной суммарной тепловой мощности для отопления комнаты (например, для выбора неразборных радиаторов) то оставьте поле пустым

Введите паспортную тепловую мощность одной секции выбранной модели радиатора

Автор публикации, и он же – составитель калькулятора, надеется, что посетитель нашего портала получил полноценную информацию и хорошее подспорье для самостоятельного расчета.

Возможно, вас заинтересует информация о том, как выбрать электрокотел.

Как рассчитать количество радиаторов отопления в доме

Добиться от системы отопления полной эффективности и экономичности — нормальное желание хозяина дома. Как рассчитать количество радиаторов отопления в доме? Существует ли универсальная формула, позволяющая получить точный ответ и сразу заказать определенное количество приборов?

Да, формулы существуют, они разработаны с учетом действующих СНиП, но применить их конкретному частному дому без специальных знаний довольно сложно. Это стоит объяснить отдельно. Для расчета потребности в тепловой энергии применяется сложная система коэффициентов, в которой учитывается все, что может повлиять на обогрев — от площади комнаты до этажа и определенного типа радиаторов. Таким образом можно получить довольно точные значения, но в реальности это необходимо в случаях, когда речь идет о большом строительном проекте, поскольку общее количество приборов и выделяемое ими тепло с учетом потерь составляют внушительные суммы в денежном эквиваленте.

Способы и методики расчета количества радиаторов

Для частного дома, пусть и большого, такая точность не нужна, но узнать, сколько потребуется установить радиаторов, все же необходимо. Поэтому мы рассмотрим ответы в виде самых простых примеров:

  • расчет количества радиаторов в системе отопления частного дома по объему помещений;
  • расчет с учетом площади помещений;
  • расчет с использованием простого калькулятора;
  • описание некоторых поправочных коэффициентов, применяемых в профессиональном проектировании.

Любой из этих вариантов даст приемлемый по точности результат, а если вы все же хотите получить точные данные, то лучше поручить эту задачу профессионалу в области проектирования.

Какой тип радиаторов нам интересен

Для примера возьмем трубчатые стальные радиаторы КЗТО из серии Гармония — их параметры можно уверенно считать наиболее подходящими для подбора в частный дом. Варианты с чугунными, алюминиевыми, биметаллическими и панельными радиаторами демонстрируют крайности либо в цене, либо в эффективности теплоотдачи.

При изучении продукции в таблице с характеристиками радиаторов можно найти их мощность, количество секций и размеры. Поэтому мы не будем делать конкретный расчет, а приведем пример в виде описания порядка действий.

Расчет по объему помещения

Самый простой и доступный вариант расчетов количества радиаторов для частного дома учитывает объем помещения. При отступлении от стандартной высоты потолков в 2,7 м это дает возможность опираться на реальные размеры. Сначала узнаем объем помещения в метрах кубических — умножаем площадь на высоту. Для того, чтобы узнать потребность в тепловой энергии, можно применить средний вариант — 41 ватт на кубометр дает комфортную температуру примерно в 20 С даже в панельных многоэтажках. Умножаем 41 на объем помещения, подбираем радиатор по таблице, в которой указаны размеры, количество секций и тепловая мощность, делим цифру потребности на мощность одного прибора и получаем их количество для одного помещения.

Расчет по площади помещения

Теперь посмотрим, как рассчитать радиаторы отопления по площади. Здесь можно условно принять высоту потолков за 2,7 м , а потом ввести поправку, если помещение выше. Исходим из следующих условий:

  • дом расположен в средней полосе России;
  • используются трубчатые стальные радиаторы;
  • площадь помещения известна;
  • стены кирпичные, в два кирпича, с хорошей теплоизоляцией.

Для обогрева помещения в таких условиях достаточно затратить от 60 до 100 Ватт на квадратный метр. Принцип расчета тот же — находим в таблице радиатор КЗТО с подходящими нам размерами, узнаем там же его тепловую мощность, делим потребность на мощность прибора.

Может ли возникнуть ситуация, при которой в доме все равно будет прохладно? Может, например в зоне, где часто и подолгу держатся морозы. Тогда потребуется исходить из потребности 150 — 200 Ватт на квадратный метр. Но это еще не все — есть ряд факторов, которые влияют на теплопотери дома. Например, радиатор отопления для дачи, может работать в режиме с пониженной теплоотдачей из-за маломощного котла, а само строение окажется недостаточно утепленным.

Поправочные коэффициенты для точного расчета

Для того, чтобы учесть эти особенности, вводится еще ряд поправочных коэффициентов, на которые умножают полученное значение потребности в тепловой энергии. Во внимание принимается:

  • площадь и количество окон;
  • соотношение площади стен и остекления;
  • наличие и утепление чердака;
  • качество стен, характер теплоизоляции;
  • расположение радиаторов в помещении;
  • тепловой напор — разница между температурой в помещении и температурой радиаторов;
  • тип системы отопления — двухтрубная или однотрубная.

Если вы решите, что необходимо учесть все особенности дома, то расчетом должен заниматься только специалист. Пример поправочных коэффициентов при расчете потребности в радиаторах отопления в одном помещении в зависимости от площади остекления и пола:

  • 10% — 0,8
  • 20% — 0,9
  • 30% — 1,0
  • 40% — 1,1
  • 50% — 1,2

Пример расчета в зависимости от наличия теплоизоляции, если считать нормой стену в два кирпича:

  • кирпичные стены — 1,0
  • недостаточная (отсутствует) — 1,27
  • хорошая — 0,8

Пример расчета в зависимости от того, сколько стен в помещении выходит наружу:

  • внутреннее помещение — 1,0
  • одна — 1,1
  • две — 1,2
  • три — 1,3

На профессиональном уровне учитывается очень много параметров, поэтому произвести такой расчет самостоятельно вам не удастся. Обратитесь к специалистам компании КЗТО, мы с удовольствием выполним этот расчет для Вас и подберем оптимальное количество и модели радиаторов отопления, учитывая все ваши пожелания.

как рассчитать мощность самостоятельно, фото и видео подсказки

Содержание:

Каждого владельца квартиры или дома интересует, какое минимальное количество секций радиатора требуется для полноценного обогрева жилых и подсобных помещений, исходя из их площади. Чтобы получить ответ на данный вопрос, необходимо знать, как рассчитать мощность батареи отопления. Существуют как простые варианты вычислений, так и сложные формулы расчетов. 


Особенности самостоятельного расчета мощности батарей отопления

Нижеприведенные способы, как рассчитать мощность радиаторов отопления, предназначаются для хозяев частных домовладений и жильцов квартир, а не для специалистов в сфере теплотехники. Поэтому инструкция будет по возможности простой и понятной, чтобы в ней мог разобраться каждый человек, который планирует монтировать отопительную конструкцию своими руками. 

Чем проще расчет мощности батарей, тем большей будет величина погрешности. Но с другой стороны для потребителей главной целью является обеспечение достаточной тепловой мощности. Ничего нет плохого в том, что в сильнейший зимний мороз данный параметр окажется больше, чем требуется. 

В квартирах, жильцы которых платят за отопление в зависимости от площади, тепло не бывает лишним. А в домах, где имеются счетчики потребляемой тепловой энергии, несложно установить регулировочные дроссели и регуляторы температурного режима, приобрести которые можно в любой момент. Читайте также: «Счетчики тепловой энергии для квартиры».
Что касается частных домов, то при наличии собственного котла излишняя мощность не приведет к финансовым потерям, поскольку все современные газовые и электрические теплоагрегаты оснащены термостатами, регулирующими теплоотдачу в соответствии с температурой в помещении (подробнее: «Тепловой расчет помещения и здания целиком, формула тепловых потерь»). 

Даже в том случае, когда при проведении самостоятельных расчетов будет допущена серьезная ошибка, но в большую сторону, владельцу жилья она будет стоить нескольких излишне купленных секций батареи. Согласно последним данным, раз в несколько лет на отечественных просторах зимой сотрудники гидрометцентров фиксируют экстремально низкие температуры. По мнению специалистов, подобные явления в связи с изменением климата на планете будут происходить все чаще. По этой причине, делая расчет мощности батарей отопления, не следует опасаться ошибок в большую сторону. 

Порядок расчета мощности радиаторов

Способ выполнения вычислений, как правило, зависит от того, какое оборудование планируется использовать. Если это электрические отопительные приборы, то у них имеются сопроводительные документы, в которых производители указывают их эффективную тепловую мощность. 

При отсутствии паспорта на продукцию соответствующая информация имеется на сайте изготовителя. Нередко там же может находиться калькулятор, с помощью которого можно сделать расчет батарей отопления для конкретного объема помещения, а также определить основные параметры будущей отопительной конструкции.

Но при этом следует учитывать такой нюанс: практически всегда производители закладывают в компьютерную программу по вычислению величины теплоотдачи радиатора (конвектора или батареи) определенную разницу температур между помещением и теплоносителем — обычно на уровне 70 градусов Цельсия. К сожалению, для российских систем теплообеспечения такой параметр пока является недосягаемым. 


В конце концов, потребители могут воспользоваться простым, правда, не очень точным расчетом, позволяющим узнать мощность батарей отопления с учетом количества секций. 

 

Биметаллические отопительные радиаторы

В качестве примера взяты данные, имеющиеся на сайте завода «Большевик»: 

  • для секций, у которых межосевое расстояние составляет 500 миллиметров, теплоотдача находится на уровне 165 ватт;
  • для 400-миллиметровых секций — 143 ватта;
  • для 300-миллиметровых секций — 120 ватт;
  • для 250-миллиметровых секций — 102 ватта. 

Алюминиевые отопительные радиаторы

Чтобы ознакомиться с величиной мощности алюминиевых отопительных радиаторов, взяты данные для изделий ТМ Calidor и Solar от итальянских производителей:

  • секция, имеющая межосевое расстояние 500 миллиметров, отдает максимум 182 ватта;
  • 350-миллиметровые секции имеют теплоотдачу 145-150 ватт. 

Стальные пластинчатые отопительные радиаторы

Как узнать мощность батареи отопления, если это стальные радиаторы пластинчатого типа, ведь у них отсутствуют секции? В данном случае при проведении расчетов учитывают длину стального пластинчатого радиатора отопления и межосевое расстояние. Помимо этого, производители рекомендуют обращать внимание на способ подключения батареи. Дело в том, что вариант врезки в отопительную систему влияет на тепловую мощность в процессе эксплуатации радиатора. 

Все, кого интересует величина теплоотдачи стальных пластинчатых батарей, могут посмотреть таблицу модельного ряда продукции ТМ Korad, изображенную на фото.

Чугунные отопительные радиаторы

С данными отопительными приборами все гораздо проще, поскольку у всех отечественных (российских) чугунных радиаторов межосевое расстояние подводок стандартно и составляет 500 миллиметров. Мощность чугунных радиаторов отопления при стандартной разнице температур, равной 70 градусам, равна 180 ватт на одну секцию. 

 

Порядок расчета тепловой мощности

Знание тепловой мощности одной секции позволит узнать необходимое их количество, но как вычислить этот параметр.

В данной статье будут рассмотрено несколько вариантов, как сделать необходимые расчеты в зависимости от разных переменных:

Расчет мощности по площади

В его основе лежат санитарные нормы, согласно которым на 10 «квадратов» помещения должен приходиться 1 киловатт тепловой энергии (100 ватт на м²). При проведении расчета необходимо учитывать поправочный коэффициент, соответствующий определенному региону России. Например, для Якутии и Чукотки он равен 2, для Дальнего Востока составляет 1,6, а для южных областей и республик находится в пределе от 0,7 до 0,9 (прочитайте также: «Как рассчитать батареи отопления — количество и размер»). 

Разумеется, что подобный метод не может обеспечить абсолютную точность, поскольку:

  • панорамный способ остекления в одну нитку значительно увеличивает потерю тепла по сравнению с тем, когда стена сплошная;
  • несмотря на то, что расположение квартир внутри здания не учитывают, при наличии теплых стен при одинаковом количестве батарей в них будет намного теплее, чем в угловом помещении, имеющем стену, соприкасающуюся с улицей;
  • расчет верен только в том случае, когда высота потолков не превышает 2,5 — 2,7 метра (стандартный параметр для квартир, построенных в советское время). Уточненных вычислений требуют помещения в сталинках, у которых трехметровые потолки. Кроме этого, в начале 20-го века во многих строящихся домах высота потолков достигала 4 — 4,5 метра. 

В качестве примера будет приведен расчет количества секций чугунных батарей для комнаты размером 3 на 5 метров, которая расположена в доме, находящемся в Краснодарском крае.

Порядок действий следующий:

  • сначала определяют площадь 3х5=15м²;
  • потом вычисляют требуемую тепловую мощность отопления — 15м² х100Вт х0,7= 1050 ватт. 0,7 – региональный коэффициент;
  • если мощность каждой секции составляет 180 ватт, тогда потребуется 1050: 180 = 5,83 секции. После округления до целых значений получается 6 секций. 

Простые вычисления мощности по объему

Поскольку расчет мощности батареи отопления в зависимости от объема воздуха в помещении учитывает высоту потолка, он является более точным. На один кубометр требуется 40 ватт мощности отопительного оборудования.

Расчет производится для той же комнаты в Краснодарском крае при том, что ее построили с высотой потолков, равной 3,1 метра:

  • прежде всего, вычисляют объем помещения 3х5х 3,1 = 46,5 кубометра;
  • радиаторы должны обладать мощностью 46,5х 40 = 1860 ватт, а с учетом регионального коэффициента 1860х0,7 = 1302 ватта или 8 чугунных секций (1302: 180 =7,23). 

 

Уточненные вычисления мощности по объему

Более точный расчет мощности батарей отопления производят c учетом разных переменных:

  • количества окон и дверей. В среднем теплопотери по причине наличия одного окна стандартного размера составляют 100 ватт, а одной двери – 200 ватт;
  • если помещение располагается в углу здания или в его торце, используют коэффициент 1,1 – 1,3, который зависит от толщины стен и материала их изготовления;
  • для частных домовладений применяют коэффициент 1,5, так как в них отмечаются повышенные теплопотери через крышу и пол, поскольку снизу и сверху нет теплых квартир. 

Теперь расчет мощности тепла для радиаторов отопления будет выполнен для помещения аналогичного по площади (как в Краснодарском крае), но находящегося в углу частного домовладения в Оймяконе, где средняя температура в январе опускается до — 54 градусов, а температурный минимум за все время наблюдений достигал 82 градусов мороза. Особо неприятный момент заключается в том, что дверь выходит на улицу и имеется окно.

Последовательность вычислений такая:

  • поскольку известна базовая мощность, равная 1860 ватт, к ней прибавляют 300 ватт (окно плюс дверь) и получают 2160 ватт;
  • так как дом частный, происходит потеря тепла за счет холодного пола и крыши — 2160х1,5 = 3240 ватт;
  • угол дома вынуждает использовать коэффициент 1,3 и в итоге получится – 3240х1,3 = 4212 ватт;
  • Оймяконский климат требует применения регионального коэффициента, равного 2 — 4212х2 = 8424 ватта. 

Если радиаторы будут чугунными, то количество секций должно быть равным 8424: 180 = 46,8, а с округлением – 47. Поскольку длина секции составляет 93 миллиметра, то батарея растянется на 4,4 метра.

Видео о стандартах расчетов мощности батарей отопления:


Как рассчитать систему отопления дома?

В процессе разработки проекта отопительной системы одним из ключевых моментов является тепловая мощность батарей. Это нужно для того, чтобы обеспечить требуемую санитарными нормами РФ температуру внутри жилого помещения от +22 °С. Но приборы отличаются друг от друга не только материалом изготовления, габаритами, но и количеством выделяемой тепловой энергии на 1 кв. м. Поэтому перед приобретением проводится расчет радиаторов.

Оглавление:

  1. Что нужно учесть перед монтажом отопления?
  2. Формулы для расчета, примеры
  3. Калькулятор
  4. Как определиться с количеством батарей?

С чего начинать

Оптимальный микроклимат в жилом помещении обеспечивается правильно подобранными радиаторами. К каждому изделию производитель прилагает паспорт с техническими характеристиками. В нем указывается мощность радиатора любого вида, исходя из размеров одной секции или блока. Эта информация важна для вычисления габаритов агрегата, их количества с учетом некоторых других факторов.

Из СНиП 41-01-2003 известно, что тепловой поток, поступающий в комнаты и кухни, следует принимать не менее, чем 10 Вт на 1 м2 пола, то есть расчет системы отопления частного дома прост – нужно взять номинальную мощность батареи, прикинуть площадь квартиры и высчитать число радиаторов. Но все гораздо сложнее: она подбирается не по квадратным метрам, а по такому параметру, как термопотери. Причины:

1. Задача отопительной конструкции – компенсировать тепловые потери жилья и поднять температуру внутри до комфортной. Активнее всего тепло уходит через оконные проемы и холодные стены. При этом утепленный по правилам дом без сквозняков требует гораздо меньшей мощности радиаторов.

2. В расчет включаются:

  • высота потолка;
  • регион проживания: средняя уличная температура в Якутии составляет -40 °С, в Москве – -6 °С. Соответственно размеры и мощность радиаторов должны быть разными;
  • система вентиляции;
  • состав и толщина ограждающих конструкций.

Получив заданную величину, приступают к вычислению ключевых параметров.


Как правильно рассчитать мощность и количество секций

Продавцы отопительного оборудования предпочитают ориентироваться на средние показатели, указанные в инструкции к прибору. То есть, если указано, что 1 сегмент алюминиевой батареи может прогреть до 2 кв. м помещения, то дополнительные вычисления не требуются, однако это не так. На испытаниях берутся условия, приближенные к идеальным: температура на входе – не менее +70 или +90 °С, обратки – +55 или +70 °С, внутренняя температура – +20 °С, утепление ограждающих конструкций соответствует СНиПам. В реальности ситуация сильно отличается.

  • Редкие ТЭЦ поддерживают постоянную температуру, соответствующую 90/70 или 70/55.
  • Котлы, применяемые для отопления частного дома более +85 °С не выдают, поэтому пока теплоноситель дойдет до радиатора, температура падает еще на несколько градусов.
  • Наибольшую мощность имеют алюминиевые батареи – до 200 Вт. Но их нельзя использовать в централизованной системе. Биметаллические – в среднем около 150 Вт, чугунные – до 120.

1. Расчет по площади.

В разных источниках можно встретить как сильно упрощенный расчет мощности батареи отопления на квадратный метр, так и очень сложный с включением логарифмических функций. Первый основывается на аксиоме: на 1 м2 пола необходимо 100 Вт тепла. Норматив нужно умножить на площадь комнаты, и получается требуемая интенсивность работы радиатора. Величина делится на мощность 1 секции – искомое число сегментов найдено.

Пример:

Имеется комната 4 х 5, биметаллические радиаторы Глобал с сегментом на 150 Вт. Мощность = 20 х 100 = 2 000 Вт. Количество секций = 2 000 / 150 = 13,3.

Расчет количества секций биметаллических радиаторов показывает, что для данного примера необходимо 14 узлов. Впечатляющая гармошка разместится под окном. Очевидно, что этот прием весьма условный. Во-первых, не учитываются объем помещения, термопотери через наружные стены и оконные проемы. Во-вторых, норматив «100 на 1» – итог сложного, но устаревшего инженерного теплотехнического расчета для определенного типа конструкции с жесткими параметрами (габариты, толщина и материал перегородок, утепление, кровля и тому подобное). Для большинства жилищ правило не подходит, а результатом его применения станет недостаточный или излишний прогрев (зависит от степени изоляции дома). Чтобы проверить правильность вычислений, возьмем сложные приемы расчета.

2. Расчет по теплопотерям.

Формула расчета включает средние поправочные коэффициенты и выражается следующим образом:

Q = (22 + 0,54Dt)(S+ Sns + 2So), где:

  • Q – требуемая теплоотдача радиаторов, Вт;
  • Dt – разница между температурой воздуха в помещении и расчетной наружной, град;
  • Sp – площадь пола, м2;
  • Sns – площадь стен снаружи, м2;
  • So – площадь оконных проемов, м2.

Количество секций:

  • X = Q / N
  • где Q – теплопотери помещения;
  • N – мощность 1 сегмента.

Пример:

Имеется комната 4 х 5 х 2,5 м, оконный проем 1,2 х 1, одна наружная стена, биметаллические радиаторы Глобал с мощностью секции 150 Вт. Коэффициент термопроводности по СНиП – 2,5. Температура воздуха – -10 °С; внутри – +20 °С.

  • Q = (22 + 0,54 х 30) х (20 + 10 + 2,4) = 1237,68 Вт.
  • Количество секций = 1237,68 / 150 = 8,25.

Округляем до целого в сторону увеличения, получаем 9 секций. Можно проверить еще одним вариантом расчета с климатическими коэффициентами.

3. Расчет по теплопотерям комнаты согласно СНиП «Строительная климатология» 23-01-99.

Для начала нужно вычислить уровень термопотерь помещения через наружные и внутренние стены. Отдельно высчитывается этот же показатель для оконных проемов и дверей.

Q = F х kтеплопроводности х (tвн-tнар), где:

  • F – площадь внешних ограждений за минусом оконных проемов, м2;
  • k – берется согласно СНиП «Строительная климатология» 23-01-99, Вт/м2К;
  • tвн – температура внутри помещения, в среднем величина берется от +18 до +22 °С;
  • tнар – температура наружного воздуха, значение берется из того же СНиП или на сайте метеорологической службы города.

Полученные результаты для стен и проемов складываются, и выходит общая сумма теплопотерь.

Пример:

Имеется комната 4 х 5 х 2,5 м, оконный проем 1,2 х 1, одна наружная стена, биметаллические радиаторы Глобал с мощностью секции 150 Вт. Коэффициент термопроводности по СНиП – 2,5. Каждое окно отнимает около 100 Вт, дверь – 150.

  • Qстены внут. = 10 х 2,5(20 + (-10)) = 250.
  • Qстены наруж.= 8,8 х 2,5 (20 + (-10)) = 220.
  • Общие теплопотери = 250 х 3 + 220 + 100 + 150 = 1 080 Вт.
  • Количество секций = 1 220 / 150 = 8,13.

Почти идентичный результат, но и это не все. Корректный расчет батарей отопления в квартиру или дом включает поправку на фактическую мощность радиатора при определенных условиях (температуры подачи воды, обратки и воздуха). Показатель не зависит от вида радиатора, он – математическая составляющая. Некоторые производители, например, Керми, Фондиталь, присылают дилерам специальную таблицу коэффициентов, которые позволяют скорректировать номинальную тепловую мощность и получить фактическую с учетом реальной температуры теплоносителя и воздуха в районе проживания.

Если нет доступа к подобной информации, можно добавить к рассчитанному значению 20 % запас мощности на случай сильных холодов. Таким образом, количество секций увеличивается до 10 шт.

Онлайн калькулятор

От чего зависит количество радиаторов в помещении

Радиаторы априори устанавливаются там, где холоднее всего – под или рядом с оконными проемами на наружной стене, то есть первый и главный фактор – область наибольшей теплопотери. Если оконных проемов 2, то разумнее смонтировать батареи под каждым.

Второе условие – материал, из которого изготовлен прибор. Чем выше термопроводность, тем меньшие габариты имеет радиатор. Для нашего примера в пересчете на алюминиевые Глобал Эволюшн 203 Вт потребуется 8 секций, если брать чугунные Cherad 97 Вт – 16 шт.

Расположение квартиры или дома не менее важно. Угловая комната всегда холоднее – две стены выходят на улицу. Если теплоноситель движется сверху вниз, отдача увеличивается на 20 %. Особую роль здесь играет утепление стен и пола – нормативное значение 0,024 Вт/м2К улучшает термоемкость помещения почти на 40 %. Монтаж двойных или тройных стеклопакетов сокращает теплопотери на 20 %. В противовес этому активная принудительная вентиляция требует повышения мощности.

Как рассчитать мощность радиатора отопления

На чтение 4 мин. Просмотров 665 Опубликовано Обновлено

Современные квартиры, дома и коттеджи могут отапливаться любым способом, но без радиаторов отопления не обойтись ни в одном случае. Радиаторы производятся из чугуна, стали, алюминия или сплавов биметаллов. Покупая отопительный прибор, пользователи исходят из разных характеристик: это и технические параметры системы отопления, и характеристики теплоносителя, и предпочтения хозяина. При этом почти никто не знает, как рассчитать мощность радиатора отопления, а этот показатель – самый важный.

Но главная характеристика, которую необходимо учитывать – мощность радиатора отопления и количество секций, потому что основная функция радиатора – поддержание комфортной температуры (21-24°С) в квартире.

Дизайн и конструкция при расчете мощности радиатора не играют роли, из какого бы металла он не изготавливался. Поэтому выбор внешнего вида отопительного прибора зависит только от вкуса покупателя. А вот тепловая мощность – параметр первостепенный, поэтому проблема, как рассчитать мощность радиатора отопления, для покупателя всегда остается актуальной.

На упаковке прибора все компании по производству обозначают этот параметр. Поэтому главное – даже не мощность, а количество секций.

Расчет количества секций радиаторов и их мощности

Иногда недобросовестные производители намеренно завышают номинальную мощность – не забудьте об этом при покупке. Для правильного расчета мощности радиатора следует предварительно просчитать площадь комнаты, которая будет отапливаться. Вычисления производятся не для всей квартиры, а для каждого помещения отдельно.

Формула расчета мощности радиатора

Формула, которой чаще всего пользуются для вычисления мощности отопительного прибора, несложная, поэтому обращаться к специалистам нет смысла – вычисления можно сделать и самостоятельно. Согласно СНиП 2.04.05-91 для металлических и СНиП 3.05.01-85, СНиП 2.04.05-91 для алюминиевых радиаторов на 1 м2 отапливаемой площади при высоте потолков 2,5 м расходуется 100 Вт тепла. Для остальных отопительных приборов применяются СНиП 2.04.05-91, СНиП 3.05.01-85 и ГОСТ 8690-94. Поэтому упрощенная, но точная формула для расчета мощности выглядит так:

K= S х 100/P, где:

  1. K – количество секций в радиаторе.
  2. S – общая площадь теплообменника.
  3. Р – мощность прибора (указывается в инструкции).

В качестве примера рассчитаем мощность (количество секций) радиатора для помещения 30 м2 при стандартной высоте потолков 2,5 м. допустим, одна секция рассчитана на мощность 180 вт. решение такое

  1. K= 30 х 100/180.
  2. K= 16,6 секций.

Нужно округлить результат в большую сторону, а значит, потребуется 17 секций. Данная формула с большой точностью применима к секционным и чугунным конструкциям.

Совет: число радиаторов прямо пропорционально числу окон в комнате. Если помещение угловое, находится в торце здания или существуют постоянные перебои с подачей горячего теплоносителя в центральном отоплении и снижение его температуры, то рекомендуется к полученному результату мощности прибавить еще 20%

Как рассчитать мощность панельного радиатора

Если помещение нестандартное (высота потолков заметно отличается от 2,5 м в любую сторону), то при расчете мощности отопительных радиаторов рекомендуется применять такую формулу:

P (мощность)=V х 41, где:

  1. Р – мощность отопительного прибора.
  2. V – объем отапливаемой комнаты.
  3. 41 (Ватт) — тепловая мощность, которая расходуется при обогреве 1 м3 здания, построенного без использования энергосберегающих технологий (пластиковые окна, утепление стен, потолка и пола, и т.д.). Этот коэффициент можно применять только для европейской части России, Белоруссии, Украины и Молдовы.

Для примера рассчитаем мощность радиатора для помещения 5 х 5 м (высота потолка – 3 м):

V=5 х 5 х 3=75 м3.

P (мощность прибора)= 75 х 41 = 3075 Ватт.

Немного больше 3-х кВт понадобится выработать котлу для радиатора, который доведет комнатную температуру до комфортного значения. Эту мощность можно разделить между несколькими отопительными приборами, если формат комнаты не позволяет установить один радиатор. Еще один способ, как узнать необходимое количество секций – нужно разделить общую мощность прибора на мощность одной секции (если она известна).

Выходная мощность радиатора

— SimplifyDIY

Измерьте ширину и высоту своего радиатора, затем используйте соответствующую таблицу ниже, чтобы определить выходную мощность в ваттах.

  • 1 киловатт (кВт) = 1000 Вт.
  • 1 Вт составляет прибл. 3,4 БТЕ / час или
  • 1000 БТЕ / час = 293 Вт.


Одиночная панель

Одиночная панель 900

1800

Длина

мм

600

900

1200

1500

футов

2

3

4

5

6

20 Высота
9020

300 мм (12 дюймов)

450 мм (18 дюймов)

600 мм (24 дюйма)

750 мм (30 дюймов)

260

390

520

650

780

380

760

900

760

900

490

735

980

1125

1470

580

870132

580

8701 9325 900 9325 900 900

1740


Одиночная панель с ребрами

Одиночная панель с ребрами
Длина

мм

600

900

1200

1500

1800

футов

2

3

0

4

0

4

5

6

Высота

300 мм (12 дюймов)

450 мм (18 дюймов)

24 дюйма)

750 мм (30 дюймов)

370

555

740

925

925

5 60

840

1120

1400

1680

720

1080

1440

1440

900 900

860

1290

1720

2150

2580


Двойная панель

Длина

мм

600

900

1200

1500

1800

футов 90 004

2

3

4

5

6

Высота
ins )

450 мм (18 дюймов)

600 мм (24 дюйма)

750 мм (30 дюймов)

400

400

800

1000

1200

560

840

1120

1400

1680

1050

1400

1750

2100

860

1290

1720

2150

9329 9323 900 900 900 900

Двойная панель с ребрами

Двойная панель с ребрами 9008 7
Длина

мм

600

900

1200

1500

1800

футов

2

3

4

5

6

Высота

300 мм (12 дюймов)

450 мм (18 дюймов)

600 мм (24 дюйма)

750 мм 30ins)

580

870

1160

1450

1740

0

890

1720

2150

2580

1100

1650

2200

2750

3330

1 5 900

900

1920

2560

3200

3840


Двойная панель с двойными ребрами

Двойная панель с двойными ребрами
Длина

мм

600

900

1200

1500

1800

футов

900

3

4

5

6

Высота 9 0102

450 мм (18 дюймов)

300 мм (12 дюймов)

600 мм (24 дюйма)

750 мм (30 дюймов)

901 901

760 3

1140 9000

05

1900

2280

1040

1560

2080

2600

3120

3120

2680

3350

4020

1600

2400

3200

4000

4800 900


Дополнительная информация и полезные ссылки




Калькулятор БТЕ | 3 простых шага для расчета размера радиатора

СОВЕТ. Отфильтруйте результаты по выходным BTU, чтобы показать радиаторы, подходящие для ваших потребностей в отоплении

Есть несколько факторов, которые вы должны учитывать при выборе нового радиатора для вашего дома.Здесь мы поможем вам подобрать подходящий радиатор для вашего дома.

Калькулятор размера радиатора, БТЕ

Вы можете задать себе такие вопросы, как:

  • Что такое БТЕ?
  • Радиатор какого размера мне нужен?
  • Как рассчитать размер радиатора для комнаты?
  • Сколько ватт в BTU?

Здесь мы раскроем тайну неуловимого измерения BTU и расскажем, как вы можете использовать наш калькулятор BTU, чтобы определить, какой радиатор (ы) идеально подходит для вашего дома!

Что такое БТЕ?

Давайте начнем с основ. БТЕ (британская тепловая единица) — это традиционная единица тепла, которую можно определить как количество энергии, необходимое для нагрева 1 фунта воды на 1 градус по Фаренгейту.Иногда это трудно представить, поэтому распространенная аналогия для объяснения этого — сравнение ее с энергией, выделяемой одной горящей спичкой (Источник)

Если концепция BTU все еще немного сбивает с толку, вы всегда можете использовать более традиционный ватт для расчета тепловой мощности. Все, что вам нужно помнить, это то, что 1 Вт энергии эквивалентен 3,41 БТЕ. В качестве альтернативы, если у вас есть измерение BTU и вы хотите узнать тепловую мощность вашего радиатора в ваттах, все, что вам нужно сделать, это разделить BTU на 3.41.

Радиатор какого размера мне нужен?

Есть несколько факторов, которые вы должны учитывать при выборе подходящего радиатора для вашего дома, например…

Какая тепловая мощность должна быть у радиатора?

Какого размера должен быть радиатор?

Какой стиль и цвет подойдут к желаемой комнате?

Тепловую мощность, необходимую для любой комнаты в вашем доме, можно рассчитать с помощью нашего собственного калькулятора размеров радиаторов! Этот калькулятор БТЕ использует размеры выбранной вами комнаты, чтобы определить требуемую БТЕ для всей комнаты; Рассмотрение нескольких вариантов, таких как двойное остекление, окна, выходящие на север, и французские двери патио, чтобы помочь рассчитать размер радиатора.

После того, как вы ввели размеры своей комнаты и учли дополнительные вариации тепловых потерь, вы получите окончательное значение в БТЕ, которое учитывает общую потребность в тепле для выбранной комнаты. Это значение не отражает общую потребность в БТЕ для конкретного радиатора, а, скорее, общую потребность в БТЕ, требуемую от добавления всех радиаторов в этом помещении.

Выбор радиатора

Следующим шагом в определении тепловой мощности и размера, необходимого для вашего радиатора, является определение того, сколько радиаторов вы хотели бы обогреть желаемую комнату.В большинстве случаев достаточно 1-2 радиаторов, однако для больших помещений может потребоваться и больше. Количество БТЕ, необходимое для каждого радиатора, будет зависеть от того, сколько радиаторов находится в помещении, поэтому разделите общую потребность в БТЕ на количество радиаторов, чтобы рассчитать средние значения БТЕ, необходимые для каждого радиатора.

У нас есть большой ассортимент дизайнерских радиаторов, которые вы можете отфильтровать, чтобы отобразить только радиаторы с требуемым количеством БТЕ.

В разных комнатах не только разные требования к БТЕ, но и эстетические требования. Например, некоторые из наших горизонтальных радиаторов очень хорошо подходят для гостиной или коридора, но могут выглядеть неуместно в качестве радиатора для ванной комнаты.К счастью, мы поставляем очень разнообразный ассортимент радиаторов для любой комнаты в вашем доме — от нашего компактного радиатора для зимнего сада Excel до популярного и современного вертикального радиатора Terma Ribbon, который можно использовать в жилых комнатах, коридорах и кухнях.

Вы также можете добавить элемент вешалки для полотенец, чтобы преобразовать вешалку для полотенец на электрическую или двухтопливную.

Если вы хотите получить еще несколько советов о том, как стильно обогреть свой дом, прочтите наш предыдущий блог: «Рассмотрите свой радиатор как часть дизайна комнаты».

Сборы выписок

Какие радиаторы вы выберете, теперь, когда вы знаете, какая тепловая мощность требуется для вашего дома? Просмотрите нашу коллекцию современных дизайнерских радиаторов и полотенцесушителей:

ПРИМЕЧАНИЕ:

Этот расчет является приблизительным. Если требуются более точные показания, обратитесь к своему сантехнику. Наши расчеты являются приблизительными и основаны на предоставленной вами информации.Калькулятор BTU может обрабатывать только наиболее распространенные факторы, влияющие на тепловые потери, и может не учитывать все факторы, относящиеся к вашим конкретным требованиям. Любые результаты, полученные с помощью нашего калькулятора отопления, не следует считать точными на 100%, и мы не несем ответственности за любые ошибки, возникшие в результате представленных оценок. Расчеты основаны на Delta — T 50 ° C (Δ-T50 ° C).

Тепловыделение от радиаторов и нагревательных панелей

Тепловыделение от радиатора или нагревательной панели в первую очередь зависит от разницы температур между горячей поверхностью и окружающим воздухом.Тепловыделение можно рассчитать

P = P 50 [(t i — t r ) / ln ((t i — t a ) / (t r — t a )) 1 / 49.32] n (1)

где

P = тепловыделение от радиатора (Вт, Дж / с)

P 50 = тепловыделение радиатора при разнице температур 50 o C (Вт)

t i = температура воды на входе ( o C)

t r12 = температура воды на выходе ( o C)

t a = температура окружающего воздуха ( o C)

n = константа, описывающая тип радиатора (1.33 для стандартных панельных радиаторов, 1,3 — 1,6 для конвекторов)

Обратите внимание, что радиаторы обычно рассчитаны на температуру средней панели 70 o C — и температуру окружающего воздуха 20 o C (разница 50 o C )

Пример — Тепловыделение от радиатора

Теплоотдача от радиатора с номиналом *) Тепловыделение 1000 Вт при температуре воды на входе t i = 70 o C и температура на выходе t r = 50 o C можно вычислить

P = (1000 Вт) [((70 o C) — (50 o C)) / ln (( (70 o C) — (20 o C)) / ((50 o C) — (20 o C))) 1/49.32] 1,33

= 736 Вт

*) номинальное при температуре воды на входе t i = 80 o C , температура воды на выходе t r = 60 o C и температура окружающего воздуха t a = 20 o C

Калькулятор тепловыделения радиатора

Тепловыделение и расход воды

Калькулятор ниже можно использовать для расчета тепловыделения и расхода воды от радиатора, работающего вне стандартных условий — например, повышение или понижение температуры воды на входе или выходе или повышение или понижение температуры окружающего воздуха в помещении.

Температура воды в обратном трубопроводе и расход

Приведенный ниже калькулятор может использоваться для расчета температуры обратной воды и объемного расхода воды через радиаторы на основе фактического тепловыделения и температуры воды на входе.

Негабаритные радиаторы — довольно распространенное явление, поскольку практически невозможно адаптировать стандартный радиатор точно к требуемым тепловым потерям из комнаты. С помощью калькулятора, расположенного ниже, можно изучить последствия нестандартного тепловыделения, когда радиатор слишком большой.

При проверке теплоотдачи радиаторов учтите, что стандарты тестирования различаются. Примеры стандартов:

  • BS 3528 «Спецификация для обогревателей конвекционного типа, работающих с паром или горячей водой» (отозвана, заменена на BS EN442) — температура подачи 90 o C, температура возврата 70 o C , температура воздуха 20 o C
  • BS EN442 «Спецификация на радиаторы и конвекторы.»- температура подачи 75 o C , температура обратки 65 o C, температура воздуха 20 o C

Тестирование того же радиатора с BS EN442 по сравнению с BS 3528 снижает тепловую мощность с приблизительно 11% .

БТЕ против ватт: Как выбрать размер электрических радиаторов

Мир отопления, похоже, изо всех сил пытается определиться с тем, как он выражает выходную мощность, что не менее легко, учитывая неудобство золотая середина, которую Великобритания принимает в отношении измерений.Ватты или БТЕ — что вам следует использовать? Один лучше другого? Если вы всю жизнь использовали одно или другое измерение, это может быть настоящим неудобством, а когда вы отправляетесь в магазин за новым обогревателем, вы сталкиваетесь с целым рядом ценностей, которых не понимаете. По правде говоря, оба измерения мощности хороши, но, тем не менее, путаница по поводу них распространена. Не волнуйтесь, Heatingpoint всегда под рукой, чтобы предоставить немного больше информации о том, чего ожидать, когда вы выбираете размер электрического радиатора.

Измерения мощности

БТЕ и ватты — это единицы измерения, используемые в отношении тепловой мощности приборов, но в чем разница между ними и что вам нужно знать, когда вы подбираете электрический радиатор для дома или бизнеса?

БТЕ (британские тепловые единицы)

Если вы более знакомы с метрикой, возможно, вы не слышали о БТЕ или менее уверены в их использовании. BTU (британская тепловая единица) означает количество энергии, необходимое для подъема одного фунта жидкой воды на 1 градус по Фаренгейту при давлении в одну атмосферу.Хотя это называется британской тепловой единицей, в Великобритании это измерение используется по-разному, и гораздо чаще используется в Америке, где оно используется для выражения мощности как газовых, так и электрических обогревателей. Тем не менее, BTU иногда используются в Великобритании, обычно для измерения тепловой мощности систем центрального отопления. Расчеты объемов помещения для определения потребности в БТЕ обычно производятся в футах, поэтому, как правило, подходят всем, кому удобнее использовать британские единицы измерения. Метрическим эквивалентом БТЕ является калория, которая представляет собой количество энергии, необходимое для подъема одного грамма воды на один градус Цельсия при давлении в одну атмосферу.

Вт

Вт — единица мощности, представляющая передачу энергии в один джоуль в секунду, и является частью Международной системы единиц. Поскольку ватты являются установленным мировым стандартом, их использование в Великобритании преобладает, хотя по очевидным причинам они, как правило, более тесно связаны с электротехнической продукцией. Когда вы покупаете электрические радиаторы, их выходная мощность часто указывается в ваттах, особенно если они поставляются в другие страны, где это предпочтительное измерение.Иногда при выборе размера электрического радиатора легче понять, что такое ватт, поскольку вы можете легко использовать указанную мощность для расчета их эксплуатационных расходов, используя пенсы за кВтч, предоставленные вашим поставщиком энергии. Тепловая мощность электрических радиаторов, которые мы предлагаем в магазине Heatingpoint, указывается в ваттах.

Ватт — это разница?

Было бы немного ошибкой сказать, что БТЕ можно напрямую преобразовать в ватты, поскольку это не совсем так. БТЕ — это единица измерения энергии, тогда как ватты измеряют скорость передачи энергии, поэтому они напрямую не приравниваются к одному и тому же.Когда люди говорят о преобразовании БТЕ в ватты, на самом деле они имеют в виду преобразование БТЕ в час в ватты, что иногда обозначается как БТЕ / ч. Если у вас есть мощность или значение БТЕ / ч, необходимое для обогрева комнаты, достаточно простого расчета, чтобы преобразовать их в предпочтительные измерения.

Какое измерение мне следует использовать, чтобы выбрать размер моего электрического радиатора?

Вы можете использовать любое из измерений, чтобы определить, хватит ли мощности электрического радиатора для обогрева вашей комнаты.

Преобразование БТЕ / ч в ватты

Если вы знаете, какое значение БТЕ / ч вам нужно для обогрева гостиной, но вам нужно преобразовать его в ватты, чтобы убедиться, что вы покупаете электрический радиатор, подходящий для этого помещения, все, что вам нужно сделать, это умножить полученное значение на 0,293.

Так, например, если в вашей комнате требуется радиатор с выходной мощностью 3425 БТЕ / ч, вы можете изменить его на ватты следующим образом:

3425 x 0,293 = 1003,53

Это означает, что вы будете искать электрический радиатор мощностью около 1000 ватт, хотя рекомендуется округлить его до следующего доступного размера, чтобы обеспечить хорошее отопление комнаты.

Преобразование ватт в БТЕ / ч

Некоторые отопительные предприятия предпочитают указывать свою продукцию в единицах БТЕ / ч, поэтому для преобразования ватт в БТЕ можно использовать аналогичное простое умножение.

Если вы знаете, что вам нужен электрический радиатор мощностью 1800 Вт для вашей комнаты, все, что вам нужно сделать, чтобы получить его эквивалент в БТЕ / ч, — это умножить мощность на 3,412.

1800 x 3,412 = 6141,6

Это даст вам количество БТЕ / ч, необходимое для обогрева вашего помещения, но, опять же, всегда полезно округлить это немного до следующего размера, чтобы убедиться, что у вас есть радиатор, который будет достаточно мощным.

Так просто?

Если вы покупаете электрические радиаторы или другие нагревательные приборы с КПД, близким к 100%, приведенные выше расчеты дадут вам очень хорошее приближение того, как мощность радиатора соответствует его выходной мощности в БТЕ. Однако вы должны знать, что это не точная наука, и вы можете столкнуться с трудностями, если попытаетесь использовать эти практические правила, чтобы выбрать другие, менее эффективные решения для обогрева.

Путаница заключается в том, что указанная мощность большинства электрических нагревательных приборов не является строго измерением тепловой мощности.Фактически, это количество потребляемой энергии, которое определяет, сколько электричества обогреватель будет использовать в час. Если ваш радиатор на 100% эффективен, его тепловая мощность будет такой же, как и потребляемая энергия, поэтому с нашими радиаторами проблем не возникнет. Но как только тепловая мощность становится значительно меньше потребляемой энергии, расчет становится искаженным, и вам потребуется более высокая мощность, чем рекомендуется.

Как выбрать размер радиатора на сайте Heatingpoint

Запутались? Не волнуйтесь — розничные продавцы отопительного оборудования много лет борются с этим, и большинство из них, в том числе и мы, устранили большую часть этой двусмысленности, предоставив индивидуальные калькуляторы отопления для каждого типа отопительного решения.В случае сомнений всегда обращайтесь к калькулятору размеров или таблицам, рекламируемым вместе с продуктом, или поговорите с консультантом по продажам, чтобы получить индивидуальное предложение, адаптированное как для вашего дома, так и для выбранной вами системы отопления. Иногда это означает полный отказ от БТЕ, но большинство людей считает, что это упрощает задачу и делает ее менее запутанной.

В Heatingpoint мы предоставляем простой в использовании калькулятор электрических радиаторов, который мгновенно даст вам минимальную требуемую мощность, и, используя приведенные выше вычисления, ее можно легко преобразовать в БТЕ.

Space Calc (Калькуляторы) — Ян Маллетт

Есть два эффекта, которые следует учитывать, когда мы работаем с капельными излучателями вместо обычных панельных излучателей: взаимное поглощение и взаимное отражение. В первом случае свет поглощается, преобразуется в тепло и переизлучается в виде теплового излучения. Во втором случае свет просто отражается прямо.

Уже сейчас это сложно, но проблема дополнительно усложняется тем фактом, что, когда происходит поглощение, энергия направляется по закону Стефана – Больцмана (см. Выше), который вводит четвертую степень температуры в геометрическую сумму, которую иначе можно понять. .

Чтобы решить эту проблему, мы используем симметрию в радиометрической величине яркости: поскольку каждая капля является «средней» и поскольку яркость не зависит от расстояния, приходящее излучение к данной капле от других капель должно быть таким же, как яркость, которая эта же капля испускает другие капли.


По определению, излучаемая яркость (\ (L_o \), «o» для «out») должна быть равна сумме излучаемого света (\ (L_e \), «e» для «испускаемого») и отраженного света. (\ (L_r \), «r» означает «отраженный»):

\ [ L_o = L_e + L_r \]

Между тем, \ (L_r \) сам по себе является всего лишь долей (\ (1- \ epsilon \)) входящего излучения (\ (L_i \), «i» для «входящего»), которое отражает:

\ [ L_r = (1- \ epsilon) L_i \]

Но теперь самое умное: в то время как наша капля может излучать в другую каплю, эта другая капля также излучается обратно.Поскольку каждая капля является «средней», обе капли имеют одинаковую температуру, яркость и т. Д. В частности, входящее излучение от закрывающей капли на равно исходящему излучению, которое наша капля посылает обратно, то есть когда входящая яркость направление — от закрывающей капли, \ (L_i = L_o \). Когда это не так, мы используем окружающее сияние пространства (\ (L_i = L_s \), «s» для «пространства»).

Назовите долю закрытых направлений «\ (f \)». В \ (f \) направлений наша капля перекрывается другой каплей, испускающей \ (L_o \).В \ ((1-f) \) направлений мы видим \ (L_s \). Следовательно, падающая на нашу каплю яркость в среднем составляет:

\ [ L_i = f \ cdot L_o + (1-f) L_s \]

Мы можем заменить все это вместе и решить \ (L_o \):

\ begin {align} L_o & = L_e + L_r \\ & = L_e + (1- \ epsilon) L_i \\ & = L_e + (1- \ epsilon) (f \ cdot L_o + (1-f) L_s) \\ (1 — (1- \ epsilon) f) L_o & = L_e + (1- \ epsilon) (1-f) L_s \\ L_o & = \ left (\ frac {L_e + (1- \ epsilon) (1-f) L_s} {1 — (1- \ epsilon) f} \ right) \ end {align}

Однако то, что нас на самом деле будет интересовать, — это сияние net (\ (L_n \), «n» для «net»), разница между входящим и исходящим сиянием:

\ begin {align} L_n & = L_i — L_o \\ & = f \ cdot L_o + (1-f) L_s — L_o \\ & = (1-е) (Л_с — Л_о) \\ & = (1-f) \ left (L_s — \ frac {L_e + (1- \ epsilon) (1-f) L_s} {1 — (1- \ epsilon) f} \ right) \\ & = \ frac {1-f} {1- (1- \ epsilon) f} (\ epsilon L_s — L_e) \ end {align}

Вспомните вышеупомянутый закон Стефана – Больцмана сверху (с \ (A_d \) и \ (r \) площадью поверхности и радиусом капли):

\ begin {align} \ Phi_e & = A_d \ cdot \ epsilon \ cdot \ sigma_ {sb} \ cdot T ^ 4 \\ & = 4 \ pi r ^ 2 \ cdot \ epsilon \ cdot \ sigma_ {sb} \ cdot T ^ 4 \\ \ end {align}

Нам также нужно связать силу излучения капли с ее сиянием.3 \]

Поскольку мощность является производной энергии по времени, теперь мы можем объединить это уравнение с формулой из предыдущего раздела и проинтегрировать, чтобы получить энергию (или температуру) за время.

К сожалению, интеграция оказывается ужасной из-за члена \ (L_s \). Хотя это можно сделать в закрытой форме, результат плохой: все логарифмы и арктангенсы — и даже не определены в важных местах. Тогда это должно быть , перевернутое для \ (J (t) \).2} \]

Поскольку полная энергия, излучаемая единственной каплей за один проход за время \ (\ Delta t \), равна \ (J (0) -J (\ Delta t) \), полная энергия, излучаемая всеми каплями за то же время \ (\ Delta t \) — это просто произведение уменьшения энергии капли и количества капель. (Если это не очевидно, попробуйте представить себе одну каплю в одной линии тока. Ее соседние капли не летают для всего \ (\ Delta t \), а капельки, которые будут испускаться во время \ (\ Delta t \) точно заполнит ту часть, для которой они не испускали.{-4/3} \]


Эффективность излучателя относительно случая отсутствия окклюзии может быть рассчитана при \ (t = 0 \) как:

\ [ \ text {Эффективность} = \ frac {\ Phi_ {n, f> 0} (0)} {\ Phi_ {n, f = 0} (0)} = \ frac {1-f} {1- (1- \ epsilon) f} \]

Примечание: исходная, менее полная и менее правильная версия этого анализа была размещена здесь.

Важность дельты Т при расчете тепловой мощности

Если вы не знакомы с тем, как работает ваша система центрального отопления, Delta T особенно важна для того, чтобы помочь вам рассчитать, сколько энергии вам нужно будет произвести для обогрева вашего дома.Delta T или Δt помогут вам с первого раза выбрать правильные радиаторы для вашего дома. Мы расскажем вам, что означает Delta T и его важность при расчете потребности в отоплении комнаты или вашего дома.

Что такое Δt (Delta T)?

Дельта T или Δt относится к разнице температуры воды, циркулирующей в вашей системе центрального отопления, и комнатной температуры. При замене радиаторов в доме важно использовать правильный Delta T.Это связано с тем, что одни и те же радиаторы могут иметь разную мощность при разной температуре воды из-за используемого вами источника тепла.

Главное, что нужно помнить при попытке определить Delta T, — это следующее уравнение:

Средняя температура радиатора минус заданная температура в помещении = Delta T

Δt50 против Δt60

Мощность радиатора обычно выражается в ваттах, а мощность вашего радиатора зависит от вероятной рабочей температуры системы.Выходной сигнал будет выражен как Дельта 60 (Δt60) или Дельта 50 (Δt50). Delta 50 — это стандарт Великобритании для всех бытовых газовых котлов. Если вы ищете новые, более возобновляемые системы отопления, вы также можете приобрести радиаторы с более низкой мощностью. Delta 30 и Delta 40 хорошо подходят для систем с более низкой температурой воды.

Почему стоит обратить внимание на низкотемпературное отопление?

Поскольку наши дома становятся все лучше изолированными, люди теперь переходят на низкотемпературные системы отопления. Эти новые, более возобновляемые системы отопления используют выходы Delta 30 и Delta 40 для создания более экологичного отопительного агрегата.

Низкотемпературное отопление позволяет обогревать ваш дом более равномерно и с более постоянной скоростью. Кроме того, он бережно обращается с завязками кошелька! В то время как в традиционных системах отопления используется температура подачи от 75 ° C до 85 ° C, низкотемпературный нагрев может составлять от 35 ° C до 55 ° C.

Преимущества низкотемпературного нагрева

  • Более рентабельно: в хорошо изолированном доме использование низкотемпературного отопления снизит потребление энергии.
  • Меньше холодных углов: вся ваша комната будет нагреваться более равномерно с помощью низкотемпературной системы отопления.
  • Практично: использование низкотемпературного обогрева означает, что вам не нужно понижать термостат на ночь. Это означает, что единственный раз, когда вам нужно будет отрегулировать термостат, — это когда вы отсутствуете на длительное время.
  • Очиститель воздуха: при использовании низкотемпературной системы обогрева образуется меньше пыли. Это хорошая новость для всех, кто страдает аллергией, так как вы избежите ожогов, оставленных частицами пыли. Следовательно, это уменьшит раздражение чувствительных дыхательных путей.

Если вам нравится звук низкотемпературной системы отопления, обязательно обсудите это как вариант с вашим сантехником. Сантехнические системы, в которых используются современные конденсационные котлы, обычно работают с Delta 50, поэтому вам нужно будет указать более низкую Delta T, если вы хотите создать более экологичную систему отопления.

Вы хотите перейти на «зеленую» систему отопления? Дайте нам знать в комментариях ниже.

Расчет размера обогревателей

Выбор размера обогревателя

Конвекторные обогреватели нагревают весь воздух в пространстве / комнате.Поэтому очень важно выбрать обогреватели правильного размера для помещений, которые вам нужно отапливать. Мы предполагаем, что ваши потолки имеют нормальную высоту (около 2,8 метра).

Adax, Beha и ivigo создают таблицы размеров, но мы считаем, что следующее практическое правило хорошо работает для неизолированных испанских домов.
В гостиной вам потребуется 100 Вт на м²: 1000 Вт (1 кВт) на 10 м².
В спальне вам, вероятно, потребуется всего 75 Вт на м²: 750 Вт на 10 м².

Вам необходимо узнать площадь вашей комнаты в квадратных метрах.Для моего примера я собираюсь сделать размеры 7 метров на 3 метра, что составляет 21 м². Для простоты расчета назовем его 20 м². Это означает, что если это жилая площадь, вам потребуется 2 кВт для ее обогрева. Если это спальня; 1,5 кВт, вероятно, будет достаточно.

Затем необходимо учитывать следующие факторы.

· Самый эффективный способ обогрева прямоугольного помещения, такого как это, — наличие двух обогревателей; по одному с обоих концов.

· Дешевле купить один нагреватель мощностью 2 кВт, чем два нагревателя мощностью 1 кВт.

· Достаточно ли у вас места на стене для установки обогревателей?
(отдельно стоящие варианты с аккуратными ножками доступны для всех наших моделей)

Другие факторы, которые следует учитывать.

· Ваш контрактный лимит. Нет смысла покупать обогреватели мощностью 7 киловатт, если ваш контракт разрешает вам только 5,5 кВт. В случае сомнений проконсультируйтесь с поставщиком или квалифицированным электриком.

· Конвекторные обогреватели не могут обогреть половину комнаты.При расчете площади для обогрева вы всегда должны учитывать любые участки открытой планировки, которые нельзя закрыть. Сюда входят коридоры, лестничные клетки, служебные люки на кухню и т. Д.

· Многие дома в Испании имеют высокие потолки. Они должны быть включены в ваши расчеты.

· Внешний вид ваших комнат также будет определять, насколько холодно в них.

Приняв во внимание все вышесказанное, если вы не определились с выбором между двумя размерами, обычно вам следует выбрать больший вариант.Разница в цене покупки минимальна, и …….

· Меньший обогреватель может плохо работать в холодные дни.

· Большему нагревателю потребуется меньше времени для достижения требуемой температуры и он будет отключаться на более длительные периоды, поэтому потребление будет примерно таким же.

· Никогда не выбирайте обогреватель меньшего размера «Просто чтобы снять холода». Всегда выбирайте правильный нагреватель и просто уменьшайте его до нужной температуры.

Рекомендуемые расчеты Adax и NEO в Норвегии

3 EPK 4590 E20

Выбор модели панельного конвектора ivigo Basic

Модель

Модель

)

Площадь помещения (м2)

EPK 4550 E05

500

3-6

900 EPK

1000

6-12

EPK 4570 E15

1500

9-17

3 900

2000

12-24

EPK 4590 E25

2500

14-28

Потребность в тепле зависит от таких факторов, как внешняя температура, теплоизоляция помещения, циклы открытия / закрытия двери.Значения, указанные в приведенной выше таблице, относятся к средним условиям, поэтому при расчете мощности нагревателя следует учитывать эти факторы


Онлайн-калькулятор Beha Heater Calculator
Для загрузки нажмите здесь

(В Испании, Португалии а некоторые дома во Франции имеют очень плохую изоляцию. Это серьезно снижает производительность всех систем отопления. Все приведенные выше калькуляторы и графики произведены Beha и adax для Норвегии и vigo для Турции. выбирайте плохую изоляцию, учитывая размер вашего обогревателя.
Тем не менее, мы обнаружили, что применение следующего простого правила: разрешить 1 кВт обогревать каждые 10 кв.м. — лучший вариант в этих странах. киловатт-час по стандартному тарифу Iberdrola. (ставки различаются, пожалуйста, проверьте свой индивидуальный тариф в счетах за электроэнергию в вашем районе)
Это означает, что за каждый 1 кВт, непрерывно используемый в течение одного часа, вы обойдетесь в 23 цента.
Таким образом, общая стоимость нагревателя мощностью 1 кВт, непрерывно работающего в течение 24 часов, составит 5,52 евро.
(Эти цифры значительно снижаются при работающем термостате)

Вы можете приблизительно рассчитать, сколько тепла вы бы потратили, используя наши обогреватели, следующим образом.
Определите площадь помещения, которое вы хотите отапливать. Таблица покажет вам размер радиатора в ваттах, который потребуется для эффективного обогрева этой комнаты.
Каждые 100 ватт обойдутся вам в 0,023 цента, включая iva в час по стандартному тарифу (по данным Iberdrolla, правильный термин — 23 цента / киловатт-час, это означает то же самое).

Стоимость зависит от того, что нагреватели Adax имеют встроенные термостаты и поэтому не работают непрерывно в течение одного часа, так как они будут достигать заданной температуры и отключаться.
Термостат также будет регулировать в соответствии с различными факторами, такими как температура наружного воздуха и количество открытых дверей или окон в районе, где установлены обогреватели.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *