Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Котлы пиролизные: Твердотопливные котлы пиролизные, купить котёл твердотопливный пиролизные в Москве

Содержание

Пиролизные котлы длительного горения с водяным контуром

ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ

Пиролизные котлы длительного горения с водяным контуром являются прекрасным альтернативным источником энергии в частных домах в условиях частых перебоев газоснабжения. Дрова являются древнейшим видом топлива, которым человек обогревает свои жилища на протяжении тысячелетий. В 21 веке из технологии получения древесного угля зародился пиролизный способ получения тепла.

Пиролизные котлы длительного горения — современная альтернатива газовому отоплению в частном доме

Что такое пиролиз и какова его эффективность

Средневековые европейцы в результате долгих веков сжигания дров установили, что эту энергию можно использовать более рационально, если в печи класть не дрова, а древесный уголь. Производили его путем сжигания обычных дров без достаточного доступа кислорода. Для этого копали специальные ямы в земле, где и происходил весь этот процесс, в последствии названный пиролизом.

Некоторые виды пиролизных котлов длительного горения

Такие ямы прекрасно справлялись с задачей получения древесного угля, но та энергия, которая выделялась в ходе этих процессов, тратилась без какой-либо пользы. Стоит сказать, что количество, выделяемой энергии было очень приличное. Поэтому современные технологии не обошли стороной такой подарок природы. Были созданы пиролизные котлы длительного горения с водяным контуром, которые смогли обуздать это тепло, используемое ранее впустую. Сегодня их с успехом используют, не только как вспомогательные источники отопления, но и как основные. Это и не удивительно, ведь кроме обычных дров, в них можно загружать и другое, более современное и эффективное топливо на древесной основе.

Пиролизный котёл длительного горения с водяным контуром — вид в разрезе

Пиролизные котлы длительного горения с водяным контуром

Внешне эти котлы мало чем отличаются от обычных металлических печей.

Они имеют такую же загрузочную дверцу, ведущую в первичную камеру сгорания. В нее укладываются обычные дрова, а также брикеты из опилок либо торфа. Используют в этих целях и изобретение последних нескольких лет — гранулы пеллет. Они представляют собой сильно спрессованные отходы столярного производства. В дело идет все, начиная от коры деревьев и заканчивая торфом и сушеным навозом.

Полезный совет! Лучше всего использовать в качестве топлива пеллетные гранулы. Это топливо имеет маленький размер и может автоматически подаваться в камеру сгорания котла.

Современный котёл длительного горения с бункером для пеллетных гранул

На дне камеры сгорания располагается колосник, имеющий вид очень тяжелой чугунной решетки. Он необходим для подачи воздуха под топливо. Загруженные дрова поджигают и ждут пока они полностью разгорятся под воздействием первичного потока воздуха. Как только котел выходит на режим, доступ воздуха в первичную камеру практически прекращают, в результате чего горение останавливается.

Топливо начинает только тлеть, выпуская пиролизный газ. Он обладает очень высокой горючестью, но так как воздуха мало, то он не вспыхивает.

Схема системы отопления частного дома с использованием твердотопливного котла

Затем самотеком или принудительно эта газообразная летучая смесь органики подается во вторичную камеру, которая собственно и является главной рабочей частью пиролизного котла длительного горения. С водяным контуром системы отопления она связана непосредственно. Поступающий в эту камеру газ имеет температуру около 300 градусов и поэтому вспыхивает при поступлении кислорода без промедления. Во вторичную камеру подается достаточное для горения количество воздуха. Пиролизный газ выделяет при сгорании намного больше энергии, чем простые дрова, поэтому нагревание теплоносителя в системе происходит очень быстро.

Пример размещения твердотопливного котла с автоматической подачей пеллет из бункера хранения в подвальном помещении частного дома

Важным моментом является то, что порция дров, помещенная в топку, расходуется очень медленно, что позволяет отапливать помещение очень небольшим их количеством длительное время.

Полезный совет! В качестве топлива для газогенераторов рекомендуется использовать очень хорошо просушенные вещества и дрова. Ведь 1 кг дров, которые содержат 20% влаги выделяет 4 кВт/час. энергии, а содержащие 25% влаги, уже только 3 кВт/час.

Принцип работы пиролизного котла с водяным контуром

Преимущества и недостатки котлов на пиролизном газе

Пиролизные котлы длительного горения с водяным контуром ценят за их преимущества перед печами с прямым горением. Можно перечислить некоторые из них:

  • полное сгорание топлива без накопления сажи. Кроме экономии дров это свойство несет гораздо большую пользу. Полное сгорание означает, что в качестве отходов выделяется лишь углекислота и обыкновенная вода. Ни то, ни другое не представляет большого вреда для людей и природы в целом. Этого нельзя сказать о частичном сгорании дров. Вредные токсичные вещества, образующиеся при неполном распаде органики, попадают в атмосферу, вызывая нежелательные последствия, не говоря уже о зловонном едком дыме;

Для увеличения эффективности пиролизного котла используйте только сухие дрова

  • благодаря полному сгоранию, в газогенераторах можно использовать любое органическое твердое топливо.
    По сути им может быть любая органика, способная к активной реакции окисления, то есть горению. Такие котлы можно устанавливать на швейных и кожевенных фабриках, на предприятиях деревопереработки, сельхозпредприятиях. Этим полностью решается проблема утилизации отходов;
  • высокая экономия средств на топливо, так как пиролизные котлы длительного горения с водяным контуром имеют такое названия по причине того, что от одной дровяной закладки рабочий процесс может продолжаться не менее 12 часов. Простая печь или котел, максимум способны гореть 4 часа;

Схема подключения твердотопливного котла к системе отопления дома

  • полностью решен вопрос регулировки процесса горения и нагревания теплоносителя. По причине того, что в рабочей камере сгорает газообразное топливо, его поток легко регулируется, так же, как и интенсивность горения. Это позволяет полностью автоматизировать работу котла, не хуже, чем электрического или газового.

Есть у пиролизных котлов длительного горения с водяным контуром и недостатки, о которых следует осведомиться, при приобретении этой техники:

  • стоимость газогенераторов намного выше, чем у других видов теплотехники. Однако это со временем окупается, благодаря экономии топлива;

Автоматизированная котельная в современном частном доме

  • топливо должна быть идеально сухим. Уже 20%-я влажность является серьезным препятствием для горения. Котел просто престанет работать после ограничения доступа воздуха;
  • в связи с тем, что в конструкции практически всех моделей предусмотрено использование вентиляторов для нагнетания воздуха, то для их работы требуется наличие электроэнергии, что не позволяет использовать эту технику на дачах, не имеющих электроснабжения.

Полезный совет! Отзывы владельцев пиролизных котлов длительного горения говорят о том, что иногда они останавливаются из-за того, что вода из обратной трубы системы попадает в контур котла сильно остывшей. Чтобы этого избежать, надо впаять в систему обходной контур из трубы подачи. Здесь используется обычный трехходовой клапан. Тогда горячая вода смешается с охлажденной, котел не будет отключаться.

Схематическое изображение пиролизного котла с водяным контуром

Отзывы владельцев пиролизных котлов длительного горения

Если задаться вопросом, то можно найти на форумах и в блогах множество отзывов владельцев пиролизных котлов длительного горения. Вот некоторые из них:

В прошлом году поставил газогенератор у себя на даче. Рядом лесопилка, где всегда огромное количество опилок коры и сучков. Бери – не хочу. Теперь не нарадуюсь. На топливо совсем не трачусь. Привез телегу отходов, которые взял бесплатно. Не знаю, когда и израсходую.

Сергей Васильев, г.Омск.

Недавно приобрел твердотопливный котел, друг посоветовал. Поначалу не понимал, зачем я это сделал, где брать и хранить дрова. А потом узнал, что можно пользоваться пеллетными гранулами. Купил несколько мешков. Топлю – горя не знаю.

Николай Павлов, г.Тверь.

Пиролизные котлы длительного горения — экологичны и энергоэффективны благодаря полному сгоранию твёрдого топлива

Мой муж привез недавно чудо-печь, которая работает на обычных дровах. Я его долго ругала. Говорила, что у нас газопровод и газовый котел. Зачем нам еще эта печка. Он сказал, что я все пойму позже и подключил это устройство к системе, оставив и газ. Однажды в поселке произошел обрыв газопровода. Рабочие три дня исправляли аварию. Соседи скупили все электронагреватели, а мой муж только пожал плечами и растопил свою печь. Теперь я поняла, что была не права.

Ольга Мейзер, п.Голышманово, Тюменской обл.

Схема самодельного пиролизного котла для отопления дачи или гаража

Отзывы владельцев пиролизных котлов длительного горения раскрывают все положительные качества устройства. Использовать этот прибор действительно можно с большой пользой для себя. Являясь альтернативным источником тепла, он может полностью решить проблему временного отсутствия газа. Для тех же, у кого имеется возможность пользоваться отходами различного производства, это просто находка.

ОЦЕНИТЕ
МАТЕРИАЛ Загрузка… ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ

СМОТРИТЕ ТАКЖЕ

REMOO В ВАШЕЙ ПОЧТЕ

Пиролизный котел в быту, или когда цена на газ не имеет значения / Хабр

Можно ли построить систему отопления собственного жилища без газовой трубы так, чтобы это было комфортно, не утомительно и даже увлекательно? И что может получиться, если приправить всё это информационными технологиями?

Давайте вместе в этом разберемся.



Немного теории

Системы отопления (СО) с твердотопливным котлом (ТТК) – это системы периодического действия, в которых котел генерирует тепло только когда в нем есть топливо. В этой связи, владельцы ТТК, рано или поздно, обзаводятся теплоаккумуляторами, которые накапливают излишек тепла, генерируемый в процессе работы ТТК и отдают его дому уже после того как топливо в котле закончилось.

ТТК принято делить на классические (колосниковые) и пиролизные (газогенераторные). Классический вариант подразумевает обыкновенное сгорание топлива с выделением тепла. Твердотопливные пиролизные котлы отличаются тем, что топливо и горючий газ, выделяемый при его горении, сжигаются раздельно. Это обеспечивает более высокий КПД, широкий диапазон мощности, простоту требований к дымоходу.

Под «обыкновенным сгоранием топлива» подразумевается, что топливо в таких котлах сгорает в камере загрузки, где одновременно идут все те же процессы что и при пиролизе древесины. По этой причине в классических (колосниковый) котлах нет возможности получить качественное (полное) сгорание топлива. В результате неполного сгорания топлива на теплообменнике котла оседают деготь, смолы, (продукты пиролиза), сажа, зола и образуется теплоизолирующий слой, что в свою очередь вынуждает котел щедро делится, вырабатываемым теплом с окружающей средой.

Как преимущество классических котлов иногда указывают то, что в них, якобы, можно сжигать дрова с высокой влажностью, но как по мне, топить сырыми дровами – себя не уважать.

Не важно, в каком котле, пиролизном или традиционном, дрова, прежде чем начать давать тепло, должны пройти начальные стадии пиролиза, а именно нагрев и испарение влаги. Значит если мы используем для отопления дрова с влажностью 20% (это на 10 кг. сухих дров вылить сверху 2 литра воды), то есть пятая часть по весу в них балласт, на нагрев и испарение которого также придется потратить часть топлива, которая уже не будет использовано для отопление дома.

Если уж быть абсолютно точным, то топливо не горит «напрямую», горят газообразные продукты пиролиза. Это означает, что прежде чем дрова начнут

гореть

, то есть окислятся кислородом воздуха с выделением тепла, они должны быть нагреты до температуры испарения влаги в них, после этого должен пройти сам процесс испарения этой влаги, а уже потом начнется собственно пиролиз и горение пиролизных газов. Причем, процессы

первой и второй стадии

идут с поглощением тепла, так необходимого для пиролиза самой древесины, без которого не будет и самого процесса горения.

Мой выбор

Если после прочитанного, вы уже не планируете топить сырыми дровами, то исходя из своего жизненного опыта, я бы рекомендовал именно пиролизный котел.

До этого, у меня уже был двухлетний опыт эксплуатации шахтного колосникового котла KALVIS–2-70. Из выявленных недостатков отмечу, что его теплообменник невозможно было почистить от осевших на нем смол без предварительного разогрева до температуры выше 60°С. В конечном итоге, осознав все технологические изъяны этой конструкции, я решил обратиться к специалистам для её радикальной переделки. В результате этой глубокой модернизации я и стал обладателем пиролизного котла.

Установка

Котел лучше располагать в специально отведенном для него помещении, так как я еще не встречал котлов, которые не дымят в помещении при догрузке топливом (а мой, к тому же, иногда дымит еще и по причине несовершенства конструкции).

Кроме того котлы обычно комплектуются

дымососом

или

вентилятором наддува

, которые обычно, довольно прилично шумят. Остальные механизмы управления узлами СО (циркуляционные насосы, приводы воздушных заслонок, заслонка дымохода и шаровые краны с электроприводами) работают почти бесшумно.

Кроме прочего, нужно учитывать, котел для своей работы потребует большого притока воздуха в то помещение, в котором он находится, что станет причиной возникновения холодных сквозняков. Из всего выше сказанного, котел лучше располагать в отдельном помещении в теле дома.

Дымоход у меня расположен вертикально без изгибов и является частью внутренней стены дома, и во время работы котла дополнительно излучает тепло в дом.

Так как котел – это агрегат, в котором генерируемое тепло передается теплоносителю воде, то на его поверхности нет «раскаленных» частей, так как он не нагревается выше температуры кипения воды. Кроме того водяная рубашка снаружи, обычно защищена кожухом, температура которой редко превышает 30 — 35 град.

Заготовка дров и не только.

Основным видом топлива для пиролизного котла является древесина.

Годятся любые дрова: хвойные, лиственные, сосновые, дубовые, березовые и т.д. Все они имеют примерно одинаковую теплотворную способность. Твердые породы, такие как дуб, имеют теплотворную способность выше, но они и стоят дороже, так что гонятся за ними я особого смысла не вижу. Для заготовки отлично подходит любое мертвое дерево, упавшее или сухостой. Главное, что бы дрова были не сырые и не дорогие, лучше лично заготовленные, и для кошелька и для здоровья полезнее (можно запросто сэкономить на абонемент в фитнес-клуб). Отчасти потому, что при покупке на стороне трудно соблюсти все выше перечисленные условия, я и не люблю покупать дрова. Мне как-то в первый отопительный сезон привезли машину дров из лесхоза, так их остатки весной выпустили побеги и укоренились у меня во дворе. С тех пор, дрова заготавливаю только самостоятельно.

Кроме дров пиролизный котел с удовольствием потребляет солому, пеллету, стружку, торфяные брикеты и обычный торф, сортированные бытовые отходы (бумага, пластик, упаковка, все кроме ПВХ) и все это приправленное отработанным маслом или любыми другими отходами жидких углеводородов.

Но лучшим топливом для котла может стать автомобильная покрышка. Теплотворная способность автомобильной покрышки значительно превышает теплотворную способность лучших пород древесины и составляет 32 ГДж/т. Сравнится с ней может, разве что, теплотворная способность высококачественного угля. Ко всему этому покрышка имеет нулевую влажность, что тоже является положительным моментом. Ну а если у кого-то еще есть сомнения в том, что покрышка может довольно прилично гореть, можете глянуть на выходящие газы из моей трубы и на огонь в пиролизной камере.

Газы от сжигаемых покрышек
Огонь горящих покрышек
Так выглядят, подготовленные к загрузке в котел, автомобильные шины

То, что не только я расцениваю шину как прекрасное топливо, можно оценить по количеству


объявлений

, которые предлагают металлокорд, остающийся после ее сжигания.

Экологические нормы и их нарушение

Также должен акцентировать внимание на том, что ни в ком случае не призываю к повсеместному сжиганию автомобильных шин в домашних отопительных агрегатах. Живя в обществе среди людей, обустраивая свой быт, мы не должны причинять неудобства своим соседям, в том числе наши действия не должны нарушать законодательства государств, гражданами которых мы являемся.
Шина как топливо упоминается мною в этой статье только как частный удачный опыт, который стал возможен после основательной модернизации серийного бытового котла, при условии постоянного пристального контроля за процессом горения через видеокамеру и оперативного управления.

Для обеспечения пожарной безопасности в котельной я на ее потолке разместил два автоматических порошковых

огнетушителя типа Буран 2,5

и автономный

датчик дыма

.

Розжиг

Котел легче разжечь

небольшим количеством дров

(такая закладка осуществляется через нижнее окно загрузи дров), но при желании можно запустить котел и с полной загрузкой (для такой загрузки используется верхнее окно загрузки дров).

При запуске с полной загрузкой разжигаю котел через пиролизную горелку с помощью заранее вставленного в нее фитиля из гофрокартона (вид сверху на пиролизную горелку через нижнее окно загрузки топлива). Также облегчает розжиг небольшое количество отработанного моторного масла и мелкие дровяные щепки.

Продукты сгорания

Пиролизную камеру котла (он же зольник), чистить приходится каждый раз после отопительного цикла (примерно 10 – 12 часов непрерывной работы), так как объем ее ограничен, а пиролизным газам все же нужно где-то гореть.

Теплообменники котла я стараюсь чистить через отопительный цикл, то есть примерно два раза в месяц, так как от степени их чистоты зависит эффективность отбора тепла сгенерированного в пиролизной камере. Обычно, после одного цикла отопления остается ведро золы и почти чистый металлокорд от шин. И зола и металлокорд, как оказалось, являются ценным продуктом для дальнейшего использования.

Продуктами полного сгорания топлива ТТК являются углекислый газ, вода и зола. Вот именно водяной пар и окрашивает дым в белый цвет на непрогретом дымоходе. Продуктом неполного сгорания топлива ТТК может стать сажа. Значительное ее количество может окрашивать дым в черный цвет, а незначительное, в смеси с водяным паром, в различные оттенки серого.

Конструкция котла

На фронтальной стороне моего котла расположены три дверцы:

  • Верхняя дверца нужна для того, чтобы увеличить объем разовой загрузки. Чем больше за один раз удается загрузить дров, тем реже приходится это делать.
  • Средняя дверца нужна для обслуживания котла (чистка от золы, подготовка к новой растопке), через самую верхнюю дверцу этого просто невозможно сделать. За ней находится камера загрузки.Внешний вид камеры загрузки

    Эта камера ещё называется газогенераторной, так как именно в ней и происходит процесс пиролиза дров.


  • За нижней дверцей находится камера сгорания пиролизных газов.Некоторые подробности про расположение камеры сгорания

    Камера сгорания (камера дожига) расположена под камерой загрузки топлива для того, чтобы локализовать определенный объем топлива участвующего в процессе горения. То есть, в пиролизном котле горят только те дрова, которые находятся в зоне охвата воздушных заслонок (это ниже средней дверцы и немного на высоте самой средней дверцы), остальное топливо — просто запас, который по мере выгорания опускается в зону горения. Если же пиролизную камеру расположить сверху, а топливо поджигать снизу, то пламя подымаясь снизу вверх по дровам будет пиролизовать все топливо сразу и вместо горения мы получим много дыма и как следствие смолистые вещества на теплообменнике.


Воздух на топливо в моем ТТК подается через три воздушные заслонки в разные зоны котла, что дает возможность получить наиболее эффективное сгорание топлива.

Наличие 3-х воздушных заслонок, графика температуры в дымоходе и видеокамеры в пиролизной камере позволяет минимизировать тепловые потери и получить наиболее эффективное сгорание не только различных видов древесины, но и более калорийного топлива, такого как сортированные бытовые отходы и изношенные автомобильные шины.

Немного теории

Обычно в ТТ пиролизные котлы воздух подается в строгом заранее спроектированном соотношении без учета особенности топлива, его фактической влажности и стадий, которые оно проходит по мере его выгорания в котле. Это приводит к тому, что иногда воздуха вполне достаточно для эффективного сгорания проектного топлива (к примеру сосновых дров), но чаще воздуха либо меньше чем нужно, (и тогда продукты неполного сгорания топлива конденсируются на теплообменнике ТТК в виде дегтя), либо больше чем нужно (и тогда лишний воздух не участвующий в процессе горения остужает теплообменник, и уносит в атмосферу драгоценное тепло которое сгенерировал ТТК).

Мой котел, как и большинство пиролизных котлов, родился с одной заслонкой (сейчас она средняя по высоте, она же и основная). Заслонка расположена на фронтальной части котла, ниже нижней двери загрузки топлива.

Воздух через нее подается на топливо, расположенное, над горелкой и охватывает примерно 100 см3 дров. Это тот объем топлива, который участвует в основном процессе горения. Этот же объем топлива формирует угольную подушку, на которой воспламеняются пиролизные газы.

Верхняя заслонка расположена под обшивкой, выше нижней двери загрузки топлива. Она появилась уже позже, в ее задачу входит формирование дополнительного объема пиролизных газов, уже после того как топливо расположенное в зоне охвата средней заслонкой прошло с первой по третью стадии пиролиза, и уже не выделяет в достаточном количестве горючих газов, по отношению к подаваемому через нее (среднюю заслонку) объему воздуха.

Верхняя заслонка

Нижняя заслонка появилась уже последней по причине необходимости подачи дополнительного объема воздуха при сжигании более калорийного топлива, чем дрова, к примеру, автомобильная шина. Расположена нижняя заслонка над дверью камеры сгорания и подает дополнительный воздух в камеру сгорания.

Средняя и нижняя заслонки

В качестве приводов для этих заслонок используются недорогие, но вполне пригодные для этой цели сервомашинки

MG996R 15кг

.

Система отопления

Обычно, счастливые обладатели ТТК, проходят естественные стадии эволюции:

  1. Приобретение котла и познание первой радость от тепла, принесенного им в дом. Кормят его маленькими порциями дров, кормят часто и с удовольствием.
  2. Потом пытаются растянуть время между кормежкой. Потом пытаются экспериментировать с различными видами корма: топят исключительно дубом, акацией, и даже редким в наших краях, углем.
  3. В конце концов, приходит понимание, что «котел существует для меня», а не «я для котла».
  4. После этого владелец котла начинает подыскивать в доме место под теплоаккумулятор (ТА).

Мне повезло больше чем остальным, еще в процессе проектирования дома я спланировал себе место под ТА, благополучно миновав эту начальную стадию.

В качестве теплоаккумулятора можно использовать любую емкость, которая выдержит давление в Вашей СО (у меня оно не превышает 1,5 кг/см2), либо сделать ТА косвенного нагрева (водяной контур такого ТА обменивается теплом с контуром котла через дополнительный теплообменник), тогда его будет легче вписать в пространство комнаты. Здесь можно подробнее ознакомится с моим.

Необходимо также учитывать, что температура воды в ТА нередко доходит до 94°С, поэтому материал из которого изготовлен ТА и труба подводящая в него теплоноситель должны выдерживать эти температуры.

Теплоаккумулятор не обязательно ставить в котельной рядом с ТТК (даже лучше за ее пределами), монтировать его можно в любом удобном для Вас помещении дома (можно даже так).

Также пришлось приобрести Ладдомат 21, хотя вполне можно было обойтись трехходовым смесительным клапаном и циркуляционным насосом контура котла.

Понадобились так же термостатические смесительные клапаны для контура теплого пола и контура радиаторов, хотя жизнь в последствии показала, что радиаторы в СО с ТТК и ТА бессмысленны.

Оказался не лишним в СО с ТТК и бойлер косвенного нагрева, ну и дальше уже по мелочи: расширительный бак, кран шаровый с электроприводом контура ТА, контура котла и контура бойлера. Насосы циркуляционные для контуров бойлера косвенного нагрева, теплых полов и радиаторов.


Легенда

1. Заслонка подачи воздуха
2. Привод заслонки подачи воздуха TowerPro MG996R
3. Датчик температуры воды на входе в котел ( температура обратки) — ds18b20
4. Привод заслонки дымохода
5. Дымосос
6. Датчик температуры дыма — (ТХА)
7. Кран шаровый с электроприводом контура котла
8. Датчик температуры воды на выходе из котла ( температура подачи) — ds18b20
9. Насос циркуляционный контура котла, входящий в состав Ладдомат 21
10. Датчик температуры воды нижней части ТА №1 — ds18b20
11. Теплоаккумулятор №1 — 4м3
12. Датчик температуры воды в верхнем патрубке ТА №1 — ds18b20
13. Кран шаровый с электроприводом контура ТА
14. Расширительный бак
15. Насос циркуляционный бойлера косвенного нагрева
16. Вход системы водоснабжения
17. Бойлер косвенного нагрева
18. Термостатический смесительный клапан контура радиаторов
19. Радиаторы отопления
20. Насосы циркуляционные контура теплых полов и контура радиаторов
21. Теплый пол
22. Термостатический смесительный клапан контура теплого пола
23. Датчик температуры воды нижней части ТА №2- ds18b20
24. Датчик температуры воды в верхнем патрубке ТА №2 — ds18b20
25. Кран шаровый подпитки водой системы отопления
26. Теплоаккумулятор №2 (косвенного нагрева) — 4м3
27. Показания температуры с устройства «Комнатный термостат».
28. Показания температуры с устройства «Шлагбаум»


Автоматика

По мере эксплуатации своей СО постепенно пришло понимание, что система, в том виде в котором она родилась, имела существенные недоработки.

Оказалось, что системах отопления на базе ТТК + ТА, есть смысл соблюсти ряд условий:

  1. Стремится отправлять в ТА только излишек тепла от ТТК.
  2. Отсекать ТТК от остальной системы отопления (СО) после прекращения им генерации тепла, так как после выгорание топлива нем, ТТК из генератора тепла превращается в его потребителя и начинает высасывать ранее запасенное тепло из ТА.

Поначалу приходилось вручную подключать ТТК к СО во время запуска и так же вручную его отключать от нее. Вручную делить тепловые потоки как в начале запуска ТТК, так и уже в процессе работы котла, когда формируется избыток тепла. К тому же штатный регулятор воздушной заслонки был слишком инерционен и не справлялся с поставленными перед ним задачами.

И тогда некоторые свои простые функции по управлению котлом было решено переложить на хрупкие плечи автоматики. Использование электронного блока управления (БУ), избавило меня от выполнения множества рутинных операций. Также, попутно, БУ справляется с такой тривиальной задачей как, защита ТТК от перегрева, то есть делает то, что делают подавляющее большинство фабричных БУ ТТ котлов.

Мой первый блок управления ТТК был далёк от совершенства.

Принципиальная схема

Каждый раз, когда мне нужно было подправить или изменить логику работы СО у меня пухла голова когда я смотрел на эту схему и пытался понять как же она работает.

В конце концов, при участии добрых людей, БУ приобрел тот вид, который он имеет сегодня, а также столь необходимый для меня функционал.
На экране в графическом виде отображается текущее состояние основных узлов СО, которые необходимо контролировать. При этом экран не перегружен информацией, и она легко читается.
Дополнительную информацию о том, какое оборудование в данный момент задействовано блоком управления можно получить от светодиодов блока реле.

Схемотехника

БУ моего котла собран на базе модуля Arduino Mega 2560. Выбор пал на Ардуино, потому что широко распространено, легко доступно, хорошо документировано, в сети множество уроков по его программированию, огромное дружелюбное интернет-сообщество, которое поможет, подскажет, научит.

Именно Ардуино позволяет реализовать функционал Вашего устройства, ограниченный лишь Вашей фантазией. К примеру, Ваш БУ зимой может управлять ТТК, но достаточно сменить в нем прошивку и подключить разъем силовых устройств к другой группе, и он станет управлять системой полива Вашего приусадебного участка или, к примеру, теплицей. С фабричным БУ ТТК таких фокусов не проделаешь.

Список элементов блока управления

1. Arduino Mega 2560

2. Arduino Ethernet Shield W5100

3. Графический дисплей QC12864B

4. 4-канальный реле модуль – 2 шт.

5. DC-DC конвертер понижающий 4…38В в 1.25…32В для питания блока реле и дисплея.

6. DC-DC конвертер понижающий 4.5…28 В в 0.8…20 В 3А на MP1584 для отдельного питания «бутерброда» Arduino Mega 2560 + Arduino Ethernet Shield W5100

7. Цифровой усилитель термопары MAX31855

8. Термопара ТХА

9. Датчик температуры Dallas DS18B20 – 4 шт.

10. Привод заслонки подачи воздуха TowerPro MG996R

11. Резистор металлопленочный 4.7 кОм

Для питания БУ используется 12 вольтовый аккумулятор, который в свою очередь подключён к инвертору (600Вт). Он же обеспечивает работоспособность циркуляционных насосов СО.

Программное обеспечение

Мой блок управления котла, подключён к

облачному сервису

, это позволяет удаленно контролировать состояние системы, и при необходимости, так же удаленно, вносить корректировки в работу котла и системы отопления в целом. Зачем спрашивается удаленный контроль системы отопления и в частности удаленный контроль за работой ТТК? Полагаю, что только очень смелый человек может себе позволить оставить работающий котёл только под присмотром БУ стоимостью чуть больше 100 долларов. Я же приобрел уверенность в необходимости удаленного контроля, по мере приобретения своего личного восьмилетнего опыта эксплуатации ТТК.

Этот сервис предоставляет чрезвычайно полезную возможность графического представления данных с температурных датчиков, расположенных в ключевых точках СО, что в свою очередь не только дает представление о текущем статическом состоянии СО, но и о динамике развития происходящих там процессов. Так в частности данные полученные из вкладки «Графики» дают представление о текущем состоянии СО, корректность работы отдельных ее составляющих в соответствии заданной БУ программой, и в отличие от данных полученных с монитора БУ, дают представление о динамике этих данных, скорость изменения и направления движения (рост или понижение), что особенно важно в момент пороговых (критических) значений температур.

Произошла ли подпитка ТТК холодной водой из ТА или нет, мы можем удаленно, оперативно отследить на графике «Котел вход», а имела ли эта подпитка ожидаемый результат по защите котла от перегрева можем отследить на графике «Котел выход». Если же ожидаемого снижения температуры воды на входе/выходе из котла не произошло, значит по какой-то причине не открылся кран контура ТА и владельцу котла нужно принять адекватные меры по защите ТТК.

Так же данные полученные с этих графиков позволяю оперативно заметить и устранить ошибки котельщика допущенные при управление котлом.

В частности, благодаря графику «Дымовая труба» я вовремя заметил, что забыл вернуть в рабочее положение распределительную заслонку, которая направляет продукты сгорания топлива минуя теплообменник котла в дымоход (обычно ее переводят в такое положение при догрузке топлива, для снижения дымления в помещение), что в свою очередь привело к забросу температуры в дымоходе выше 250°С.

Графики работы Ладдомата

Противофазное поведение температур на графиках «Котел выход» и «Котел вход» обусловлено особенностями работы такого узла СО как Ладдомат 21 (на схеме обозначен № 9). Дело в том, что в его обязанность входить обеспечение поддержания температуры теплоносителя (в нашем случае вода) на входе в котел выше 55°С. Эта функция обеспечивается термостатическим клапаном, который входит в состав Ладдомат 21.
Так как система ТТК + Ладдомат 21 достаточна инерционна, то мы и наблюдаем на графике противофазное колебание температур. Такое колебание температур, на графиках «Котел выход» и «Котел вход» свидетельствует о нормальной работе СО в целом.

Графики работы теплообменника

По достижении пороговой температуры на выходе из котла выше 85°С. БУ ТТК дает команду на открытие шарового крана (№13), при этом горячая вода поступает уже не только в отопительные приборы дома (теплый пол и радиаторы), но и в ТА (№12), при этом холодная вода выходящая из ТА поступает на вход в ТТК, что в свою очередь приводит к снижению температуры на выходе из котла. Другими словами, всё избыточное тепло направляется в теплоаккумулятор.

Графики защиты от перегрева

Если обычной меры (подпитки котла водой из ТА) оказалось не достаточной и температура на выходе из котла продолжает расти, то БУ ТТК даёт команду на закрытие воздушных заслонок и заслонки дымохода. Это позволяет снизить мощность котла и нормализовать температуру воды на его выходе. Таким образом происходит защита котла от перегрева.

Графики ручного регулирование воздушных заслонок

График температуры в дымовой трубе, дает представление о стадии в которой находится ТТК (розжиг, активный пиролиз или выгорание остатка топлива) и в совокупности с видео, получаемым из пиролизной камеры, позволяет сделать вывод о состоянии пиролизной камеры и при необходимости удаленно (через сайт) откорректировать положение воздушных заслонок управляющих качеством сгорания топлива.
Так к примеру через 85 минут после запуска котла, уменьшилось выделение пиролизных газов в зоне охвата средней воздушной заслонкой, что привело к снижению температуры дыма. После смены положение заслонок, верхней — с 0% на 48% и средней — с 100% на 50% (где 0 – полностью закрыта, 100% — полностью открыта) температура дымовых газов снова выросла.

Графики начала активной стадии пиролиза

На этой части графика отображено начало активной стадии пиролиза шины, это видно по стремительному росту температуры дыма и температуры теплоносителя на выходе из котла, и как следствие увеличичение мощности котла. В этот момент нужно откорректировать положение воздушный заслонок на период активной стадии пиролиза шины.


График дымохода

Глядя на этот график можно сделать вывод, что продолжительность работы котла составила примерно 20 часов 30 минут. После розжига котел перешел в активный режим (температура дыма более 110°С) примерно через 30 минут поджога дров. Еще через 30 минут температура дыма перешла границу 135°С и котел перешел в режим свободной тяги (БУ отключил дымосос и открыл заслонку дымохода). Далее котел работал на максимальной своей мощности, примерно, до 14 часов 30 минут (в это время, скорее всего, была произведена догрузка котла топливом).
В таком режиме котел доработал до 5 часов утра следующего дня и при понижении температуры в дымоходе ниже 110 град. БУ ТТК перевел котел в спящий режим (отключил циркуляционный насос («Ладдомат 21»), №9, закрыл шаровый кран контура котла №7, выключил дымосос №5, закрыл заслонку дымососа №4, открыл кран шаровый контура ТА №13).
Далее БУ снабжал дом теплом из ТА. У меня всего два ТА, каждый объемом, примерно по 4 м3. Разряжал я их поочередно, тепла накопленного в них мне хватило примерно на пять дней.

Таким образом, графики во вкладке «История» дают возможность анализировать работу всей системы за уже прошедшие периоды и прогнозировать очередной запуск ТТК в соответствии с потребностями жильцов дома. Кроме того, такой взгляд со стороны даёт понимание для дальнейшего совершенствования системы отопления.

Заключение

Иногда у меня спрашивают, почему я выбрал дровяное отопление? Я отвечаю, мне просто повезло что у меня не было рядом газовой трубы. Теперь я счастливый человек, я не знаю, сколько стоит «газ для населения», не принимаю участия в обсуждении тарифов за отопление, меня просто это не беспокоит.

Справится ли женщина или подросток с твердотопливным котлом? Думаю, да, особенно если не будет другой альтернативы. Справлялись ведь как-то раньше, пока не развилась всеобщая «газовая зависимость».

Справляются и сейчас в далеко не бедных странах, к примеру, Германии или Испании.

К слову сказать, я как-то, на всякий случай (ну там болезнь одолеет, или откровенно лень будет) установил дополнительно к ТТК еще и электрокотел на 45кВт, но за 6 лет я включал его только один раз, когда проверял после монтажа.

Мои хорошие знакомые, беспокоясь обо мне, иногда спрашивают: «Не в тягость ли тебе вся это возня? Не возникало ли желания бросить всё и переехать туда, где есть центральное отопление?». Так вот, не в тягость, наоборот, для меня это очень увлекательное занятие для реализации своих творческих потребностей. Я, видите ли, пою ужасно, танцую плохо, картины вовсе не пишу, чем спрашивается еще можно скрасить долгие зимние вечера?

Неперехваченное исключение

Об экономном и эффективном отоплении мечтает каждый. Повезло больше тем, кто имеет возможность подключить газовое отопление. А остальные делают выбор между электрическими и твердотопливными котлами.

Твердотопливный котел подходит тем, кто имеет возможность постоянно подкидывать топливо. Если же у вас нет такой возможности, то применение такого котла будет проблематичным. Современные модели изготавливаются с более удобной системой подкладки топлива. Твердотопливные котлы не требуют больших средств на отопление. 

В зависимости от типа топлива и температуры в помещении на одной закладке топливо может гореть от 8 до 24 часов. Котлы, работающие на пеллетах можно проверять 1 раз в месяц. В таком оборудование подача топлива происходит автоматически. 

Но, несмотря на все преимущества, такие котлы требуют подключения электричества. И стоит такое оборудование дорого. Есть некоторые модели котлов, которые могут работать на любом виде топлива, а также на строительном мусоре. 


Содержание:

  1. Пиролиз
  2. Преимущества и недостатки
  3. Принцип работы пиролизных котлов

Пиролиз

Давно уже стало известно, что сжигание древесины не является лучшим способом. Более эффективным является сжигание древесного угля. Поэтому многие предпочитают в качестве топлива использовать уголь. Пиролиз является процессом распада органических веществ под действием высокой температуры. 

К материалу, который подвергают пиролизу, ограничивают поступление кислорода. Делают это для того чтобы термический распад материала не превратился в простое сгорание.

Раньше для ограничения поступления кислорода использовали угольные ямы. Но у такого способа есть недостаток: при первичном горении энергия уходила впустую. 

Но на сегодняшний день появились устройства, которые помогают использовать всю энергию. Такими являются пиролизные твердотопливные котлы и газогенераторы.

Преимущества и недостатки

При недостатке кислорода происходит активное выделение газов. Для того чтобы обеспечить эффективную работу котла необходимо оборудовать его автоматикой. Она управляет процессом: ограничивает подачу кислорода после разгорания дров и контролирует процесс в двух камерах.

Главным недостатком пиролизного котла является обязательное наличие электропитания. При проблемах с электричеством вы останетесь без отопления. 

Пиролизные котлы, которые предназначены для работы на древесине, могут еще сжигать брикеты.

Еще одним достоинством пиролизного котла является: при горении пиролизные котлы контактируют с углеродом. На выходе из котла в результате этого процесса дым состоит из паров воды с некоторыми примесями и углекислого газа. При применении в качества топлива дров выходить в атмосферу углекислого газа будет в 3 раза меньше. При использовании угля выбросов углекислого газа будет примерно в 5 раз меньше.

Еще к достоинствам пиролизных котлов можно отнести: малое количество образования сажи. Дожиг газа и содержащихся в нем микрочастиц является положительным моментом.
В пиролизных котлах образуется малое количество золы. А так как сажи и золы немного, то нет необходимости производить частую чистку оборудования. А это является немаленьким плюсом отопительного котла.

Отопительные котлы прямого сгорания имеют невысокйи коэффициент полезного действия. Он составляет обычно от 60 до 65%. А в пиролизных котлах КПД составляет от 80 до 90%. 

Но есть еще достоинства у данного отопительного оборудования:

  • В пиролизном процесс можно регулировать работу и оставить 30% мощности или же разогнать все 100%. А автоматика в свою очередь регулирует процесс и при этом происходит экономия топлива до 40%. В обычных котлах прямого сгорания необходимо открывать дверцы, заслонки и поддувала. И делать это необходимо самостоятельно.
  • Камера для загрузки топлива может располагаться под камерой дожига, над или под ней.

Пиролизные котлы могут иметь разную конструкцию. В некоторых моделях камеру дожига устанавливают над первичной, а в других под ней. Но и выпускаются модели где ее устраивают за первичной топкой. А также модели разделяются по подаче воздуха. В некоторые котлы воздух поддается не через колосник, а подается сверху. Таким образом, процесс горения замедляется. Но все эти нюансы являются разновидностью одной технологии. 

Принцип работы пиролизных котлов

Пиролизная камера таких котлов похожа на топку обычной печи. В качестве топлива можно использовать: опилки, пеллетные гранулы, дрова, торфяные или древесные брикеты. В загрузочное окно на огнеупорную решетку помещается твердое топливо. Такая решетка имеет название колосник. Он обеспечивает приток к топливу первичного воздуха. 

Топливо необходимо поджечь, а затем нужно ждать пока все топливо не охватиться пламенем. Таким образом, газогенераторный котел выйдет на режим. Именно это и отличает обычные котлы и печи прямого сгорания от пиролизных котлов. 

После того как пиролизный котел выйдет на режим доступ первичного воздуха ограничивается. Поэтому горение практически останавливается. Горит только небольшая часть топлива. Тепло, которое выделяется при сгорании небольшого количества топлива, хватает на разложение остального объема топлива с выделением пиролизного газа.  

Пиролизный газ обычно самотеком попадает во вторичную камеру, где осуществляется подача вторичного воздуха. При контакте с кислородом нагретый газ сразу вспыхивает и горит с выделением большого количества тепла. Газ может быть нагрет больше 300оС. Таким образом, происходит нагрев носителя тепла.

Популярными пиролизными котлами являются немецкие котлы Bosch и чешские котлы Atmos. Хоть такое оборудование и имеет немаленькую стоимость, но они отличаются своими высокими техническими характеристиками и большим сроком службы.

Читайте также:

Выбросы от котла с быстрым пиролизом, работающим на биотопливе: сравнение связанных со здоровьем характеристик выбросов от биотоплива, ископаемого топлива и древесины

https://doi.org/10.1016/j.envpol.2019.02.086 content

Highlights

Первое подробное исследование выбросов от котельной установки FPBO.

Частицы выбросов котлов FPBO образовались в основном из неорганических зол.

FPBO производит больше PM, чем HFO, но меньше или аналогично сжиганию древесины.

Очень низкий уровень выбросов ПАУ при сжигании FPBO.

FPBO PM оказывает меньшее острое токсическое воздействие на клеточную линию, чем HFO PM.

Abstract

В настоящее время существует большой интерес к замене ископаемого топлива возобновляемыми видами топлива в производстве энергии. Бионефть быстрого пиролиза (FPBO), изготовленная из лигноцеллюлозной биомассы, является одной из таких альтернатив для замены ископаемого топлива, такого как мазут (HFO), в энергетических котлах.Однако неизвестно, как эта замена топлива повлияет на количество и качество выбросов, влияющих на здоровье человека. В этой работе охарактеризованы выбросы твердых частиц из реальной промышленной котельной установки FPBO, включая обширный физико-химический и токсикологический анализы. Затем они сравниваются с характеристиками выбросов котлов, работающих на мазуте и дровах. Наконец, обсуждаются влияние выбора топлива на выбросы, их потенциальное воздействие на здоровье и требования к очистке дымовых газов в котлоагрегатах малого и среднего размера.

Общие концентрации взвешенных и мелких твердых частиц (PM 1 ) в дымовых газах котлов FPBO перед фильтрацией были выше, чем в котлах на тяжелом топливе, и ниже или на уровне, аналогичном котлам с дровяной колосниковой решеткой. Частицы FPBO состояли в основном из золы и содержали меньше полициклических ароматических углеводородов (ПАУ) и тяжелых металлов, чем ранее измерялось при сжигании HFO. Эта особенность четко отражалась в токсикологических свойствах выбросов частиц FPBO, которые проявляли менее острое токсическое воздействие на клеточную линию, чем частицы горения HFO.Электрофильтр, используемый в котельной, эффективно удалял частицы дымовых газов всех размеров. Наблюдались лишь незначительные различия в токсикологических свойствах частиц до и после электростатического осадителя, когда к клеткам подавалась одна и та же масса частиц из обеих ситуаций.

Ключевые слова

Из мелких частиц

аэрозоли

NOX

NOX

Тяжелые металлы

Тяжелые металлы

PAH

Аэрозольная токсикология

Электростатический осадитель

Быстрый пиролиз Bio-Oil

Возобновляемая энергия

Котел

Выбросы частиц

Рекомендуемые статьиСсылки на статьи (0)

Показать полный текст

© 2019 Elsevier Ltd.Все права защищены.

Рекомендованные статьи

Ссылки на статьи

Выбросы от котла с быстрым пиролизом, работающим на биотопливе: Сравнение характеристик выбросов от биотоплива, ископаемого топлива и древесины, связанных со здоровьем человека

В настоящее время существует большой интерес к замене ископаемого топлива возобновляемым топливом в производстве энергии. Бионефть быстрого пиролиза (FPBO), изготовленная из лигноцеллюлозной биомассы, является одной из таких альтернатив для замены ископаемого топлива, такого как мазут (HFO), в энергетических котлах. Однако неизвестно, как эта замена топлива повлияет на количество и качество выбросов, влияющих на здоровье человека. В этой работе охарактеризованы выбросы твердых частиц из реальной промышленной котельной установки FPBO, включая обширный физико-химический и токсикологический анализы. Затем они сравниваются с характеристиками выбросов котлов, работающих на мазуте и дровах. Наконец, обсуждаются влияние выбора топлива на выбросы, их потенциальное воздействие на здоровье и требования к очистке дымовых газов в котлоагрегатах малого и среднего размера.Общие концентрации взвешенных и мелких твердых частиц (PM 1 ) в дымовых газах котлов FPBO перед фильтрацией были выше, чем в котлах, работающих на тяжелом топливе, и ниже или на уровне, близком к котлам, работающим на дровах. Частицы FPBO состояли в основном из золы и содержали меньше полициклических ароматических углеводородов (ПАУ) и тяжелых металлов, чем ранее измерялось при сжигании HFO. Эта особенность четко отражалась в токсикологических свойствах выбросов частиц FPBO, которые проявляли менее острое токсическое воздействие на клеточную линию, чем частицы горения HFO. Электрофильтр, используемый в котельной, эффективно удалял частицы дымовых газов всех размеров. Наблюдались лишь незначительные различия в токсикологических свойствах частиц до и после электростатического осадителя, когда к клеткам подавалась одна и та же масса частиц из обеих ситуаций.

Ключевые слова: токсикология аэрозолей; аэрозоли; зольная химия; Паровой котел; электрофильтр; биомасло быстрого пиролиза; Мелкие частицы; Тяжелые металлы; NOx; ПАУ; Выбросы частиц; Возобновляемая энергия.

Модификации пиролизных котлов для снижения вредных выбросов дымовых газов

[1] В. Лоо, С. и Дж. Коппеян (ред.) (2002). Справочник по сжиганию и совместному сжиганию биомассы, Twente University Press, ISBN 9036517737.

[2] Кальчмитт. М., Хартманн Х., ред. Энергия из биомассы; Спрингер: Берлин, 2001; ISBN 3-540-64853-42001.

[3] В.К. Верма, С. Брэм, Де Рюйк: Биомасса и биоэнергия, том. 33 (2009), стр. 1393.

[4] Д. Мохан, CU Питтман и П.Х.Стил: Энергия и топливо Vol. 20 (2006), стр. 848.

[5] А.В. Бриджуотер: Biomass Vol. 22 (1990), стр. 279.

[6] Ø. Скрейберг, Э.Карлсвик, Дж. Э. Хустад и О.К. Сёнью: Биомасса и энергия, том. 12 (1997), стр. 439.

[7] Э.Хушфар, Т. Ловас, О. Скрейберг: Energies Vol. 5 (2012), стр. 270.

[8] Т.Нуссбаумер: Энергия и топливо, том. 17 (2003), стр. 1510.

[9] Л.С. Йоханссон, Б. Лекнер, Л. Густавссон, Д. Купер, К. Таллин, А. Поттер: Атмос. Окружающая среда. Том. 38 (2004), стр. 4183.

[10] Дж.Валичек, Й. Мюллерова, В. Кубена, П. Коштиал, М. Харничарова, М. Микулик: Форум по дефектам и диффузии, томы. 326-328 (2012), стр. 330.

DOI: 10.4028/www.scientific.net/ddf.326-328.330

[11] Дж. Мюллерова, С. Хлох, Й. Валичек: Chemicke Listy Vol. 104 (2010), стр. 876.

[12] Дж.Мюллерова, А. Боровичка, Й. Валичек, М. Мюллер, С. Хлох, М. Луптак (2011). Способ регулирования мощности газификационного котла, п. 302544; Чешская Республика.

Высокотехнологичный котел для пиролиза шин промышленной мощности

О продуктах и ​​поставщиках:
 Исследуйте массивную коллекцию  для пиролиза шин  на Alibaba. ком. Вы можете купить шинный пиролизный котел   различной номинальной мощности и топлива. Котел  для пиролиза шин  подходит как для бытового, так и для промышленного использования. Эти продукты окажутся полезными в различных отраслях промышленности, таких как фармацевтическая, текстильная, пищевая промышленность, производство строительных материалов и т. д. 

котел для пиролиза шин на Alibaba.com работает на газе / угле / нефти / электричестве. Конструкция изделия выполнена из высококачественной стали, которая предотвращает ржавление при длительном использовании.Температура на выходе колеблется от 170 до 350 градусов Цельсия. Шинный пиролизный котел вариантов исполнения вертикальный и горизонтальный. Рабочее давление, номинальная мощность, номинальное напряжение и другие подобные характеристики зависят от использования и отрасли. Тип конструкции: водяная труба или пожарная труба. На выходе котла для пиролиза шин либо горячая вода, либо пар. Отличительными чертами продукции являются быстрая сборка, меньшая площадь пола, автоматизированная панель управления и т. д.Тип циркуляции, давление, теплоемкость, материал, применение являются важными факторами при покупке.

Шинный пиролизный котел имеют большие поверхности нагрева и высокую тепловую эффективность. Они также обеспечивают чистое сгорание, сводя к минимуму возникающее загрязнение. Котел для пиролиза шин серии также имеет множество мер безопасности. Например, защита от утечек, двойной регулируемый регулятор давления, предохранительный клапан полного подъема и т. д. Котлы для пиролиза шин просты в эксплуатации, экономичны, портативны и высокоэффективны.Продукция соответствует международным стандартам и имеет множество сертификатов.

Воспользуйтесь выгодными предложениями котла для пиролиза шин на Alibaba.com и обеспечьте максимальную отдачу от своих инвестиций. Если вы являетесь поставщиком котла для пиролиза шин , найдите себе сделку по крупным заказам. Посетите сейчас и получите доступ к продуктам мирового класса.

Твердотопливный пиролизный котел КТВС В45

Годовая экономия

Годовая экономия: 10 000 грн / 8 200 кВтч *

Годовой базовый уровень энергии для отопления 39 722 кВтч/год

Годовая Энергия после замены Твердотопливный пиролизный котел КТВС В45

Ваши годовые сбережения

*Отказ от ответственности:

1.Включение технологий, оборудования и материалов в Селектор технологий основано исключительно на квалификации в соответствии с «Минимальными стандартами энергоэффективности»** компании IQ Energy и не означает одобрения производителей или поставщиков этих продуктов со стороны ЕБРР. Несмотря на то, что были предприняты все усилия для представления правильных и актуальных данных, ЕБРР не несет ответственности за точность представленных данных.

**Включенные технологии ‎были оценены как обеспечивающие повышение энергоэффективности как минимум на 20 % по сравнению со средним рыночным показателем

2. Экономия рассчитана на ремонт среднестатистического жилья или замену среднестатистического оборудования в Украине. Фактическая экономия отдельных проектов реконструкции/оборудования может отличаться от указанной экономии из-за конкретных климатических условий, размера жилья/оборудования, поведения потребителей и т. д. Отображаемые меры по повышению энергоэффективности влияют на счета (экономию) отдельных домохозяйств только в том случае, если доступен биллинг на основе потребления.

3. Несмотря на то, что мы приложили разумные усилия для применения актуальных цен на энергию при расчете экономии в гривнах, мы не берем на себя ответственность за точность любых оценок экономии, указанных на этом Сайте.

4. Все цены, отображаемые в нашем Селекторе технологий, предоставляются поставщиками в качестве ориентировочных розничных цен и должны использоваться только в справочных целях. Фактические цены продавцов/продавцов могут отличаться от цен на нашем веб-сайте по разным причинам, не зависящим от программы IQ Energy. Программа IQ Energy не несет никакой ответственности за информацию о ценах на какой-либо конкретный продукт. Пожалуйста, уточняйте у поставщиков актуальные цены на интересующую вас продукцию и технологии.

PRIME PubMed | Выбросы от котла с быстрым пиролизом, работающего на биотопливе: сравнение связанных со здоровьем характеристик выбросов от биотоплива, ископаемого топлива и древесины

Ссылка

Sippula, Olli, et al. «Выбросы от котла с быстрым пиролизом, работающего на биотопливе: сравнение связанных со здоровьем характеристик выбросов от биотоплива, ископаемого масла и древесины». Загрязнение окружающей среды (Barking, Essex: 1987), vol. 248, 2019, стр. 888-897.

Sippula O, Huttunen K, Hokkinen J, et al.Выбросы от котла с быстрым пиролизом, работающего на биотопливе: сравнение связанных со здоровьем характеристик выбросов от биотоплива, ископаемого топлива и древесины. Загрязнение окружающей среды . 2019; 248:888-897.

Сиппула О. , Хуттунен К., Хоккинен Й., Кярки С., Сухонен Х., Каолинна Т., Кортелайнен М., Кархунен Т., Ялава П., Уски О. ., Юли-Пирила, П., Хирвонен, М.Р., и Йокиниеми, Дж. (2019). Выбросы от котла с быстрым пиролизом, работающего на биотопливе: сравнение связанных со здоровьем характеристик выбросов от биотоплива, ископаемого топлива и древесины. Загрязнение окружающей среды (Баркинг, Эссекс: 1987) , 248 , 888-897. https://doi.org/10.1016/j.envpol.2019.02.086

Sippula O, et al. Выбросы от котла с быстрым пиролизом, работающим на биотопливе: сравнение связанных со здоровьем характеристик выбросов от биотоплива, ископаемого масла и древесины. Загрязнение окружающей среды. 2019;248:888-897. PubMed PMID: 30856504.

TY — JOUR T1 – Выбросы от котла с быстрым пиролизом, работающего на биотопливе: Сравнение связанных со здоровьем характеристик выбросов от биотоплива, ископаемого топлива и древесины.AU — Сиппула, Олли, AU — Хуттунен, Кати, AU — Хоккинен, Йоуни, AU — Кярки, Сара, AU — Сухонен, Хейкки, AU — Кахолинна, Туула, AU — Кортелайнен, Миика, AU — Кархунен, Томми, AU — Джалава, Паси, AU — Уски, Оскари, AU — Юли-Пирила, Паси, AU — Хирвонен, Майя-Риитта, AU — Йокиниеми, Йорма, Y1 — 01. 03.2019/ PY — 13.11.2018/получено PY — 18.02.2019/пересмотрено ПЯ — 24.02.2019/принято PY — 2019/3/12/опубликовано PY — 2019/7/10/medline PY — 2019/3/12/антрез KW — Токсикология аэрозолей KW — Аэрозоли KW — Золохимия кВт — котел KW — электрофильтр KW — биомасло быстрого пиролиза KW — Мелкие частицы КВ — тяжелые металлы кВт — NOx кВт — ПА кВт — Выбросы твердых частиц кВт — Возобновляемая энергия СП — 888 ЭП-897 JF — Загрязнение окружающей среды (Баркинг, Эссекс: 1987 г.) JO — Загрязнение окружающей среды ВЛ — 248 N2 — В настоящее время существует большой интерес к замене ископаемого топлива возобновляемыми видами топлива в производстве энергии.Бионефть быстрого пиролиза (FPBO), изготовленная из лигноцеллюлозной биомассы, является одной из таких альтернатив для замены ископаемого топлива, такого как мазут (HFO), в энергетических котлах. Однако неизвестно, как эта замена топлива повлияет на количество и качество выбросов, влияющих на здоровье человека. В этой работе охарактеризованы выбросы твердых частиц из реальной промышленной котельной установки FPBO, включая обширный физико-химический и токсикологический анализы. Затем они сравниваются с характеристиками выбросов котлов, работающих на мазуте и дровах.Наконец, обсуждаются влияние выбора топлива на выбросы, их потенциальное воздействие на здоровье и требования к очистке дымовых газов в котлоагрегатах малого и среднего размера. Общие концентрации взвешенных и мелких твердых частиц (PM1) в дымовых газах котлов FPBO перед фильтрацией были выше, чем в котлах на тяжелом топливе, и ниже или на уровне, аналогичном котлам с дровяной колосниковой решеткой. Частицы FPBO состояли в основном из золы и содержали меньше полициклических ароматических углеводородов (ПАУ) и тяжелых металлов, чем ранее измерялось при сжигании HFO.Эта особенность четко отражалась в токсикологических свойствах выбросов частиц FPBO, которые проявляли менее острое токсическое воздействие на клеточную линию, чем частицы горения HFO. Электрофильтр, используемый в котельной, эффективно удалял частицы дымовых газов всех размеров. Наблюдались лишь незначительные различия в токсикологических свойствах частиц до и после электростатического осадителя, когда к клеткам подавалась одна и та же масса частиц из обеих ситуаций. СН — 1873-6424 UR — https://neuro.unboundmedicine.com/medline/citation/30856504/emissions_from_a_fast_pyrolysis_bio_oil_fired_boiler:_comparison_of_health_related_characteristics_of_emissions_from_bio_oil_fossil_oil_and_wood_ L2 — https://linkinghub.elsevier.com/retrieve/pii/S0269-7491(18)35037-1 ДБ — ПРАЙМ ДП — Свободная медицина Скорая помощь —

«Модели пиролиза угля для использования в массовых параллельных кислородных котлах», Эндрю Перри Ричардс

Аннотация

Точное моделирование ключевых аспектов сжигания угля позволяет проводить виртуальные испытания и применять новые технологии и процессы без необходимости инвестиций в лабораторные и экспериментальные установки, поскольку такие установки можно использовать только для нескольких небольших испытаний.Однако моделирование подпроцессов должно быть не только точным, но и вычислительно эффективным. Моделирование реакций и процессов дегазации угля является одной из важных частей крупномасштабного моделирования систем сжигания угля. Представленная здесь работа подробно описывает усилия по улучшению моделирования процессов дегазации угля в массивно-параллельном моделировании угольных камер сгорания, включая: (1) модели скорости дегазации/выход, (2) моделирование различных химических, физических и термодинамических свойств угля, , и смолы (включая структурные параметры ЯМР, такие как ароматичность углерода, элементный состав угольного полукокса и смолы, а также теплота сгорания угольного и других видов топлива), и (3) применение различных упрощающих допущений к равновесным расчетам дегазации угля продукты, использующие несколько уровней фракций топливной смеси.Обсуждаемые здесь модели были разработаны и усовершенствованы с использованием нескольких различных передовых статистических методов путем тщательного сравнения с большими наборами экспериментальных данных. Передовые статистические методы и процедуры показывают значительные улучшения в этих моделях по сравнению с предыдущей работой.

Колледж и факультет

Химическое машиностроение

Права

https://lib. byu.edu/about/copyright/

BYU ScholarsАрхивная ссылка

Ричардс, Эндрю Перри, «Модели пиролиза угля для использования в моделировании массивно-параллельных кислородно-топливных котлов» (2021). Тезисы и диссертации . 8926.
https://scholarsarchive.byu.edu/etd/8926

Дата отправки

31.03.2021

Тип документа

Диссертация

Ручка

http://hdl.lib.byu.edu/1877/etd11566

Ключевые слова

уголь, пиролиз, дегазация, выход, скорость, моделирование, статистический анализ

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.