Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Расчет насоса для отопления: Как подобрать циркуляционный насос для системы отопления: расчет мощности

Содержание

Расчет параметров циркуляционного насоса для систем отопления

Подобрать циркуляционный насос для отопительной системы небольшого здания, убедиться в правильности уже подобранного насоса, стоящего в существующей системе отопления, достаточно просто, если воспользоваться упрощенным методом расчета.

Основной параметр циркуляционного насоса — это его производительность, которая должна соответствовать тепловой мощности обслуживаемой им отопительной системы.

Необходимую производительность циркуляционного насоса можно рассчитать по простой формуле:

Q = 0,86 x P/dt

где Q — необходимая производительность насоса в кубометрах в час,

Р – тепловая мощность системы в киловаттах,

dt – дельта температур – разница температур теплоносителя в подающем и обратном трубопроводе. В наших условиях она обычно принимается равной 20 градусам.

Итак проведем расчет для нашего примера, где дом общей площадью 108 квадратных метров, в доме есть подвал, 1 этаж и мансарда.

Примем во внимание, что система отопления двухтрубная. Исходя из нормальной теплоизоляции нашего дома примем необходимую тепловую мощность, требуемую для обогрева такого дома равной,  10,8 киловатт. Она определяется из расчета приблизительно 0,1 кВт/м2. Производим несложные вычисления, получаем — 0,46 кубометра в час. Округляем, и принимаем производительность необходимого циркуляционного насоса – 0,5 кубических метра в час.

Второй важнейшей характеристикой циркуляционного насоса является напор. Каждая гидравлическая система имеет сопротивление пропускаемому по ней потоку воды. Каждый угол, тройник, редуцирующий переход, каждый подъем – все это местные гидравлические сопротивления, сумма которых и составляет гидравлическое сопротивление отопительной системы. Циркуляционный насос должен преодолеть это сопротивление, с сохранением расчетной производительности.

Точный расчет гидравлического сопротивления сложен и требует определенной подготовки. Чтобы примерно  рассчитать  необходимый напор циркуляционного насоса используется формула:

H = N x K

где N – количество этажей здания, включая подвал,

K – усредненные гидравлические потери на один этаж здания.

Коэффициент К принимается 0,7 – 1,1 метра водяного столба для двухтрубных систем отопления и 1,16-1,85 для коллекторно-лучевых систем.

В нашем случае трёхуровневый дом, с двухтрубной отопительной системой, поэтому коэффициент К принимаем 1,1 м.в.с.

Произведем несложный расчет: 3 х 1,1 = 3,3 метра водяного столба.

Обратите внимание – общая физическая высота отопительной системы, от нижней до верхней точки, в таком доме составляет около 8 метров, а напор необходимого циркуляционного насоса только 3,3 метра. С учетом того, что каждая отопительная система является равновесной, насосу не нужно поднимать воду, он только преодолевает сопротивление системы, поэтому нет необходимости в большом напоре.

Таким образом, мы получили два параметра циркуляционного насоса:

Производительность Q, m/h = 0,5

Напор, Н, м = 3,3.

С учетом этих параметров и производится подбор необходимого циркуляционного насоса для системы отопления вашего дома. Данные параметры указаны для каждого насоса или с помощью данных величин определяется точка пересечения на графике гидравлической кривой циркуляционного насоса. Эта точка является рабочей для необходимого циркуляционного насоса LPA 20-60.

Насос необходимый непосредственно в вашем случае определяется на основе справочных данных и гидравлических кривых имеющихся в каталогах циркуляционных насосов.

Данный расчет приблизительный и носит справочный характер, оптимальную модель циркуляционного насоса Вам подскажут наши квалифицированные специалисты, обращайтесь за консультацией!

Вы можете обратиться к нашим специалистам, которые с радостью помогут Вам определиться с необходимой моделью циркуляционного насоса.

Как рассчитать мощность циркуляционного насоса для отопления

Как рассчитать мощность циркуляционного насоса – это насущный вопрос для владельцев частных домов. Это неудивительно, ведь только правильный выбор агрегата обеспечит должный напор, позволяя теплоносителю перемещаться так, чтобы преодолевать сопротивление в трубопроводе и батареях.

Чтобы приобрести безукоризненно функционирующий насос, необходимо произвести расчеты следующих параметров:

  • тепловая потребность;
  • производительность;
  • напор.

Расчет потребности в тепле

В умеренном европейском климате принято брать за основу 100Вт на квадрат площади небольшого здания и 70Вт для многоквартирного дома. Для производственных площадей или хорошо утепленных жилищ достаточно будет 30-50Вт. В случае же, когда утепление фактически отсутствует, а теплопотери весьма высоки, нужно брать более высокое значение за основу.

Определение производительности циркуляционного насоса

Производительность помпы подразумевает количество тепла, которое она может переместить за час. Узнать, помпа какой производительности вам необходима, можно так:

Q=0,86R/TF-TR

В ней Q — расходуемый объем, куб. метров/час;

R — расчётное кол-во тепла в киловаттах;

TF — начальное значение температуры теплоносителя, по Цельсию;

TR — конечное значение температуры теплоносителя, по Цельсию.

Если у вас уже установлен котел, то производительность можно рассчитать так Q = N /(t 2- t 1). Здесь N – это мощность отопительного агрегата.

Расчет необходимого напора циркуляционного насоса

Также очень важной является необходимость учёта сопротивления, которое должен преодолевать циркуляционный насос. Именно напор позволяет теплоносителю циркулировать, не «буксуя» за счет гидравлического сопротивления элементов системы отопления- радиаторов, фильтров, клапанов, котла и т.д.Основная величина, необходимая для этого расчёта — так называемая высота всасывания насоса, обозначаемая как «Н».

Рассчитать можно по следующей формуле:

H = 1,3*(R1L1+R2L2+Z1+Z2+……+ZN)/10000, в которой R1, R2 — потери по давлению на входе и выходе контура, в Паскалях на метр. L1, L2 — длина обоих трубопроводов, в метрах. Z1, Z2, ZN — значения сопротивлений контура, в Паскалях.

Как можно заметить, чтобы подобрать насос, нужно произвести далеко не самые простые расчеты. Не хотите ломать голову над формулами? Тогда лучше всего будет обратиться в интернет-магазин Теплозон. Здесь можно получить подробнейшую консультацию относительно необходимых параметров помп, а также купить их. Наши консультанты также помогут вам выбрать подходящие устройства для систем теплого пола. Цена на циркуляционные насосы будет гарантированно привлекательной, а вся продукция сертифицирована.

Смотрите также:

Какой циркуляционный насос выбрать для системы отопления загородного дома.

Как выбрать циркуляционный насос для системы отопления загородного дома.

Все больше и больше горожан становятся счастливыми обладателями загородных домов. И если раньше дачная жизнь ассоциировалась только с жарким летом, то теперь сезон длиться практически круглый год. Однако далеко не все готовы мириться с неудобствами «стародачной» жизни – современному человеку для нормального отдыха требуется привычный комфорт. А в нашем не слишком мягком климате в это понятие входит, прежде всего, тепло в родном жилище. Именно поэтому, устройство систем отопления – весьма животрепещущая проблема для владельцев недвижимости на природе. Далеко не все понимают, что для поддержания нормальной температуры в помещении требуется не только отопительный котел и трубы с батареями, но и целый ряд достаточно сложных приборов и устройств, без которых тепла попросту не будет. Одним из таких незаменимых приспособлений является, безусловно, циркуляционный насос. И хотя подбор и монтаж этого незаменимого элемента систем отопления лучше доверить специалистам, ориентироваться в теме стоит и владельцам домов. В домах, коттеджах площадью до 100 м². могут использоваться отопительные системы открытого типа. Принцип их работы основан на явлении конвекции – нагретый теплоноситель «легче» холодного и естественным образом поднимается наверх, откуда разливается по ветвям отопительной системы, отдавая тепло в воздух. Однако, несмотря на простоту и относительную дешевизну, такой способ отопления имеет ограниченное применение – прежде всего потому, что пригоден только для домов небольшой площади – приблизительно до 100 м²., стоит отметить и невысокую эффективность данного метода.

Циркуляционный насос — насос, который устанавливается непосредственно в трубопровод и обеспечивает перемещение теплоносителя по трубопроводу, как правило системы отопления закрытого типа, повышая эффективность отопления. Для систем отопления частных домов почти более десятилетия применяют насосы с так называемым «мокрым ротором», например, GRUNDFOS типа UPS. Особенностью этой конструкции является то, что охлаждение и смазка подвижных частей производится протекающей жидкостью, делая работу агрегата бесшумной и надежной. Особенностью современных циркуляционных насосов являются экономичность, долговечность, небольшие габариты и бесшумность. Для домов с площадью свыше 150 м². необходимо применять принудительную циркуляцию теплоносителя, так как естественная конвекция уже не сможет обеспечить равномерный прогрев всех отопительных приборов (батарей). Циркуляционный насос перемещает жидкость по системе с заданной скоростью, быстро и эффективно доставляя тепло во все уголки здания. При этом важно правильно подобрать насос в соответствии с гидравлическими параметрами конкретной отопительной системы. Это лучше доверить специалистам.

Для правильного выбора циркуляционного насоса прежде всего, необходимо знать сколько тепла понадобиться для отопления дома. Это достаточно сложный расчет, который включает в себя много параметров и делается специалистами. Важным является все: какие окна установлены в здании, как утеплены стены, пол и перекрытия, предусмотрены ли термостатические вентили в системе и т.д. и т.п. Результатом этих вычислений становится определение необходимой объемной подачи теплоносителя в системе (м°/ч), по которой и подбирается насос. При реконструкции уже существующей системы предпочтительнее воспользоваться регулируемым насосом, например насосы Grundfos Alfa 2. Такие циркуляционные насосы самостоятельно адаптируется к изменению расхода в системе, практически бесшумны и очень экономичны. Для приблизительной ориентации можно воспользоваться таблицей:

Таблица 1.


где хх — диаметр трубопровода

Часто в задают вопрос: «Почему шумят трубы системы отопления? Как убрать шум в трубах?»

Шум в трубопроводах вызывается обычно либо неправильно подобранным («переразмеренным») и установленным насосом, либо наличием воздуха в системе. Именно поэтому нужно с особым вниманием отнестись к подбору и монтажу циркуляционного насоса. Следует заметить, что рекомендуется устанавливать гидрокомпенсатор (гидроаккумулятор, мембранный бак). Этот бак ставится для поддержания требуемого статического давления в системе. Гидрокомпенсатор позволяет избежать кавитационных нагрузок, которые вредны для насоса и создают шум в трубах. Если в отопительную систему попал воздух, это тоже будет вызывать гул. Поэтому необходимо перед запуском отопления правильно удалить воздух из трубопроводов.

Для решения данной проблемы необходимо:

  1. Заполнить систему полностью.
  2. Удалить воздух из «воздушек» (специальных клапанов на отопительных приборах).
  3. Включить котел.
  4. Включить насос и открыть кран радиатора, убедившись, что циркуляция воды есть.
  5. Дать насосу поработать несколько минут.
  6. Выключить насос и повторно удалить воздух из системы.
  7. Проверить статическое давление и, при необходимости, дополнить систему водой (см.Таблицу 2)
  8. Повторно включить и, если это нужно, отрегулировать насос (обычно для регулируемых насосов это не требуется).
Таблица 2. Необходимое статическое давление на входе в насос.
Температура жидкости Минимальное давление на входе
75 0,5
90 2,8
110 11

Современные центробежные насосы могут без вреда для себя отключаться на длительное время, не использоваться, например в летнее время. Даже если в результате остановки в теле насоса возникнут отложения, их легко удалить, переключив нерегулируемый насос на максимальную скорость вращения. Регулируемые насосы, такие как GRUNDFOS ALPHA 2, Magna 3 снабжены специальной функцией деблокирования.

Современные модели циркуляционные насосы имеют вал и подшипники, сделанные из керамики. Это не только продлевает срок службы, но и делает их практически бесшумными в эксплуатации. Стоит заметить, что эти небольшие устройства очень экономичны и потребляют энергии не больше, чем, скажем, небольшая электрическая лампочка. Тем не менее, недавно все ведущие европейские производители циркуляционных насосов пришли к соглашению о единой классификации по энергопотреблению. При этом насосы класса «А» потребляют в среднем 6 Вт, что соответствует 90 кВт ч в год. Даже проверенные временем модели (GRUNDFOS UPS 100) будут в основном соответствовать классу В. Безусловно, надо отметить, что наиболее экономичны регулируемые циркуляционные насосы. Срок службы качественного циркуляционного насоса составляет не менее 10 лет. Для длительной бесперебойной работы следует соблюдать рекомендации производителей: правильно подобрать и установить циркуляционный насос, использовать в системе специально подготовленную воду, не допускать «завоздушивания» системы.
Большой ассортимент циркуляционных насосов позволяет сделать оптимальный подбор для каждой индивидуальной системы. Это обеспечивает отсутствие эксплуатационных проблем и долгую бесперебойную службу.

Для повышения комфорта и экономии энергии в систему ГВС индивидуального дома можно установить специальный циркуляционный насос, например GRUNDFOS UP Comfort. Это позволит не дожидаться, пока из крана пойдет горячая вода, что не только снижает затраты на электроэнергию, но и уменьшает расход воды. Стоит заметить, что в 2002 г. насос GRUNDFOS UP Comfort получил европейскую премию за промышленный дизайн. В случае использования в качестве системы отопления системы «теплый пол» следует использовать регулируемые циркуляционные насосы типа ALPHA . При устройстве теплых полов все петли должны быть сбалансированы на одинаковый перепад давления, при этом потери давления в самой длинной петле (не более 120 м) определяют необходимый напор насоса. Из-за малого температурного перепада и большого перепада давления в системе подогрева полов требуется насос большей мощности, чем для радиаторной системы. Кроме того, следует учесть, что каждое помещение должно иметь свою систему управления. В случае использования в качестве системы отопления системы «теплый пол» следует использовать регулируемые циркуляционные насосы типа ALPHA . При устройстве теплых полов все петли должны быть сбалансированы на одинаковый перепад давления, при этом потери давления в самой длинной петле (не более 120 м) определяют необходимый напор насоса. Из-за малого температурного перепада и большого перепада давления в системе подогрева полов требуется насос большей мощности, чем для радиаторной системы. Кроме того, следует учесть, что каждое помещение должно иметь свою систему управления.
В таблице 3 приведены ориентировочные данные для подбора насосов для теплых полов.

Таблица 3. Рекомендуемый регулируемый насос для систем «Теплых полов»


Итак, в нашем обзоре мы постарались ответить на большинство вопросов, которые возникают у покупателей циркуляционных насосов. Безусловно, как уже говорилось, расчет и монтаж систем отопления – дело сложное и требующее квалифицированного подхода. Однако понять, как система работает и для чего и как служат различные ее элементы несложно и вполне доступно современному домовладельцу. Более того, такие познания не только облегчат эксплуатацию дома, но и позволят с открытыми глазами сделать выбор наилучшего варианта среди всего многообразия сегодняшнего рынка.

Ознакомиться с линейкой циркуляционных насосов Grundfos Вы можете в разделе Циркуляционные насосы для систем отопления и кондиционирования

Как выбрать циркуляционный насос для отопления

В нынешних системах отопления циркуляционный насос – это движущая сила всего процесса. Особенно возросла роль этих агрегатов с тех пор, как гравитационные системы с естественной циркуляцией стали постепенно уходить в прошлое. Даже в частных домах, где они еще функционируют, хозяева приобретают и ставят на байпасе насос для повышения давления с целью оптимизировать работу самотечной схемы. В данной статье как раз и пойдет речь о том, как выбрать циркуляционный насос для системы отопления, предварительно определив все необходимые параметры.

Принцип работы циркуляционных насосов

Задача, которую призваны выполнять циркуляционные насосы для отопления частных домов, относительно проста. Создавая в трубах с теплоносителем избыточное давление, агрегат принудительно заставляет его циркулировать, тем самым обеспечивая доставку необходимого количества тепловой энергии во все помещения дома. Наличие такого нагнетателя позволяет не только уменьшить диаметры труб отопительных контуров, но и проложить их наиболее удобным способом и даже с учетом особенностей интерьера.

В настоящий момент существуют такие виды циркуляционных насосов:

  • с сухим ротором;
  • с мокрым ротором.

Насос с сухим ротором представляет собой обычный электродвигатель, на валу которого установлена крыльчатка, размещенная в герметичном корпусе. То есть, в этом агрегате перекачивающий узел и привод размещены отдельно и, конечно же, ротор электродвигателя никак не соприкасается с теплоносителем. В силу своих характеристик данные нагнетатели используются там, где нужна значительная мощность циркуляционного насоса – в тепловых сетях промышленных предприятий или централизованных котельных различных учреждений и организаций.

Мощные циркуляционные насосы для систем отопления с отдельным приводом отличаются внушительными габаритами и высоким уровнем шума, что делает невозможным их применение в частном домостроительстве. В индивидуальных системах устанавливаются агрегаты с мокрым ротором, имеющие совсем малые размеры и практически не издающие шума при работе. В этих перекачивающих устройствах для отопления дома привод и крыльчатка совмещены в одном корпусе. Для герметизации ротор помещен в оболочку из нержавеющей стали и помещен внутрь гильзы из того же материала. Гильза защищает от влаги статор агрегата, вся конструкция показана на рисунке:

Примечание. Конструктивно циркуляционные насосы для теплого пола ничем не отличаются от тех, что устанавливаются в основные контуры отопления и подбираются они по такому же принципу, о чем будет сказано ниже.

Немного о производителях. Один из самых популярных брендов – немецкие циркуляционные насосы WILO. За годы эксплуатации они зарекомендовали себя с наилучшей стороны. Производитель предлагает несколько линеек агрегатов различной мощности и набором функций. Так что при выборе марки насосов стоит в первую очередь обратить внимание на этот бренд. Также широко распространены насосы фирмы GRUNDFOS, но их качество немножко похуже.

Расчет производительности насоса

Для начала определим все параметры, по которым производится подбор циркуляционного насоса для системы отопления. И хотя этих параметров немного, но каждый из них требует выполнения серьезных вычислений, простыми словами, надо сделать гидравлический расчет системы. Следует отметить, что подобные расчеты довольно сложны и если вы задались целью определить характеристики насосов таким путем, то придется запастись терпением. Мы же постараемся максимально упростить данный процесс.

По сути, для правильного подбора перекачивающего агрегата необходимо рассчитать 2 основных параметра:

  • производительность;
  • развиваемое рабочее давление (напор).

Рабочая производительность насоса проистекает из тепловой мощности всей системы отопления. Простыми словами, агрегат должен перекачивать такой объем теплоносителя, чтобы доставить вместе с ним достаточное количество тепловой энергии радиаторам во всех помещениях. Для этого нужно знать потребную на обогрев здания тепловую мощность. Если брать укрупненно по квадратуре, то на дом площадью 100 м2 величина мощности составит 10 кВт. Тогда расчет производительности выполняется по формуле:

G = 3600Q/(c∆t), где:

  • G – требуемый расход теплоносителя, кг/ч;
  • Q – тепловая мощность системы, кВт;
  • с – удельная теплоемкость воды, равна 4.187 кДж/кг ºС;
  • Δt– разница температур в подающей и обратной магистрали, при расчетах обычно принимается равной 20 ºС.

Циркуляционный насос для котла в нашем примере со зданием 100 м2 должен обладать такой производительностью:

3600 х 10 х 4.187 х 20 = 429.9 кг/ч или 0.43 т/ч.

Осуществляя выбор циркуляционного насоса, вы можете заметить, что его производительность в паспорте или инструкции по эксплуатации указана не в массовых единицах расхода, а в объемных. Тогда надо просто перевести массу воды в объем через плотность, которая при температуре +60 ºС составляет 0.983 т/м3:

0.43 /0.983 = 0.44 м3/ч – это и есть искомая рабочая производительность агрегата.

Важно. Чтобы работа циркуляционного насоса была надежной и долговечной, он должен функционировать в комфортном для себя диапазоне мощности. При выборе надо убедиться в том, что нужная вам производительность лежит в этом диапазоне.

Подбор насоса по напору и расходу

Следующий этап расчета циркуляционного насоса более сложный и состоит в том, чтобы определить его рабочее давление. Его должно хватать на преодоление:

  • сопротивления трению воды о стенки трубопроводов;
  • местных сопротивлений, изменяющих структуру потока (повороты, тройники, арматура, оборудование и так далее).

В математическом выражении формула для расчета мощности насоса, то бишь, необходимого давления, выглядит следующим образом:

P = Rl + Z, где:

Р – общие потери давления в системе, что должны преодолеваться насосом, Па;

  • R – удельные потери на трение, Па/м;
  • l – длина трубопровода одного диаметра, м;
  • Z – падение давления в местных сопротивлениях, Па.

Вот тут-то и начинаются дебри, разобраться в которых простому домовладельцу подчас очень сложно. Мы предлагаем вычислить напор насоса более простым путем. Для этого надо следовать алгоритму:

  • ройдите по ссылке http://dwg.ru/dnl/11875 и в один клик скачайте «Таблицы для гидравлического расчета Шевелевых». Начиная со страницы 31 (Таблица 1) показаны значения 1000i для разных расходов и диаметров труб;
  • рассчитанный ранее расход для водяного насоса пересчитайте из м3/ч в л/сек. В нашем примере получится 0.12 л/сек;
  • находим это значение в левом столбце таблицы и принимаем оптимальный диаметр трубы по столбцам справа. Скорость движения должна лежать в пределах 0.7—1 м/с. Для нашего примера и стальных труб скорость будет 0.71 м/с, а диаметр – 15 мм (стр. 32).

Берем значение 1000i из того же столбца (у нас – 139.9) и высчитываем сопротивление всей трубы на трение. Если взять ее протяженность 20 м в приведенном примере, то сопротивление будет:

139.9 / 1000 х 20 = 2.8 м водного столба или 0.28 Бар. Поскольку система отопления состоит из труб разных диаметров, то надо просчитать таким же образом сопротивление каждого из них. После этого все результаты суммируются и получаем общие потери давления на трение (значение Rl в формуле).

Чтобы произвести окончательный подбор насоса по параметрам, осталось узнать величину потерь давления в местных сопротивлениях (значение Z в формуле). Что касается котла, запорной арматуры и радиаторов, то их сопротивления указаны в техническом паспорте, их надо суммировать и приплюсовать к предыдущей цифре потерь на трение. Падение давления на поворотах, тройниках и прочих местных сопротивлениях надо просто принять в размере 20% от общих потерь на трение и прибавить их к полученной ранее сумме. На этом расчет окончен.

Заключение

Современная система отопления с циркуляционным насосом имеет массу достоинств. Но чтобы ее смонтировать, надо потратить время и усилия на подбор оборудования, в том числе и насоса. Как видите, дело это непростое, если нет уверенности в своих силах, то лучше в этом вопросе довериться специалисту.

Объемный расход и повышение температуры

Ни один насос не идеален с КПД 100% . Энергия, теряемая на трение и гидравлические потери, преобразуется в тепло — нагрев жидкости, транспортируемой через насос.

Повышение температуры можно рассчитать как

dt = P с (1 — μ) / (c p q ρ) (1)

, где

dt = температура подъем насоса ( o C)

q = объемный расход через насос (м 3 / с)

P s = тормозная мощность (кВт)

c p = удельная теплоемкость жидкости (кДж / кг o C)

μ = КПД насоса

ρ = плотность жидкости (кг / м 3 )

Типичное соотношение между расходом и КПД и потребляемая мощность центробежного насоса:

Насос — Калькулятор повышения температуры

P с — тормозная мощность (кВт)

μ — КПД насоса

c p удельная теплоемкость (кДж / кг o C)

q — объемный расход (м 3 / с)

ρ — плотность (кг / м 3 )

Пример — Повышение температуры в водяном насосе

Повышение температуры в водяном насосе, работающем при нормальных условиях с расходом 6 м 3 / ч (0.0017 м 3 / с) , мощность торможения 0,11 кВт и КПД насоса 28% (0,28) можно рассчитать как

dt = (0,11 кВт) (1 — 0,28) / ((4,2 кДж / кг o C) (0,0017 м 3 / с) (1000 кг / м 3 ))

= 0,011 o C

Удельная теплоемкость воды c p = 4,2 кДж / кг o C .

Если поток через насос уменьшается за счет дросселирования нагнетательного клапана, повышение температуры увеличивается.При уменьшении расхода до 2 м 3 / ч (0,00056 м 3 / с) тормозная мощность немного снижается до 0,095 кВт , а КПД насоса снижается до 15% (0,15) — температура подъем можно рассчитать как

dt = (0,095 кВт) (1 — 0,15) / ((4,2 кДж / кг o C) (0,00056 м 3 / с) (1000 кг / м 3 ) )

= 0,035 o C

С производственной документацией повышение температуры по сравнению с дросселированием может быть выражено как:

Руководство по выбору размеров теплового насоса: ручные расчеты J и рейтинги SEER

Тепловой насос является важным компонентом вашего дома и представляет собой энергоэффективное решение для обеспечения комфорта вашего пространства зимой и летом.Тепловой насос, выполняющий одновременно функции нагрева и охлаждения, передает тепло из воздуха и перемещает его через кондиционер в другое место. Зимой цикл меняется на противоположный, чтобы перекачивать тепло с улицы в ваш дом.

Чтобы поддерживать в доме приемлемую температуру, важно приобрести тепловой насос подходящего размера. Но покупка теплового насоса может оказаться утомительным процессом. Выбор теплового насоса подходящего размера для вашего дома может показаться сложной задачей. К счастью, у нас есть несколько советов, которые помогут вам начать работу.

Факторы, которые следует учитывать при выборе теплового насоса

Первым шагом при выборе теплового насоса является расчет нагрузки. Вы делаете это, рассчитывая в кубических метрах общий объем отапливаемых помещений. Основываясь на пространстве, размере, теплоизоляции и многих других переменных в доме, вы можете определить необходимое количество БТЕ. Чтобы правильно оценить необходимое количество БТЕ, мы рекомендуем поговорить со специалистом по HVAC.

Если размер вашей старой системы теплового насоса был правильным, специалист по HVAC легко заменит ваш тепловой насос на аналогичную модель.Однако для любых изменений в доме может потребоваться тепловой насос другого размера. Чтобы определить подходящий размер теплового насоса, мы рекомендуем использовать метод ручного расчета J нагрузки.

Ручная проверка J

Перед тем, как определить, какой размер теплового насоса вам нужен, вы должны сначала нанять специалиста по HVAC для выполнения J-осмотра вручную. Руководство J — это протокол, разработанный Американской ассоциацией подрядчиков по кондиционированию воздуха (ACCA), в котором содержатся инструкции по оценке структурных и тепловых характеристик вашего дома.Чтобы определить, сколько тепла и холода вам нужно, оцениваются такие переменные, как уровень изоляции, размер вашего дома и герметичность воздуховодов.

После того, как специалист по HVAC завершит ручную проверку J, вы готовы выбрать размер теплового насоса, который подходит для вашего дома.

Тип климата

Хотя тепловые насосы доступны во множестве размеров, этот тип системы отопления и охлаждения не предназначен для эффективной работы в холодных регионах страны.Поскольку тепловые насосы используют относительно меньше энергии для перемещения тепла из одного места в другое, эти устройства лучше всего работают в умеренном климате. Вот почему вы должны провести исследование, чтобы выбрать подходящий тепловой насос или систему отопления для своего дома. Если вы живете в очень холодном климате, обычно ниже 10–25 градусов Фаренгейта, вам может потребоваться дополнительная система отопления.

Вспомогательное тепло использует электрическое сопротивление для преобразования почти 100% энергии электричества в тепло.Из-за этого электрический резистивный нагрев менее эффективен, чем ваш тепловой насос, и его следует использовать только при необходимости.

Рейтинг SEER

Когда вы определяете размер системы теплового насоса для своего дома, убедитесь, что приобретаете устройство с хорошим рейтингом SEER. Аббревиатура SEER означает «Сезонный коэффициент энергоэффективности». Рейтинг SEER — это соотношение, которое измеряет эффективность охлаждения для систем с воздушным источником и бесканальных раздельных систем. Затем полученная энергия делится на ватт-часы.

Для Северо-востока, Среднего Запада и Тихоокеанского Северо-Запада 13 SEER является минимальным федеральным стандартом для новых единиц. Для остальной части страны минимальный стандарт составляет 14. Чем выше рейтинг SEER, тем эффективнее ваша система теплового насоса может производить теплый и холодный воздух. Для тепловых насосов вам следует рассмотреть модель с рейтингом 15 SEER или выше. С другой стороны, тепловые насосы с рейтингом Energy Star имеют рейтинг SEER, который варьируется от 18 до 27,5.

Для более теплого климата мы рекомендуем приобрести устройство с более высоким значением SEER; для более холодного климата ищите более высокий рейтинг HSPF.HSPF измеряет эффективность тепловых насосов с воздушным источником. Чем выше рейтинг SEER, тем выше стоимость системы. Однако системы с рейтингом Energy Star могут в долгосрочной перспективе сэкономить деньги на счетах за коммунальные услуги.

Почему так важно выбрать правильный размер теплового насоса

Когда дело доходит до теплового насоса, размер имеет значение. Слишком большой или маленький тепловой насос имеет последствия. Неправильный тепловой насос может привести к плохому распределению воздуха, более высоким счетам за коммунальные услуги, сокращению срока службы, недостаточному осушению, постоянному ремонту — этот список можно продолжать.Обратите внимание на некоторые явные признаки того, что ваш тепловой насос может быть неподходящего размера.

Негабаритные тепловые насосы

Если у вас есть тепловой насос, который слишком велик для вашего дома, у вас могут возникнуть следующие симптомы:

— Короткое зацикливание (когда устройство часто включается и выключается)

— Горячие точки по всему дому

-высокая влажность

— Более высокие счета за электроэнергию

Тепловые насосы малого размера

Если у вас есть тепловой насос, который слишком мал для вашего дома, у вас могут возникнуть следующие симптомы:

— Короткое зацикливание (когда устройство часто включается и выключается)

— Более высокие счета за электроэнергию

— Плохое распределение воздуха

— Странные шумы или запахи

Если вы заметили какой-либо из следующих симптомов, обратитесь к специалисту по HVAC, чтобы узнать, какой размер теплового насоса вам нужен для устранения влажности и горячих точек в вашем доме /.

Отопление и кондиционирование воздуха

Если вам нужны квалифицированные услуги HVAC, свяжитесь с нашей командой в Wm. Хендерсон. Помимо услуг по ремонту, установке и техническому обслуживанию тепловых насосов, мы также предоставляем широкий спектр услуг по отоплению, охлаждению и сантехнике. Мы предлагаем услуги HVAC и сантехнические услуги для бесканальных мини-сплит-систем, центральных кондиционеров, котлов и печей. Позвоните нашей команде по телефону (484) 206-8594 или запишитесь на прием онлайн, чтобы получить надежный ремонт систем отопления и кондиционирования воздуха рядом с вами в Пенсильвании.Мы предлагаем услуги HVAC в таких районах Пенсильвании, как Брумолл, Коутсвилл, Коншохокен и Западный Честер.

COP тепловых насосов (определение коэффициента производительности)

COP или C oefficient O f P erformance — самый базовый показатель энергоэффективности для любого теплового двигателя. Это полезно при сравнении тепловых насосов, холодильников и кондиционеров.

Определение: COP — это отношение количества полезного тепла (или холода), которое будет производить тепловой насос, если мы дадим ему определенное количество энергии.

По сути, он говорит нам, сколько тепла мы можем произвести с каждым ваттом энергии.

Другой КПД тепловых насосов

Пример: У нас есть тепловой насос мощностью 1000 Вт с КПД 3,5 . Это означает, что мы питаем его мощностью 1000 Вт, а тепловой насос возвращает нам 3500 Вт тепла. Это очень энергоэффективный тепловой насос. Он будет кипятить почти 10 галлонов воды в час .

Для сравнения: Тепловой насос мощностью 1000 Вт с COP , равным 2 , будет кипятить менее 6 галлонов воды в час .

Помните, что количество потребляемой электроэнергии одинаково в обоих случаях. Эксплуатация нагревателя мощностью 1000 Вт в течение часа стоит около 13 центов.

В среднем нагреватель с COP 3.5 кипятит галлон воды менее чем за 1 цент. Нагреватель COP 2 вскипятит галлон воды более 1 цента.

Намного лучше иметь водонагреватель COP 3,5, чем водонагреватель COP 2. Например, известно, что лучшие водонагреватели без резервуаров имеют высокий коэффициент полезного действия.

Пример: Даже небольшой электрический водонагреватель без бака имеет мощность 9 000 Вт. Более крупные с 15+ галлонами в минуту могут потреблять до 36 кВтч каждый час. Высокий КПД такого теплового насоса важен для оптимизации затрат на электроэнергию. С другой стороны, устройства, которые не потребляют много энергии, например портативные кондиционеры с батарейным питанием, имеют низкий КПД.

Давайте посмотрим, как рассчитывается COP, каков максимально возможный COP теплового насоса и как на счет за электроэнергию влияют блоки HVAC с разными значениями COP.

Как рассчитать КПД? Формула КС

Вот формула COP (уравнение, которое вычисляет коэффициент полезного действия для любого теплового насоса) :

COP = Q / W

где Q — тепло, выделяемое нагревателем, если мы даем ему определенное количество работы (Вт).

Для охлаждения Q представляет тепло, которое мы забираем из холодного резервуара. Кондиционер, например, отводит тепло из комнаты (резервуар для холода).

Примечание: COP для отопления и COP для охлаждения могут быть разными.Например, лучшие мини-сплит-тепловые насосы способны как охлаждать пространство, так и нагревать его.

Хорошая мини-сплит-система обычно имеет коэффициент COP при охлаждении 2 или более и коэффициент COP при нагревании 3 или более.

Если мы применим 1-й закон термодинамики и сделаем небольшой вывод, мы сможем увидеть значения COP для теоретически 100% идеального теплового насоса и идеального кондиционера (мы также называем это машиной Карно). Давайте сначала займемся тепловым насосом:

COP теплового насоса

Вот как можно рассчитать теоретически максимальный КПД теплового насоса:

COP тепловой насос = T горячий / (T горячий -T холодный )

T hot — это та уютная горячая температура, которую мы хотим иметь в холодные зимы (скажем, 95F; это 298 по Кельвину).

T холодный — это температура холода, при которой тепловой насос начинает работать (57F или 287K).

Теоретический максимальный COP рассчитывается следующим образом:

COP тепловой насос = 298K / (298K-287K) = 27,09

Итак, теоретически тепловой насос может иметь КПД даже выше 20. Тем не менее, реальный КПД теплового насоса на практике намного ниже.

Золотой стандарт: Стандартный тест для измерения COP теплового насоса проводится с T горячее = 95 F (308 K) и T холодное = 32 F (273 K).Это означает, что в 100% идеальном случае максимальный COP составляет 8,8. Но на практике он ниже.

Фактически, самый высокий КПД, который может достичь тепловой насос, составляет около 4,5. Любой тепловой насос с КПД выше 3 имеет очень высокую энергоэффективность.

Вот график того, насколько эффективнее тепловые насосы с высоким КПД. Мы установили COP 2 равным нулю и рассчитали, на сколько процентов эффективнее тепловые насосы с более высоким COP.

Вы можете, например, увидеть, что насос 3,2 COP на 60% более энергоэффективен, чем 2 насоса COP.

Коэффициент полезного действия кондиционеров

Хорошо, давайте посчитаем максимальный теоретический КПД охлаждающего устройства. А именно кондиционер или холодильник. Применяя 1-й закон термодинамики, мы можем вывести «КПД Карно» для охлаждающего устройства, рассчитанный следующим образом:

COP охлаждение = T холодный / (T горячий -T холодный )

T холодный — это температура холода, которую вы хотите поддерживать в своей комнате летом.T hot — это высокая температура тепловой волны.

Давайте посмотрим, каким будет КПД кондиционера в стандартизованном интервале температур T горячий = 95 F (308 K) и T холодный = 32 F (273 K). Подставляя температуру в приведенное выше уравнение охлаждения COP, мы получаем 7,8.

Если вы помните, максимальный КПД теплового насоса был 8,8. Если вы хотите купить кондиционер, убедитесь, что он имеет значение COP выше 2. Это очень высокий коэффициент COP для практичного охлаждающего устройства HVAC.

Обычно проблема заключается в том, что вы нигде не найдете значения COP, даже на листе технических характеристик. Энергоэффективность обычно представлена ​​такими показателями, как EER и SEER; все это основано на COP разделителя HVAC. Например, мы сравнили лучшие портативные кондиционеры, сравнив их рейтинги EER.

Сезонный COP или SCOP

В 2013 году был введен SCOP или сезонный коэффициент производительности . Мы знаем, что COP — это показатель энергоэффективности нагревательного или охлаждающего устройства.Измерение SCOP пытается объективно измерить энергоэффективность в течение зимнего сезона (для отопления) и летнего сезона (для охлаждения).

В основном отношения между SCOP и COP такие же, как между SEER и EER.

SCOP даст гораздо более реалистичное представление о том, насколько энергоэффективно устройство HVAC на практике, то есть в реальном летнем сезоне.

Тем не менее, SCOP все еще рассматривает совершенно новую методологию измерения сезонной эффективности охлаждения и обогрева.Таким образом, вы редко встретите коэффициент SCOP на старых устройствах. Фактически, даже новые устройства редко включают SCOP в свои спецификации, прежде всего потому, что они еще не измерили его.

Примеры теплового насоса «воздух-воздух» или теплового насоса «воздух-воздух»

Пример 1

Рассчитайте идеальный коэффициент полезного действия (COP) теплового насоса «воздух-воздух», который используется для поддержания температуры в доме на уровне 70 ° F при температуре наружного воздуха 30 ° F.

Раствор:

Сначала преобразуйте температуру по Фаренгейту в температуру Цельсия по следующей формуле:

Thot = (70-32) × 59 = 21oCcold = (30-32) × 59 = -1oC

Затем преобразуйте температуру Цельсия в температуру Кельвина, добавив 273.

Thot = 21oC + 273 = 294K

Tcold = -1oC + 273 = 272K

Наконец, используйте формулу из предыдущего экрана, чтобы решить для COP.

COP = (ThotThot-Tcold)

COP = (294K294K-272K) = 29422 = 13,3

Пример выше показывает, что на каждый ватт энергии, который мы используем (и платим) для привода этого идеального теплового насоса, 13,3 Вт подается внутрь дома и 12,3 Вт извне (мы не платим за это). Кажется, это сделка, от которой нельзя отказаться.Однако теоретический максимум никогда не достигается в реальном мире. На практике обычно значение COP находится в диапазоне от 2 до 6. Даже с этим диапазоном это отличный выбор, потому что на каждый ватт мощности, который мы используем, мы передаем от 1 до 5 дополнительных ватт извне.

Пример 2

Сравните идеальные коэффициенты производительности одного и того же теплового насоса, установленного в State College, PA и Ann Arbor, MI, когда внутренняя температура дома поддерживается на уровне 70 ° F в обоих местах, а температура наружного воздуха в данный день составляет 40 ° F и 15 ° F в Государственном колледже и Анн-Арборе соответственно.

Сравнение того же теплового насоса, установленного в State College, PA и Ann Arbor, MI
Государственный колледж, Пенсильвания Анн-Арбор, Мичиган
T горячий = 70 ºF = 21 ºC = 294 K T горячий = 70 ºF = 21ºC = 294 K
T холодный = 40 ºF = 4 ºC = 277 K T холодный = 15 ºF = -9,4 ºC = 264 K

COP = ThotThot-Tcold (294294-272)

COP = ThotThot-Tcold (294294-264)
= 17.3 = 9,8

Во время отопительного сезона КПД теплового насоса увеличивается в мягкие дни и снижается в холодные дни.

Как измерить бытовую систему водяного отопления Btu

Если вы читали эти статьи на протяжении многих лет, вы читали об измерении и расчетах производительности систем принудительного воздушного отопления и охлаждения. В связи с многочисленными недавними запросами читателей Hotmail, похоже, что сейчас самое подходящее время для обсуждения другого теплоносителя — воды.Поскольку зима приближается, давайте посмотрим, как измерить подачу британских тепловых единиц в бытовой системе водяного отопления.

Это будет краткое введение в измерение Btu водяной системы, и, если реакция будет хорошей, мы можем продолжить добавлять больше к основам измерения производительности водной системы.

Формула
Понимание математики — ключ к пониманию того, как Btus перемещаются в системе. Простая формула: доставленных системой БТЕ = 500 x галлонов в минуту x изменение температуры системы .Давайте посмотрим на формулу, чтобы понять, что означает каждая деталь, чтобы лучше ее понять.

Константа BTU в формуле равна 500. Поскольку BTU измеряется в час, 500 получается из одного галлона воды, который весит 8,33 фунта, умноженные на 60 минут за один час (8,33 фунта, умноженные на 60 минут = 500).

Вторая часть формулы, которую иногда труднее всего идентифицировать, — это галлоны в минуту или системные галлоны в минуту. Подробнее на эту тему мы поговорим ниже.

Наконец, нам нужно изменение температуры системы.Обратите внимание, что мы говорим об изменении температуры системы, а не об изменении температуры оборудования. Изменение температуры — это эффект Btus, переданного из системы в кондиционируемое пространство. Поэтому, если вы измеряете температуру воды, выходящей из теплообменника, и вычитаете температуру воды, возвращающейся из системы, вы обнаружите изменение температуры системы.

Рассчитать давление насоса и построить график в галлонах в минуту

Для целей этой статьи и поскольку мы рассматриваем только основы, давайте взглянем на расчет давления насоса и построение графика в галлонах в минуту в системе жидкостного водяного отопления.Мы могли бы обсудить гораздо более точные методы, но это только отправная точка. Это начальный тест для начинающих.

Так как нам не нужно заниматься проблемами утечки в воздуховоде, мы будем предполагать, что насос GPM является системным GPM. Для оценки GPM насоса необходимы два бита информации. Первый элемент — это характеристика насоса. Когда насос построен, каждый производитель публикует кривую производительности насоса. У вас должна быть точная кривая производителя, соответствующая установленному насосу, с правильным размером рабочего колеса, числом оборотов в минуту и ​​точным номером модели, иначе ваш тест Btu может отличаться более чем на 50%.Просто введите в Google слова, характеристика насоса, номер модели и название производителя. Наиболее актуальные характеристики насосов можно найти в Интернете.

Подобно кривой вентилятора, эта таблица графически представляет производительность насоса в определенных полевых условиях.

В идеале давление насоса измеряется с помощью манометров или устройства для настройки контура. Для ознакомления мы рассчитаем давление насоса по проверенной временем формуле.

Кроме того, при выполнении теста убедитесь, что все клапаны зон открыты и требуют нагрева.Тест производительности системы будет неточным, если одна или несколько зон будут закрыты.

Для расчета давления насоса в простой жилой системе используйте следующую формулу. Давление насоса в футах напора = футы трубы x 1,5 x 0,04.

Во-первых, чтобы найти футы трубы, измерьте общие погонные футы подающей и обратной трубы до и от самого дальнего нагревательного устройства в доме. 1,5 в формуле — это коэффициент, включающий сопротивление трубы потоку (давлению) и падение давления в компонентах системы (змеевиках, плинтусах, радиаторах и дополнительной арматуре).0,04 представляет собой типичный коэффициент трения трубы на 100 футов трубы.

Пример: Допустим, в доме есть 90 футов трубы в системе водяного отопления. Формула: 90 футов x 1,5 x 0,04 = 5,4 фута головы.

После того, как мы рассчитали давление насоса, мы можем использовать кривую насоса для построения графика насоса в галлонах в минуту. Сначала отметьте расчетное давление насоса на левой стороне кривой насоса, где находятся ноги напора. Во-вторых, постройте прямую линию по горизонтали вправо, пока она не пересечет закругленную линию кривой насоса.В-третьих, нанесите график прямо в нижнюю часть таблицы, чтобы определить количество галлонов в минуту, в котором движется насос.

Теперь вы нашли насос, GPM, и вы на шаг ближе к поиску системы, доставляющей Btu.

Измерение температуры в системе
Для обеспечения полной точности погружной термометр следует погружать в воду. Но я предположил, что у вас, вероятно, нет пробок Пита, чтобы получить доступ к температуре или давлению воды. Поэтому мы измеряем температуру на поверхности трубы, обернутой изоляцией, или с помощью накладного термометра, специально созданного для измерения температуры трубы.

Поскольку мы проверяем производительность системы, а не оборудования, измерьте температуру воды на расстоянии не менее 10 диаметров трубы ниже по потоку от насоса или теплообменника, где вода выходит из оборудования. Считайте и запишите температуру с точностью до 1/10 градуса.

Измерьте температуру возвратной воды, измерив температуру трубы не менее 10 диаметров трубы до того, как труба вернется к оборудованию. Следите за тем, чтобы измерения не производились непосредственно над котлом или слишком близко к дымоходу, чтобы не улавливать тепло оборудования при измерении температуры воды.

Вычтите температуру подаваемой воды из температуры обратной воды, чтобы найти изменение температуры системы.

Рассчитать доставленные системой Btu
Чтобы найти систему, доставленную Btu, умножьте константу Btu на 500 x расчетное значение насоса в галлонах в минуту x изменение температуры системы.

Пример: Допустим, вы рассчитываете давление насоса на 8,0 футах напора. Используя кривую насоса, вы строите график и обнаруживаете, что насос Taco 007 перемещается на 8,0 галлона в минуту. Затем вы измеряете температуру системы и обнаруживаете, что температура нагнетания равна 168.2F, а обратное давление — 152,4F. Вы вычитаете, чтобы найти изменение температуры системы на 15.8F. Теперь, когда у вас есть все факты, примените формулу гидронных британских тепловых единиц: 500 x 8,0 галлонов X 15,8 ° = 63 200 британских тепловых единиц.

Приближается ли поставка системы BTU к техническим характеристикам оборудования, или это новый котел мощностью 100 000 британских тепловых единиц, взломанный в испорченной системе трубопроводов 40-летней давности? Возможно, ваш клиент хотел бы, чтобы вы прописали некоторые дополнительные улучшения системы.

Это все, что вам нужно для завершения начального расчета БТЕ для бытовой гидронной системы.Помните, что это всего лишь начальный тест. Существуют гораздо более точные тесты и процедуры, необходимые для повышения точности и точного расчета системы, доставленной в британских тепловых единицах. Но это отличное начало.

К сожалению, нередки случаи, когда производительность гидравлической системы значительно ниже 60% от номинальной мощности оборудования. Вероятно, не стоит обещать клиентам, что их гидронная система идеальна, пока вы не измеряете ее производительность. Предполагать, что система работает с заявленной номинальной мощностью оборудования, — не лучшая идея.

Итак, насколько хорошо работала последняя гидронная система, над которой вы работали? Или насколько плохо это было? Если вы не можете честно ответить на этот вопрос, возможно, вы захотите провести измерения в следующий раз.

Роб «Док» Фалке служит в отрасли в качестве президента National Comfort Institute, обучающей компании, специализирующейся на измерении, оценке, улучшении и проверке характеристик систем HVAC. Если вы подрядчик или технический специалист по ОВКВ, заинтересованный в процедуре измерения производительности системы водяного отопления, свяжитесь с Доком по адресу robf @ ncihvac.com или позвоните ему по телефону 800-633-7058. Посетите веб-сайт NCI по адресу nationalcomfortinstitute.com для получения бесплатной информации, технических статей и загрузок.

Расчет отвода тепла от блока нагнетательного нагнетателя и вакуумного насоса

Когда внутри здания устанавливается вытяжной вентилятор или вакуумный насос, при проектировании системы вентиляции помещения необходимо учитывать следующие факторы. Недостаточная вентиляция помещения или ее отсутствие приведет к возникновению чрезмерных температур вокруг воздуходувки или вакуумного насоса, двигателя и принадлежностей, что приведет к выходу оборудования из строя.

Отвод тепла от упаковки:
Пакет отклоняет от 15 до 20% мощности двигателя в здание. Сюда входят тепловые потери двигателя, потери клинового ремня, потери на излучение вентилятора, потери на излучение глушителя и тепло, излучаемое аксессуарами.

PKHL = потери тепла в корпусе в БТЕ / мин = 0,2 * л.с. двигателя * 42,4 = 8,48 * л.с. двигателя

Потери тепла в трубопроводах:
Нагнетательный трубопровод внутри здания будет излучать тепло внутрь помещения.

PHL = Потери тепла в трубопроводе в БТЕ / мин = A * Y * (T 2 4 — T 1 4 )
A = Площадь поверхности труб в кв.Ft.
Y = Константа излучения = 2,855 × 10 -11 БТЕ / кв.фут / мин / R 4
T2 = Температура поверхности трубопровода в Рэнкине
T1 = Комнатная температура в Рэнкине

Общая тепловая нагрузка = PKHL + PHL = Вт * Cp * Δt

Вт = расход приточного воздуха в фунтах / мин.
Cp = удельная теплоемкость воздуха = 0,24 британских тепловых единиц / фунт ° R
Δt = повышение температуры в помещении выше температуры наружного воздуха в ° F
V = расход приточного воздуха в куб. Фут / мин = Вт / ρ , где ρ — плотность воздуха в фунтах / кубических футах

Система вентиляции помещения должна быть рассчитана на поддержание температуры в помещении не более чем на 5 ° F выше максимальной наружной температуры 100 ° F.Если наружная температура превышает 100ºF, потребуется специальная изоляция двигателя.

Потери тепла в трубопроводах можно уменьшить за счет изолирования трубопровода изоляцией.

При работе с вакуумом не выпускайте выхлопные газы из воздуходувки внутрь здания, вытягивайте выхлопные трубы наружу.

Также рекомендуется изолировать открытый нагнетательный трубопровод, чтобы уменьшить шум внутри здания. Гарантия на шум от агрегата не распространяется на шум от внешнего впускного / выпускного трубопровода, поставляемого другими поставщиками.

Пример — определение расхода воздуха для вентиляции
Мощность двигателя = 100
Наружная температура = 95 ° F = 460 + 95 = 555ºR
Комнатная температура = 100 ° F = 460 + 100 = 560 ° R
Температура нагнетания вентилятора = 280 ° F = 460 + 280 = 740 ° R
Напорная труба = диаметр 6 дюймов, длина 30 футов.
Площадь поверхности A = 3,14 * (6/12) * 30 = 47,1 кв. Футов
Тепловые потери в корпусе = 8,48 * 100 = 848 БТЕ / мин.
Потери тепла в трубопроводе = 47,1 * 2,855 × 10 -11 * (740 4 -560 4 ) = 293 БТЕ / мин
Общая тепловая нагрузка = 848 + 293 = 1141 БТЕ / мин
Вт = 1141 /.24/5 = 950,8 фунта / мин.
На уровне моря и при 95 ° F, плотность воздуха ρ = 14,7 * 144 / 53,3 / 555 = 0,071 фунта / куб. Фут

Расход воздуха для вентиляции = 950,8 / 0,071 = 13,391 куб. Фут / мин

Для нескольких агрегатов, установленных в помещении, сложите тепловую нагрузку от каждого агрегата и потери в трубопроводах, чтобы рассчитать необходимый вентиляционный поток.

Правильный расчет — ключ к эффективности

Тепловые насосы

— отличный выбор для поддержания комфорта в домах во Флориде круглый год. Они могут обеспечить эффективное охлаждение летом и сверхэффективное отопление зимой.Размер теплового насоса важен для достижения наилучшей производительности, поэтому убедитесь, что вы работаете с подрядчиком, который подберет его правильный размер.

Несмотря на то, что тепловые насосы могут обеспечивать как обогрев, так и охлаждение, для их определения следует использовать охлаждающую нагрузку вашего дома. В нашем теплом климате этот метод определения размеров, вероятно, приведет к созданию теплового насоса, который будет достаточно большим, чтобы удовлетворить ваши потребности в отоплении в подавляющем большинстве зимних дней, но в других климатических условиях тепловому насосу, возможно, придется прибегать к резервным нагревательным элементам в значительной степени. количество дней.

Причина, по которой тепловые насосы должны быть рассчитаны на основе охлаждающей нагрузки, заключается в том, что, хотя резервные нагревательные элементы намного менее эффективны, тепловые насосы, размер которых превышает охлаждающую нагрузку дома, приводят к еще большим потерям энергии в течение лета. . Это связано с тем, что им не нужно так долго работать, чтобы охладить ваш дом. Частое включение и выключение менее эффективно, чем длительная работа, и снижает влажность, что еще больше снижает эффективность.

Чтобы определить охлаждающую нагрузку вашего дома, ваш подрядчик должен выполнить подробный расчет на основе процесса, изложенного в Руководстве J от Подрядчиков по кондиционированию воздуха Америки (ACCA). Это обеспечит учет всех факторов для получения точного результата. Тот же процесс следует использовать для тепловой нагрузки вашего дома, чтобы определить размер необходимого резервного нагревательного элемента.

Если у вас есть какие-либо вопросы о размере теплового насоса или вам нужен подрядчик, который обеспечит оптимальную производительность вашего нового теплового насоса, обратитесь к специалистам Preferred Air Conditioning & Mechanical, Inc.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *