Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Чиллер принцип работы: Принцип работы чиллера с водяным охлаждением

Содержание

Принцип работы чиллера с водяным охлаждением

Рабочий цикл холодильных установок предполагает постоянное поддержание пониженной температуры конденсатора, в котором парообразный фреон снова переходит в жидкое состояние. На сегодняшний день в чиллерах применяется две схемы охлаждения – воздушное и водяное. Каждая из них обладает своими особенностями, преимуществами и недостатками. В данной статье будет рассмотрен принцип работы чиллера с водяным охлаждением со свойственной ему спецификой.

Устройство чиллера с водяным охлаждением

Прежде, чем рассматривать принцип работы водяного чиллера, необходимо понимать примерную схему конструкции таких установок. В общем виде она состоит из следующих элементов:

  • компрессор – данный элемент обеспечивает необходимое давление, достаточное для сжатия газообразного фреона до высокой (порядка 90⁰с) температуры;
  • конденсатор – в этой части сжатый хладагент отдает тепло и конденсируется, переходя в жидкое состояние, для чего и нужны система охлаждения;
  • испаритель – функция данной части заключается в тепловом обмене между охлажденным фреоном и теплоносителем (водой или этиленгликолем), разделенным герметичной перегородкой.

 

Таким образом, любой чиллер должен иметь систему охлаждения, чтобы обеспечивать хладагенту пониженную температуру перед его подачей в испаритель, где он закипает, отбирая тепло у теплоносителя.

 

Схемы водяного охлаждения чиллера

 

Вода, охлаждающая конденсатор, в свою очередь сама должна отдавать накапливаемое тепло. Для этого она подается в дополнительные модули, представляющие собой теплообменник между ней и воздухом. В холодильных установках с водяным охлаждением используются два типа этих устройств:

  • градирни – в них нагретая в конденсаторе вода распыляется через форсунки и контактирует с воздухом, отдавая ему тепло и вновь поступая в конденсатор.
  • драйкулеры – такие устройства представляют собой поверхностный теплообменник между водой и воздухом, обдуваемый осевыми вентиляторами;

 

Первый вариант водяного охлаждения в чиллерах появился раньше и отличается сложной конструкцией, необходимостью тщательного и регулярного обслуживания, а также громоздкостью системы. Сегодня все чаще применяются «сухие» градирни, так как по эффективности они не уступают предыдущим, в то же время характеризуясь простотой своей схемы и сервиса.

 

Преимущества и недостатки водяного охлаждения чиллера

 

Очевидно, что устройство чиллера с водяным охлаждением было разработано в качестве более эффективной альтернативы установкам с воздушным охлаждением. В качестве достоинств такой схемы указываются следующие моменты:

  • по сравнению с воздушным, водяное охлаждение позволяет уменьшить площадь теплообмена и, следовательно, сократить размеры самого конденсатора, что делает конструкцию чиллера более компактной;
  • при установке системы рекуперации нагретая в конденсаторе вода может быть использована в качестве дополнительного теплоносителя, например, для обогрева помещений, что позволяет более экономично и эффективно расходовать энергию;
  • благодаря более компактным размерам чиллеры с водяным охлаждением могут быть смонтированы внутри помещений, что особенно актуально в ситуациях с нехваткой наружной площади для размещения установок на крыше здания.

 

Однако у такой схемы существуют и недостатки, среди которых стоит указать следующие основные:

  • Водяное охлаждение требует установки дополнительного оборудования, что значительно усложняет систему и требует лишнего места для размещения драйкулера или градирни;
  • Система рециркуляции воды требует дополнительного энергообеспечения для работы вентиляторов.

 

Очевидно, что водяное охлаждение чиллера подразумевает регулярное обслуживание таких систем. Только подготовленный специалист знает, как работает данное оборудование, поэтому сервис подобных установок должен осуществляться поставщиками или компаниями, предоставляющими соответствующие услуги.

 

Чиллер для частного дома: преимущества и принцип работы

Для того чтобы в частном доме или коттедже в любое время сохранялся оптимально комфортный микроклимат необходимо позаботиться про обустройство системы вентиляции и кондиционирования.

Сегодня чаще всего с этой целью используются мультизональные и сплит-системы, однако к работе таких агрегатов есть несколько претензий в частности большое количество потребляемой электроэнергии  и ограниченное количество полезных функций.

Для дома с площадью от 150 кв. м оптимальным вариантом является чиллер. Такая установка обеспечивает как нагрев, так и охлаждение воздуха с минимальными затратами электричества.

Чиллер для обогрева и охлаждения помещений

Установка сплит-системы является оправданной только в том случае если речь идет об уже эксплуатируемой постройке. В том случае если строительство дома только планируется, специалисты рекомендуют изначально внести в проект универсальную установку, которая может работать в любое время года и обеспечивать как нагрев, так и охлаждение воздушной массы с ее предварительной очисткой, увлажнением или осушением.

Система чиллер-фанкойл работает очень эффективно и с ее помощью пользователь может создавать необходимый микроклимат в каждой отдельной комнате. Для регулировки температурного режима для каждого помещения предусматривается наличие дистанционного пульта. Фанкойлы устанавливаются в каждом обслуживаемом помещении на потолке, полу или стенах.

Схема чиллер-фанкойл

Настенные модели рассчитаны только на обогрев помещения и работают с помощью двухконтурной системы. В том случае если необходимо обеспечить и кондиционирование воздуха устанавливается четырехконтурная система с двумя теплообменниками для обогрева и охлаждения воздуха.

Для полноценного обогрева в зимнее время года и постоянного кондиционирования воздуха летом можно использовать такую разновидность чиллера как тепловой насос. В отличие от обычных чиллеров, тепловой насос работает в двух режимах и полноценно справляется как с обогревом, так и с охлаждением потребляя при этом минимальное количество электроэнергии.

Схема чиллер-фанкойл 2

В качестве хладагента в системах чиллер-фанкойл в качестве теплоносителя применяется вода или этиленгликолевый раствор. Вода является более доступным теплоносителем, однако при постоянном нагреве она быстро испаряется из системы. Кроме того при установке основных агрегатов на улице, в зимнее время вода в контуре может замерзнуть при снижении температуры до нуля градусов что повлечет за собой сбои в работе системы.

С этиленгликолевым раствором система чиллер-фанкойл может работать бесперебойно при любых погодных условиях, однако, используя такое вещество, следует помнить о правила безопасности и систематически проверят герметичность системы.

Преимущества использования

Использование чиллера в частном доме имеет ряд существенных преимуществ:

  • Возможность отопления всех помещений зимой и охлаждения воздуха в летний зной.
  • Максимальная степень энергосбережения при работе системы на разных уровнях нагрузки.
  • Простота эксплуатации.
  • Возможность установки индивидуальных параметров микроклимата для каждой комнаты.
  • Отсутствие необходимости установки громоздких радиаторов.
  • Создание комфортного микроклимата в считанные минуты.

 

Для того чтобы получить ожидаемый результат от работы чиллера, его установку следует доверить опытным специалистам. Эксперты помогут правильно определиться с моделью  и его мощностью для того чтобы вы могли создавать приятный микроклимат в доме в любую погоду с минимальными затратами электроэнергии.

Устройство и принцип работы чиллера

Чтобы создать у себя в доме комфортные условия летом, мы стремимся охладить воздух в жилище, устанавливая кондиционеры. Когда надо снизить температуру в 2 или 3 комнатах, мы ставим столько же охладителей или сплит-систем. А что делать, если нужно поддерживать прохладу в большом частном доме, да еще и с двумя или тремя этажами? Для таких целей вместо кондиционеров используется климатическая система чиллер-фанкойл. О том, что это такое и как это работает, пойдет речь в данном материале.

Содержание статьи:

Принцип действия системы

Современная система чиллер – фанкойл призвана поддерживать температурный режим внутри всего здания круглогодично. То есть, система может обеспечивать как охлаждение, так и нагрев воздушной среды. При этом температура в комнатах может регулироваться в соответствии с пожеланиями домовладельца. В летнее время главную роль здесь играет охлаждающее устройство – чиллер.

Его задача – выработать холод и подать его внутрь здания, используя трубопроводы с хладоносителем, что зимой играет роль теплоносителя.

В качестве хладоносителя выступает, как правило, обычная очищенная вода, реже – незамерзающее вещество – этиленгликоль. Последний по своей теплоемкости не уступает воде, оттого успешно применяется вместо нее как в системе хладоснабжения, так и отопления. Далее, по трубам вода с низкой температурой поступает в другой теплообменный агрегат – фанкойл, установленный в каждом помещении. В его теплообменнике вода нагревается, передавая свой холод воздуху комнаты, после чего возвращается обратно в чиллер.

Потолочный фанкойл

По сути, основные элементы системы чиллер-фанкойл напоминают детали кондиционера, — наружный блок (чиллер), внутренний блок (фанкойл) и соединяющие их трубопроводы с хладагентом. Только вместо фреона по трубам течет вода, а внутренних блоков может быть сколько угодно, это зависит от холодопроизводительности чиллера.

Поскольку работа чиллера зависит от потребности в холоде, а она непостоянна, то в промежуточном гидравлическом модуле схемы имеется емкость – аккумулятор для хладоносителя, а для компенсации теплового расширения воды к трубопроводу подачи подключен расширительный бак. Необходимость в насосе для перекачки хладоносителя очевидна, что и показано на схеме.

Соединение чиллера и фанкойлов через гидравлический модуль

Как было сказано выше, данная климатическая система относится к воздушным и в зимнее время может работать на обогрев помещений, только хладагент, охлаждающий воздух, становится теплоносителем и нагревается котельной установкой. Благодаря этому подобные схемы задействованы для поддержания микроклимата в зданиях крупных торговых центров, кинотеатров и прочих строениях с большими габаритами.

Разновидности чиллеров

Надо сказать, что фреон в системе все равно присутствует и находится он внутри холодильной машины. То есть, принцип работы чиллера, как и кондиционера, заключается в переносе тепла рабочим телом (фреоном) от одной среды к другой. В нашем случае тепло отбирается испарителем чиллера от нагретой в фанкойле воды и передается окружающему воздуху либо снова воде, что служит своего рода посредником – охладителем конденсационного блока.

Напомним, что фреон, — это газ, переходящий при стандартных условиях в жидкое агрегатное состояние. Это свойство использует устройство чиллера, где фреон испаряется в теплообменнике – испарителе. Происходит это за счет отбора энергии для парообразования у нагретой в фанкойлах воды. В результате последняя снова уходит в здание на охлаждение воздуха, а фреон, нагнетаемый компрессором, попадает во второй теплообменник – конденсатор, где он охлаждается и снова возвращается в жидкое состояние.

Процесс конденсации во втором теплообменнике чаще всего происходит под воздействием наружной среды, этот принцип использует чиллер с воздушным охлаждением. Для достижения высокой эффективности процесса воздух прогоняется сразу сквозь несколько радиаторов с помощью осевых вентиляторов, обеспечивающих потребный расход.

В климатических системах больших зданий часто задействованы чиллеры с водяным охлаждением, чей принцип действия мало чем отличается от воздушного агрегата. Только здесь для конденсации фреона установлен другой тип теплообменника, в котором циркулирует вода, она служит охладителем вместо воздуха.

Принцип работы установки с водяным охлаждением

В результате получается более дорогая и сложная схема с дополнительным контуром водяного охлаждения, зато холодопроизводительность такой системы выше, нежели у воздушной. Сложность и дороговизна возникают из-за того, что саму охлаждающую конденсатор воду тоже надо охлаждать, но теперь уже с помощью воздуха, а для этого требуется дополнительная установка – градирня (драйкулер). Функционирует она просто: вода проходит через несколько радиаторов, на каждом из которых установлен осевой вентилятор большой производительности, прогоняющий сквозь него мощный поток воздуха.

Принцип работы фанкойла

Разобравшись в работе чиллера, перейдем к рассмотрению, что такое фанкойл. Это устройство, обеспечивающее процесс теплообмена внутри каждого помещения. Его задача – поддержание температуры воздушной среды на заданном уровне, для этой цели агрегат снабжен необходимыми приборами и средствами автоматизации.

Действует он по той же схеме, что и драйкулер: через алюминиевый радиатор, внутри которого циркулирует вода, осевым вентилятором прогоняется воздушный поток. Пройдя через ребра теплообменника, он отдает тепловую энергию воде, а сам охлаждается и возвращается в комнату. Рабочая схема фанкойла показана ниже  на рисунке.

Фанкойл

1 – панель для подключения электрического оборудования; 2 – корпус агрегата в потолочном исполнении; 3 – вентилятор; 4 – теплообменник из алюминия или меди; 5 – ванночка для конденсата; 6 – клапан воздушный с фильтром; подключение трубки и конденсатного насоса.

Поскольку работа фанкойлов в летнее время связана с большим расходом охлаждаемых воздушных масс, в конструкции агрегата предусмотрена специальная емкость для накопления конденсата и небольшой насос, откачивающий его в канализацию. Помимо потолочного исполнения фанкойла, изображенного на схеме, существуют канальные и настенные модели устройств.

В отличие от системы отопления, соединение чиллера с фанкойлами осуществляется трубопроводами, покрытыми теплоизоляцией, в противном случае КПД всей системы ощутимо снизится.

Площадь любого жилища или общественного здания поделена на климатические зоны с разным температурным режимом. По этой причине каждую зону должен обслуживать один или группа фанкойлов, имеющих одинаковые настройки автоматики. Общее же количество фанкойлов определяется расчетом еще на стадии разработки схемы.

Следует отметить, что без корректного расчета и проектирования системы здесь не обойтись, так как все перечисленное оборудование имеет весьма приличную стоимость. Цена ошибки слишком высока, поскольку неверно подобранный чиллер для охлаждения воды или фанкойл в ту или иную комнату не смогут обеспечить требуемый микроклимат, а переделывать все по новой будет очень дорого.

Заключение

Системы чиллер – фанкойл отличаются эффективной работой и экономией энергоресурсов, для производства 3 кВт холода нужно ориентировочно 1 кВт электроэнергии. Но проектирование, приобретение оборудования, а также монтаж и обслуживание фанкойлов и чиллера требуют немалых вложений.

Кандидат технических наук. Начальник Центра образовательных стандартов и программ «Московского государственного строительного университета» (НИУ «МГСУ»).

Рекомендуем:

Промышленный чиллер: типы, принципы работы и отличия

Промышленный чиллер предназначен для решения задач охлаждения в технологических процессах на производстве и в климатических системах большой мощности.

Типы промышленных чиллеров

В зависимости от применяемой технологии охлаждения промышленные чиллеры бывают:

  • Парокомпрессионные или электрические.
  • Абсорбционные.

Парокомпрессионные чиллеры (называемые также парокомпрессионнные холодильные машины) — традиционное решение задач холодоснабжения, применяемое на большинстве промышленных предприятий. Устройство парокомпрессионного чиллера включает испаритель, компрессор, конденсатор и расширительный клапан. Каждый из этих элементов отвечает за определенный этап процесса охлаждения.

Широкое распространение парокомпрессионные чиллеры получили благодаря тому, что:

  • имеют достаточно много вариантов конструкции, что позволяет выбрать холодильную установку с учетом сферы ее применения, места установки и особенностей эксплуатации;
  • обеспечивают высокую производительность и точный контроль заданной температуры;
  • номенклатура большинства производителей включает значительное число стандартных моделей, и промышленный чиллер можно оперативно выбрать, приобрести и запустить в работу.

Основные отличия парокомпрессионных чиллеров от абсорбционных

Основной и весьма существенный недостаток парокомпрессионных машин, наряду с использованием фреонов, – высокий уровень потребления электроэнергии.

Поэтому сегодня во многих сферах применения эту, ставшую уже традиционной технологию, постепенно вытесняют системы холодоснабжения на базе АБХМ.

Абсорбционный промышленный чиллер использует в качестве основного источника энергии тепло горячей воды, пара, выхлопных газов или сжигания топлива, и обеспечивает охлаждение жидких сред до температуры +5 °С, а также их нагрев до 95 °С независимо от температуры окружающей среды.

Принцип действия АБХМ основан на свойстве водного раствора бромистого лития, используемого в качестве рабочего раствора, претерпевать фазовые превращения (испаряться и конденсироваться при низком давлении в разных частях чиллера). По сути абсорбционная холодильная машина представляет собой пароконденсационную холодильную установку. Единственными потребителями электрической энергии в АБХМ являются насосы хладагента и рабочего раствора (не считая системы автоматизации), энергопотребление которых значительно меньше, чем у компрессора ­– основного элемента электрического чиллера.

Принципиальная схема работы АБХМ

Абсорбционный промышленный чиллер – это выгодно и экологично:

  • Выбирая АБХМ, вы снижаете потребление электроэнергии.

При мощности по холоду 1000 кВт потребление ПКХМ составляет порядка 330 кВт электрической энергии, а системы на базе АБХМ — не выше 50 кВт (включая вспомогательное оборудование).

  • Срок службы абсорбционных чиллеров – 60 лет.

Самые уязвимые для повреждений элементы абсорбционных машин – теплообменные трубки. В конструкции современных АБХМ новейшего поколения применяются трубки из чистого титана, при этом чиллер имеет назначенный заводом-изготовителем срок службы, сопоставимый со сроком эксплуатации здания, в котором он размещается.

  • С абсорбционными чиллерами вы снижаете капитальные затраты на инженерную инфраструктуру объекта.

За счет способности АБХМ работать в различных режимах – генерации тепла и холода – одна система может решать задачи и холодоснабжения, и отопления в зависимости от текущих потребностей объекта. Это означает, что одна и та же система распределительных трубопроводов сможет обеспечить тепло- и холодоснабжение объекта. При этом абсорбционная холодильная машина и сама климатическая система не требует дополнительных промывок и замены теплоносителя. Поэтому в системах поддержания микроклимата, реализованных на базе АБХМ, капитальные и эксплуатационные затраты на инженерную инфраструктуру значительно ниже, чем в системах, где применяются обычные электрические чиллеры.

  • Применяя абсорбиционные чиллеры, вы сокращаете сроки окупаемости системы холодоснабжения.

Стоимость АБХМ выше, чем цена традиционных парокомпрессионных холодильных установок. Но за счет минимального потребления электроэнергии внедрение АБХМ требует существенно меньших первоначальных инвестиций на электроснабжение (в том числе на строительство трансформаторных подстанций и технологическое присоединение). Кроме того, эксплуатационные затраты АБХМ значительно меньше, чем у классических парокомпрессионных чиллеров, а эксплуатационный ресурс в 2-3 раза дольше. Поэтому полная стоимость жизненного цикла систем с применением абсорбционных чиллеров ниже, а сроки окупаемости гораздо меньше.

  • С АБХМ вы повышаете эффективность и снижаете нагрузку на окружающую среду.

В промышленном применении источником тепла для абсорбционного чиллера могут стать технологические стоки, дымовые и выхлопные газы, низкопотенциальный пар или оборотная вода. Тепло этих «бесплатных» энергоресурсов абсорбционный промышленный чиллер превратит в холод, используемый для технологических нужд или для кондиционирования помещений. Используя бросовые источники тепла промышленного производства, вы не только сократите свои затраты, но и повысите полноту использования энергоресурсов, сделав производство более экологичным.

Принцип работы и устройство чиллера. Схема работы чиллера

По назначению чиллер  — это холодильная машина для охлаждения жидкостей и поддержания заданного температурного режима хладоносителя.

По конструкции чиллер представляет собой парокомпрессионную холодильную установку с несколькими основными видами исполнения. Бывают чиллеры с выносными и встроенными конденсаторами, с боковым или верхним расположением. Два основных вида чиллера: с водяными и воздушными конденсаторами. Также с  пластинчатыми теплообменниками, витыми-погружными и кожухотрубными испарителями, с различными типами компрессоров и по разному автоматизированные. В зависимости от конструкции, составляющих частей жидкоохладителя и его назначения, автоматика холодильного контура настраивается таким образом, чтобы работа чиллера отвечала производственным требованиям и была адаптирована для бесперебойного поддержания нужного температурного режима.

Работа чиллера — это работа обыкновенной холодильной установки, только охлаждается не воздух, а жидкость.

Устройство чиллера

Устройство чиллера — холодильный контур, основными частями которого являются:

  • компрессор
  • конденсатор,
  • испаритель,
  • терморегулирующий вентиль.

Компрессоры бывают нескольких типов:

  • поршневые
  • винтовые
  • спиральные
  • роторные
  • центробежные.

В производстве чиллеров наибольшее распространение получили поршневые, винтовые и спиральные. Компрессор сжимает газ и способствует циркуляции хладагента по холодильному контуру, создавая разность давлений и нагнетая всасываемый из испарителя газ в конденсатор, где фреон за счет отвода теплоты снова переходит в жидкое агрегатное состояние. При прохождении фреоном через ТРВ происходит резкое вскипание и получившая парожидкостная смесь при низком давлении поступает в испаритель, — где происходит теплообменный процесс с хладоносителем (вода, растворы гликолей).

Работа чиллера

  1. Парожидкостная смесь подается в испаритель после прохождения ТРВ
  2. Теплообмен фреона и хладоносителя в испарителе
  3. Компрессор всасывает пары хладагента из испарителя
  4. Компрессор служит для сжатия газа и циркуляции фреона по системе за счет создания разности давлений
  5. Компрессор нагнетает сжатый газ в конденсатор
  6. В конденсаторе сжатый газ за счет отъема теплоты переходит в жидкую фазу
  7. Жидкий фреон поступает в ТРВ и весь цикл повторяется

Работа чиллера — это не только работа базовых составляющих холодильного контура.

Вторая неотъемлемая часть любого чиллера — это гидромодуль. Он может быть как встроенным — то есть находиться на одной раме с холодильным контуром, так и располагаться на отдельной раме. В состав гидромодуля, как правило, входят:

  • насос
  • аккумуляторный бак
  • комплект сантехнической и запорной арматуры.

Насос служит для циркуляции хладоносителя через теплообменник  и подачу его к потребителю. Без напорного насоса нормальная работа чиллера невозможна, так как испаритель должен быть максимально заполнен хладоносителем для осуществления высокоэффективного теплообмена. Иногда применятся двухнасосные схемы, когда функции циркуляции хладоносителя внутри чиллера и подача уже охлажденной жидкости разделяются. Это необходимо например в тех случаях, когда требуется подавать жидкость на большую высоту, так как при прохождении теплообменника напор снижается, следовательно, чтобы работа чиллера была максимально эффективна, необходимо охлажденный хладоноситель подавать сразу из бака к потребителю без потери давления. Подающий насос подбирается сообразно требованиям подачи:

  • высота столба (м)
  • давление (бар)
  • требуемый расход (м3/час).

Аккумуляторный бак служит для запаса охлажденной жидкости и снижения количества пусков-остановок компрессора, таким образом, работа чиллера происходит в оптимальном режиме. Если аккумуляторный бак слишком мал для мощности водоохладителя, то чиллер, запрограммированный на некоторый дифференциал, будет слишком быстро охлаждать этот объем и останавливаться по установленному градусу, потом под воздействием нагрузки потребителя, снова быстро нагреваться и работа чиллера снова будет возобновляться. Такой режим работы может привести к поломке компрессора чиллера. Аккумуляторный бак способен уменьшить число пусков и остановок до рекомендованного — не более 5-7 раз в час.

Схема чиллера

Современные чиллеры для бесперебойного и точного функционирования снабжаются системами автоматизации. Схемы и комплектующие автоматического управления весьма разнообразны и, как правило, настраиваются с учетом  задач и требований каждого конкретного потребителя. Хотя есть некоторые универсальные системы защиты применяемые практически во всех охладителях жидкости, например:

  • системы контроля давления
  • реле контроля протока жидкости
  • система контроля наличия смазывающего масла в картере компрессора
  • реле, контролирующие перегрев обмоток, электродвигателей и некоторые другие, —

благодаря которым работа чиллера протекает без возникновения  критических ситуаций.  

Комплекс всех выше перечисленных составляющих и дают на выходе современную автоматизированную водоохлаждающую холодильную установку — чиллер.

При грамотном инженерном расчете, проектировании и качественной сборке, работа чиллера будет долговечна и бесперебойна. В этом с радостью Вам помогут специалисты ЦентрПром-Холод — российского производителя чиллеров. Купить чиллер под Ваши требования под заказ через форму сайта или осуществить подбор чиллера с помощью технического специалиста по телефону — быстро, оптимально, недорого в ЦентрПром-Холод.

Инверторные чиллеры – особенности работы, преимущества использования

Существуют различные системы кондиционирования воздуха и регулирования температуры в жилых, производственных и общественных помещениях. На сегодняшний день лидером в достижении самых высоких уровней эффективности и комфорта являются инверторные чиллеры.

Первый холодильный агрегат с инверторным регулированием производительности компрессора выпустила в 2004 году компания Mc Quay International. Сегодня такая продукция представлена в ассортименте многих производителей, среди которых Daikin, Timberk, Mitsubishi, Carrier, Venterra, General Climate и др. Установка оборудования такого типа подходит как для внутреннего обогрева или охлаждения крупных строительных объектов (административные и офисные здания, больницы, гостиницы, торговые комплексы, жилые здания), так и для небольших площадей производственного назначения.

Принцип работы

Основным компонентом устройств, работающих по подобному принципу, является инвертор (преобразователь частоты), который используется для управления мощностью компрессора. Работа инвертора основана на преобразовании переменного тока в постоянный и, наоборот, с постоянного в переменный. Это позволяет компрессорному агрегату работать в непрерывном режиме, модулируя мощность и поддерживая заданную температуру теплоносителя.

С полной нагрузкой и при максимальной температуре наружного воздуха охлаждающая установка работает всего лишь 3% времени. Принцип инверторного управления позволяет эффективно использовать чиллеры в условиях частичной нагрузки без лишнего расхода энергии и в более щадящем режиме. Помимо значительной экономии энергоресурсов такая технология значительно продлевает срок работы оборудования. В режиме теплового насоса инверторная модель может работать при -10-12°C, но наибольшая эффективность наблюдается при плюсовой температуре (от +5°C до + 20°C).

Часто в инвертор бывает встроен контролер, который следит за зарядом и разрядом аккумуляторной батареи, а так же за напряжением во внешней сети. С его помощью оборудование мгновенно реагирует на прекращение подачи электричества, и работа продолжается с помощью энергии от аккумуляторной системы. Когда обычная электрическая сеть станет доступной, инвертор автоматически перейдет к централизованному электропитанию.

Преимущества инверторных чиллеров

Охлаждающие установки с инверторным управлением были разработаны для получения самых наилучших показателей:

  1. Они не требуют участия человека в их управлении (все делается автоматически).
  2. Потребляют на 30% меньше электроэнергии, чем неинверторные климатические устройства.
  3. Эффективны при полной и частичной нагрузках, адаптированы к перепадам напряжения.
  4. Обеспечивают максимально быстрое охлаждение/нагрев воздуха и помогают значительно снизить расходы на кондиционирование/отопление.
  5. Имеют удобную систему интеллектуального управления, позволяющую как специалистам, выполняющим монтаж чиллеров, так и владельцам таких установок контролировать работу и выявлять отклонения от заданных параметров.

Несмотря на более высокие изначальные затраты на покупку и монтаж системы с инверторным управлением холодопроизводительностью, в процессе эксплуатации достигается существенная экономия по сравнению с неинверторными агрегатами. Перед тем как приобрести чиллер, необходимо ознакомиться со всеми техническими характеристиками и убедиться в том, что они позволят оборудованию работать в условиях его непосредственной эксплуатации.

СТОИМОСТЬ ЭЛЕКТРОЭНЕРГИИ НАСОСОВ ЧИЛЛЕРА И ГРАДИНИЦ УБИВАЕТ ВАС? У нас есть ПОДХОДЯЩЕЕ решение именно для ВАС! + =

Презентация на тему: «СТОИМОСТЬ ЭЛЕКТРОЭНЕРГИИ ЧИЛЛЕРА И ГРАДНИЧНЫХ НАСОСОВ УБИВАЕТ ВАС? У нас есть ПРАВИЛЬНОЕ решение только для ВАС! + =» — стенограмма презентации:

1 СТОИМОСТЬ ЭЛЕКТРОЭНЕРГИИ НАСОСОВ ЧИЛЛЕРА И ГРАДИНИЦ УБИВАЕТ ВАС? У нас есть ПОДХОДЯЩЕЕ решение именно для ВАС! + =

2  ФАКТЫ ОБ ОБЫЧНЫХ ВОДЯНЫХ НАСОСАХ Распространенные неисправности: — — Проблема с давлением обратного потока — Вихрь в турбине — Общий КПД, на который влияет (a) Механические потери (b) Потери объема (c) Гидравлические потери ПОВЫШЕНИЕ ЭЛЕКТРИЧЕСКОЙ СТОИМОСТИ =

3 ПРЕДСТАВЛЕНИЕ В ТАИЛАНДЕ: — УСТРОЙСТВО РЕГУЛЯТОРА ВОДЯНОГО НАСОСА EXTREME VISION ДЛЯ ЭКОНОМИИ ЭНЕРГИИ (WPRD)

4  КАК ЭТО РАБОТАЕТ На основе «принципа струи», использующего преимущества «теории ударных волн», это устройство состоит из регулятора, который: — — Повышает давление воды с большей скоростью — Предотвращает образование вихрей и вихрей внутри обычной трубы.-Водяной насос и двигатель, следовательно, рассчитаны на НИЖНЮЮ МОЩНОСТЬ, но НЕ СНИЖАЮТ эффективность работы.

5

6

12 ЭТО ПЕРВЫЙ ПРОДУКТ В ТАИЛАНДЕ, ЗДЕСЬ СПРАВОЧНИК И ЭКОНОМИЯ, ДОСТИГНУТАЯ В ПРОЕКТАХ КИТАЯ 250 кВт 210 кВт 172 кВт ТОРГОВЫЙ МОЛЛ ФАБРИКА 25 кВт НА НАСОС ОТЕЛЬ 55 кВт ОФИС

Принцип работы электромагнитного клапана

Что такое электромагнитный клапан?

Электромагнитный клапан — это промышленное оборудование, управляемое электромагнетизмом.Это автоматический основной элемент для управления жидкостью. Он относится к приводу, но не ограничивается гидравлическим давлением и пневматическим управлением. В промышленной системе управления электромагнитный клапан используется для регулирования направления, расхода, скорости и других параметров среды. Электромагнитный клапан может координироваться с различными цепями для реализации ожидаемого управления, при этом гарантируются как точность управления, так и гибкость.

Электромагнитный клапан состоит из соленоидной катушки и магнитопровода.Это корпус клапана, содержащий одно или несколько отверстий. Когда катушка проходит или отключается подачей питания, работа магнитопровода приводит к тому, что жидкость проходит через корпус клапана и отключается, чтобы достичь цели изменения направления жидкости. Электромагнитная составляющая соленоидного клапана состоит из неподвижного железного сердечника, подвижного железного сердечника, катушки и так далее. Корпус клапана состоит из сердечника золотникового клапана, жгута золотникового клапана и пружинного основания. Катушка соленоида устанавливается непосредственно на корпусе клапана, в то время как корпус клапана заключен в уплотнительную трубу, так что представляет собой простую и компактную комбинацию.

Как работает соленоидный клапан?

Электромагнитный клапан имеет закрытую камеру внутри и вентилируемые отверстия в разных положениях. Каждое отверстие связано с разными масляными трубами. В камере посередине расположен поршень. С двух сторон расположены две части электромагнитов. Электрифицирующая магнитная катушка будет притягивать корпус клапана к своей стороне, так что различные выпускные отверстия для масла будут открываться или закрываться за счет управления движением корпуса клапана. Однако входное отверстие для масла постоянно открыто.Гидравлическое масло поступает в разные отводящие трубы. Давление масла будет использоваться для приведения в действие поршня масляного цилиндра, который будет приводить в движение шток поршня, а затем механическое устройство. Таким образом, посредством управления током электромагнитного клапана будет контролироваться механическое движение. Кроме того, давайте вкратце узнаем о принципе работы двух основных типов электромагнитных клапанов.

1. Электромагнитный клапан прямого действия

  • Принцип работы
    При включении питания катушка соленоида генерирует электромагнитную силу, которая поднимает запорный элемент из седла клапана и открывает клапан.Когда питание отключается, электромагнитная сила исчезает, и пружина прижимает запорный элемент к седлу клапана, чтобы закрыть клапан.
  • Характеристики
    Он может нормально работать в вакууме, отрицательном и нулевом давлении. Однако диаметр обычно не превышает 25 мм.

2. Электромагнитный клапан с пилотным управлением


  • Принцип работы Когда питание включено, электромагнитная сила открывает направляющее отверстие и давление в верхней камере быстро падает, образуя разность давлений, которая является низкой в ​​перевернутом и высоко в нижнем вокруг запорного элемента.Давление текучей среды способствует закрывающий элемент для перемещения вверх, чтобы открыть клапан. Когда питание отключено, усилие пружины закрывает пилотное отверстие. Давления через перепускной порт быстро образует разность давлений, которая является высоко в перевернутом и низко в нижнем вокруг запорного элемента. Давление жидкости заставляет запорный элемент двигаться вниз и закрывать клапан.
  • Характеристики
    Диапазон давления жидкости имеет относительно высокий верхний предел. Его можно устанавливать произвольно, при соблюдении условия разности давлений жидкости.

Купите 2-ходовой, 3-ходовой и 5-ходовой пневматический соленоидный клапан с высокой производительностью и низкой ценой на ATO.com для управления воздухом.

Работа чиллера, руководства

Номер детали Описание
360437 ПЕРЕХОДНИК НАСОСА GRUND К WALRUS
430292 КОМПЛЕКТ ЗАМЕНА БОЛЬШОГО СИНЕГО УПЛОТНИТЕЛЯ
608290 ВХОДНОЙ / ВЫПУСКНОЙ ВЕНТИЛЯТОР В СБОРЕ 16 ″ -5/8 3 фазы
608294 ВХОДНОЙ / ВЫПУСКНОЙ ВЕНТИЛЯТОР В СБОРЕ 18 ″ -5/8 3 фазы
608297 НАРУЖНЫЙ ВЕНТИЛЯТОР В СБОРЕ 18 ″ -5/8 1PH
608586 ВЕНТИЛЯТОР В СБОРЕ 18 ″ -5/8 1Ф НАРУЖНЫЙ
609918 НАРУЖНЫЙ ВЕНТИЛЯТОР В СБОРЕ 16 ″ -5/8 1PH
612087 НАСОС TPHK8T6-5S ДЛЯ ЗАМЕНА CRKI8
1702001 C1521761D3X НАСОС 1HP (P122-SUS)
4300070 ФИЛЬТР 17-3 / 4 X 57
4300110 ФИЛЬТР 18-3 / 4 X 42
4300123 ФИЛЬТР 21-3 / 4 X 57
4300130 ФИЛЬТР 22-3 / 4 X 44-3 / 4
4300134 ФИЛЬТР 61.5 х 16,5
4300142 ФИЛЬТР 28-7 / 8 X ​​57
4300157 ФИЛЬТР 23-3 / 4 X 47-3 / 4
4300200 ФИЛЬТР 22-1 / 2 X 41-1 / 4
1751752 P122-S 1ST1E2C4SE НАСОС 1 л.с. WO
1751753 P124-S 1ST1G2A4SE НАСОС 2 л.с. WO
5000570 НАСОС CM10-2 A-S-I-E-AQQE E-A-A-N
2990900 РЕФРАКТОРМЕТР RHA-100ATC
2990538 ПРОПИ ГЛИКОЛЬ 30% БАРАБАН 55 GL P-300
2990600 ЭТИЛЕНГЛИКОЛЬ 5 ГАЛЛОНОВ / ВЕДРО 100%
2990601 СМЕСЬ ЭТИЛЕНГЛИКОЛЯ 30% — 5 ГАЛЛОНОВ
2990602 ЭТИЛЕНГЛИКОЛЬ- 55 ГАЛЛОВАЯ БОЧКА 100%
2990603 ЭТИЛЕН ГЛИКО
.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *