Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Реостат вентилятора охлаждения: Для чего нужен резистор в электрической цепи вентилятора охлаждения, свечи зажигания, светодиодами, отопителя салона автомобиля

Для чего нужен резистор в электрической цепи вентилятора охлаждения, свечи зажигания, светодиодами, отопителя салона автомобиля

Сегодня мы поговорим про резистор, как основной элемент любой электрической цепи автомобиля. Для чего он нужен, какие бывают резисторы, принципы их работы, какие подходят для той или иной электрической цепи.

Эти знания могут пригодиться при ремонте автомобиля.

Три основные составляющие электрического тока

Электроэнергия достаточно плотно вошла в нашу жизнь. Используется она практически везде, и в автотранспорте в том числе.

Данный вид энергии имеет три основных составляющих – напряжение, сила тока и сопротивление.

Что касается последнего параметра, то благодаря возможности создания дополнительного сопротивления в любой точке электрической цепи можно влиять на первые два параметра.

Основным элементом для создания сопротивления является резистор. Данный элемент относиться к самым востребованным, и ни одна электрическая цепь без него не обходится, и заменить его чем-либо другим не получиться.

А в любом автомобиле электрических цепей при достаточно.

Назначение

Основное назначение резистора – создание сопротивления для возможности контроля и регулировки силы тока и сопротивления. По сути, он является своеобразным фильтром, позволяющим на выходе из него получить электроэнергию с определенными параметрами.

Обеспечивает он все это за счет удержания тока, деления и уменьшения напряжения.

Основным параметром резистора является сопротивление, которое он создает в цепи, и измеряется оно в Омах.

Резисторы в электрической цепи автомобиля.

Именно благодаря своей функции этот элемент так часто используется в автомобилях. Ниже мы рассмотрим одни из основных составляющих авто, где используется резистор и какую конкретно функцию он там выполняет.

Система охлаждения

Итак, нагрузочный резистор используется в системе охлаждения автомобиля, а точнее, – в цепи питания вентилятора радиатора.

Стоит отметить, что раньше этот электрический элемент не использовался в данной цепи, и все работало очень просто – при достижении определенной температуры охлаждающей жидкости, температурный датчик замыкал контакты цепи питания вентилятора, и он включался в работу.

Использование же резистора позволило сделать работу электродвигателя вентилятора двух — и даже трехрежимной.

Процесс подачи питания на вентилятор при этом несколько изменился. В систему добавились также реле, а за включение вентилятора у современных авто уже отвечает электронный блок управления.

То есть, электронный блок анализирует температурные показатели датчика, и подает сигнал на реле.

В зависимости от температуры реле направляет электроэнергию по определенной цепи. Если температура охлаждающей жидкости превышена незначительно, но уже требуется ее снижение, и сигнал от ЭБУ поступил, реле направляет электроэнергию через нагрузочный резистор, который создает сопротивление, и вентилятор начинает вращаться с небольшой скоростью.

Если температура будет дальше повышаться и достигнет критической точки, реле перенаправит электроэнергию по другой цепи – в обход резистора, напрямую к вентилятору, что обеспечит его работу на полную мощность, с большой скоростью вращения.

Это схема двухрежимной работы вентилятора, которая обеспечивается наличием нагрузочного резистора в цепи. Причем она упрощенная, чтобы было более понятно.

В авто с трехрежимной работой вентилятора, принцип остается тот же, но у него уже используется два резистора – один отвечает за малые обороты вращения вентилятора, второй – за средние.

Третий же режим – аварийный, при котором вентилятор вращается с максимальной скоростью, обеспечивается за счет подачи питания на него напрямую.

Система зажигания

Второй элемент автомобиля, где можно встретить резистор – это . Но далеко не все свечи оснащены им.

В конструкции данных элементов он начал появляться не так давно, и задача его заключается в подавлении радиопомех.

Кстати, сейчас ведется очень много споров, нужен ли он в свечах. Ведь резистор создает сопротивление, которое в конечном итоге влияет и на искру. А ведь чем сильнее последняя, тем лучше воспламеняется горючая смесь.

Но на самом деле на качестве искры наличие резистора сказывается незначительно, а вот на свечу – только положительно. Очень сильный искровой заряд приводит к разрушению электродов, а сопротивление снижает напряжение искры.

Но не в этом его главное назначение. Мощный искровой разряд создает достаточно сильные помехи в радиочастотном диапазоне, которые могут повлиять на работу аудиосистемы автомобиля, мобильного телефона и любого другого оборудования, чувствительного к помехам данного типа.

Интересно, что необязательно устанавливать на автомобиль свечи зажигания, оснащенные резисторами.

Дело в том, что во многих моделях шумоподавляющий элемент устанавливается в наконечники проводов высокого напряжения. Также некоторые виды самих проводов обладают достаточно неплохим сопротивлением, которого хватает для подавления радиопомех.

Резистор также может быть установлен и в бегунок трамблера, причем встречается он там на многих моделях. Его задача – та же, что и в свече зажигания или наконечнике.

Важно понимать, что во всех перечисленных элементах зажигания одновременно использоваться резисторы не могут.

При последовательном подключении этих элементов все сопротивление, которое они создают, суммируется.

То есть, если резистор будет установлен в бегунке трамблера, наконечнике, свече, то они будут создавать настолько сильное сопротивление, что значительно послабят искровой заряд, и он уже не сможет качественно воспламенять смесь. А это приведет к перебоям в работе двигателя, потере мощности, увеличению расхода топлива.

Поэтому принимать решение, стоит ли устанавливать на автомобиль свечи зажигания с резистором необходимо, тщательно ознакомившись с техдокументацией, идущей к авто.

Если изготовитель указывает, что необходимо использование таких свечей, то ими лучше пользоваться.

Система обогрева салона

Еще один элемент в конструкции автомобиля, где используется резистор – система отопления салона, а точнее, – управление работой электродвигателя печки.

В любом автомобиле используется переменный резистор для изменения скорости работы электромотора обогревателя.

В нем при помощи вращающегося элемента обеспечивается возможность изменения значения сопротивления.

При включении электродвигателя на 1-ю скорость вращения, резистор обеспечивает максимальное сопротивление, при переключении на 2-ю – оно уменьшается, а при переходе на 3-ю скорость — практически полностью убирается.

Осветительные приборы

В последнее время резисторы стали использоваться вместе со светодиодными лампами. Данный вид ламп все больше начал применяться на авто.

Но далеко не все машины пока идут с завода, укомплектованные светодиодными осветительными приборами, а вот отдельно их купить и установить вместо штатных ламп накаливания тех же поворотников или стоп-сигналов вполне можно и многие так делают.

Но здесь возникает проблема, которая обязывает использовать резисторы.

Дело в том, что потребление электроэнергии этими лампами очень малое, из-за чего электронный блок расценивает работу светодиодов как неисправность штатной лампы.

Чтобы исправить ситуацию, используются резисторы, создающие нагрузку на линии проводки, запитывающей те осветительные приборы, в которых установлены светодиодные лампы.

В результате ЭБУ воспринимает сопротивление элемента, как работу лампы накаливания, поэтому кода ошибки не возникает.

Интересно, что при использовании таких обманок основное достоинство светодиодных ламп – малое потребление энергии, сводится к нулю, и у них остается только одно преимущество перед обычными лампами накаливания – длительный срок эксплуатации.

Виды резисторов, их особенности

Из описанных выше резисторов, которые используются в конструкции автомобиля, можно отметить два типа – нагрузочные, они же постоянные и переменные. В целом – это и есть два основных вида, которые имеют достаточно широкое применение в разных сферах.

Конечно, есть еще целый ряд всевозможных резисторов, которые отличаются по своим конструктивным особенностям. К примеру, терморезисторы, в которых сопротивление меняется от температуры, или фоторезисторы, меняющие свои параметры от освещенности.

Но их мы пока касаться не будем, а рассмотрим лишь указанные два вида.

Постоянные резисторы называются так потому, что сопротивление, которое они создают – неизменное.

К примеру, если указано, что основной параметр данного элемента составляет 30 Ом, то сопротивление именно этого значения он обеспечивает и поменять его невозможно.

В переменных же резисторах сопротивление можно менять, притом вручную. Примером тому является уже упомянутое управление электродвигателем системы отопления.

К переменным резисторам относятся также подстроечные.

В таких резисторах тоже можно изменять параметр вручную, но регулировка его выполняется не в любой момент, как это делается в переменном, а лишь когда требуется перенастроить работу всей схемы, куда он включен, на длительный срок.

В автотранспорте подстроечные элементы не используются, хотя их часто можно встретить в бытовой технике.

Подбор резистора по сопротивлению

Большинство людей при выходе из строя какого-то электроприбора сдают его в ремонт или заменяют, хотя во многих случаях виноват именно резистор, тем более что он – один из самых распространенных элементов в любой схеме. Но находятся и такие, кто самостоятельно берется за ремонт.

И часто у любителей самостоятельного ремонта возникает вопрос, как правильно подобрать резистор для той или иной схемы.

Для этого возьмем простейшую схему, включающую источник питания и один потребитель.

Еще вначале было указано, что электроэнергия имеет три основные характеристики – напряжение, сила тока и сопротивление. Именно по этим параметрам и производятся все необходимые расчеты, используя для этого закон Ома.

Согласно этого закона, поскольку нам необходимо определение сопротивления, следует напряжение поделить на силу тока.

К примеру, наш источник питания обеспечивает цепь напряжением 12 В, с силой тока 0,02 А.

Чтобы определить сопротивление проводим математические расчеты – 12/0,02 и получаем сопротивление цепи 600 Ом.

Теперь непосредственно о том, как высчитать сопротивление резистора для использования в той или иной схеме. Для примера возьмем источник питания на 12 В и потребитель (лампу накаливания 3,5 В, 0,28 А).

Вначале рассчитывается сопротивление лампы – 3,5/0,28 = 12,5 Ом. Теперь узнаем, какая сила тока потечет через имеющуюся лампу – для этого берем напряжение источника питания и делим на сопротивление: 12/12,5 = 0,96 А, что в 3,5 раза превышает необходимую для работы потребителя силу тока, и если подключить потребитель, то нить лампы попросту перегорит.

Чтобы перегорания не произошло, необходимо сопротивление в цепи, равное 43,75 Ом (12,5 * 3,5). А поскольку лампа сама создает сопротивление, то в схему необходимо подключить добавочный резистор на 30 Ом. В ходе расчетов получаем – 12 В/ 42,5 Ом (сопротивление лампы и резистора) = 0,28 А.

То есть получили силу тока, необходимую для нормальной работы потребителя. В данном случае включенный в схему элемент выступил в качестве ограничителя силы тока.

Мощность рассеивания

Помимо сопротивления у резистора есть еще один немаловажный параметр – мощность рассеивания.

Любой резистор выступает своего рода ограничителем и благодаря своему сопротивлению проводит через себя только определенное напряжение и силу тока. При этом излишки, которые он не пропустил в себе не накапливает, а преобразует их в тепловую энергию и рассеивает.

Поэтому предусмотрены обозначения резисторов по мощности рассеивания.

Несоответствие данного элемента по мощности рассеивания приведет к его перегреву и разрушению. Мощность рассеивания измеряется в Ваттах.

Определить мощность рассеивания можно как по напряжению, проходящему через него, так и по силе тока.

Что касается напряжения, то формула для расчета выглядит так:

Где:

  1. Р – мощность;
  2. U – напряжение в цепи;
  3. R – сопротивление резистора.

Для расчета по силе тока формула имеет такой вид:

Где:

  1. P – мощность;
  2. I – сила тока, проходящая через резистор;
  3. R – сопротивление.

Важным условием при выборе резистора по данному параметру является то, что мощность рассеивания у него должна быть вдвое больше, чем полученная при расчетах.

К примеру, мы имеем силу тока в 0,1 А и сопротивление резистора в 100 Ом.

Исходя из формулы, получаем мощность рассеиваний в 1 Ватт (0,12 * 100 = 1), но для нормальной работы элемента выбираем резистор с мощностью рассеивания в 2 Ватт.

Отметим, что все изготавливаемые резисторы имеют строго определенное значение мощности рассеивания, что облегчает их выбор.

К тому же можно даже визуально определить, какая у резистора мощность рассеивания. Здесь все просто, чем больше по размерам элемент, тем выше значение.

Здесь мы рассмотрели резисторы – одни из самых распространенных элементов в любой электрической схеме автомобиля. Ведь они позволяют контролировать основные параметры электрической энергии благодаря воздействию всего лишь на одну из ее характеристик.

Напоследок отметим, что при расчетах необходимо следить за размерностью параметров. То есть, использовать только амперы, вольты и омы, и если указано, что сила тока составляет 20 мА, то следует перевести это значение в амперы, получив для расчетов значение в 0,02 А.

Пропорциональное управление вентилятором охлаждения двигателя автомобиля

Предлагаемое устройство позволяет перейти от релейного принципа управления вентилятором системы охлаждения двигателя «температура выше нормы — включён, ниже нормы — выключен» к более, по мнению автора, благоприятному для двигателя пропорциональному управлению. Теперь с ростом температуры охлаждающей жидкости частота вращения ротора вентилятора линейно увеличивается.

Сегодня во многих автомобильных двигателях вентилятор охлаждения имеет электрический привод, но управляют им в большинстве случаев по релейному принципу. Такое управление имеет только одно достоинство — простоту реализации. Достаточно иметь датчик температуры с контактным выходом, непосредственно или через промежуточное реле управляющий электродвигателем вентилятора.

Основной недостаток этого метода — резкое снижение температуры охлаждающей жидкости на выходе радиатора после включения вентилятора. Работающий на полную мощность вентилятор понижает температуру охлаждающей жидкости на выходе радиатора на 15. ..25 оС и более. Поступая в рубашку охлаждения двигателя, существенно охлаждённая жидкость наносит термоудар по горячим поверхностям, что негативно сказывается на работе двигателя. Для его комфортной работы температуру охлаждающей жидкости желательно поддерживать близкой к оптимальной, рекомендуемой заводом-из-готовителем, а резкие скачки температуры (термоудары) должны быть исключены в принципе.

На части автомобилей, имеющих механический привод вентилятора охлаждения, это достигнуто соединением вентилятора с коленчатым валом двигателя через вискомуфту. Она изменяет передаваемый на вал вентилятора крутящий момент в зависимости от температуры охлаждающей жидкости. Это стабилизирует температурный режим.

Предлагаемое устройство представляет собой электронный аналог виско-муфты для вентилятора с электрическим приводом. Оно автоматически регулирует частоту его вращения в зависимости от температуры охлаждающей жидкости.

Устройство работает от бортсети автомобиля при напряжении в ней 10. ..18 В и может управлять вентилятором с максимальным потребляемым током до 20 А или до 30 А при условии увеличения площади теплоотвода силовых элементов. Собственное потребление тока устройством не превышает нескольких миллиампер. Значения температуры включения вентилятора с минимальной частотой вращения и температуры, при которой частота вращения вентилятора достигает максимума, задают с дискретностью 0,1 оС при программировании микроконтроллера.

При отказе датчика температуры охлаждающей жидкости устройство переходит в аварийный режим, позволяющий безопасно для двигателя доехать до ремонтной мастерской.

Схема устройства изображена на рис. 1. Измеряет температуру цифровой датчик DS18B20 (BK1). Применение этого датчика позволяет отказаться от калибровки изготовленного устройства и улучшает его повторяемость.

Рис. 1. Схема устройства

 

Информацию о температуре считывает с датчика микроконтроллер ATtiny2313A-PU (DD1), который тактируется импульсами частотой 1 МГц от внутреннего RC-генератора. Пропорционально температуре он регулирует напряжение питания двигателя вентилятора и, следовательно, частоту вращения его ротора. На двигатель поступает импульсное напряжение, постоянная составляющая которого, определяющая частоту вращения, зависит от коэффициента заполнения (отношения длительности импульсов к периоду их повторения). Коэффициент заполнения программа задаёт восьмиразрядными двоичными числами, загружаемыми в регистр сравнения работающего в режиме ШИМ таймера микроконтроллера.

Сформированные микроконтроллером импульсы управляют работой силового ключа на полевом транзисторе VT1, замыкающего и размыкающего цепь питания двигателя вентилятора от бортовой сети автомобиля. При этом постоянная составляющая приложенного к двигателю напряжения равна

U = U(N / 255),  где U0 — напряжение в бортсети, В; N — число, загруженное в регистр микроконтроллера.

Её можно изменять с шагом  ΔU = U/ 255.

При напряжении в бортсети 12 В ΔU≈0,05 В, что позволяет регулировать частоту вращения вентилятора практически плавно.

Для обеспечения надёжной работы ключевого транзистора VT1 в переходных режимах микроконтроллер управляет им через драйвер TC4420EPA (DA1). Современные полевые транзисторы, имея очень малое сопротивление открытого канала (единицы миллиом), способны коммутировать значительный ток даже без применения теплоотвода. Однако большая входная ёмкость полевого транзистора, доходящая у мощных приборов до нескольких тысяч пикофарад, в процессе его переключения заряжается и разряжается. Это занимает тем больше времени, чем больше выходное сопротивление источника управляющего сигнала.

Плохо то, что в процессе перезарядки ёмкости полевой транзистор находится в активном режиме и сопротивление его канала довольно велико. Поэтому за время переключения в кристалле транзистора выделяется значительная мощность, что может привести к его перегреву и необратимому повреждению. Единственный способ борьбы с этим явлением — ускорение процесса перезарядки. Для этого полевыми транзисторами управляют через специализированные усилители (драйверы), имеющие низкое выходное сопротивление и обеспечивающие большой (до нескольких ампер) импульсный зарядно-разрядный ток. Это обеспечивает быструю перезарядку входной ёмкости полевого транзистора и, следовательно, минимизирует продолжительность его работы в активном режиме и снижает рассеиваемую на нём мощность.

Резистор R4 поддерживает на входе драйвера низкий логический уровень напряжения во время запуска микроконтроллера, пока все его выходы остаются в высокоимпедансном состоянии. Это исключает ненужное в это время открывание транзистора VT1. Диод VD1 устраняет импульсы ЭДС самоиндукции, возникающие в обмотках двигателя вентилятора в моменты закрывания транзистора VT1.

Во время работы программа микроконтроллера постоянно следит за наличием и работоспособностью датчика температуры. Если связи с ним нет, она переходит в аварийный режим работы. В этом режиме независимо от температуры охлаждающей жидкости вентилятор на 33 с будет включён на полную мощность, а затем на такое же время выключен. Конечно, это далеко не оптимальный вариант охлаждения двигателя, но он предотвращает его полный отказ в отсутствие охлаждения. О переходе в аварийный режим сигнализирует включение светодиода HL1. Если нарушение связи с датчиком было временным, после её восстановления устройство переходит в нормальный режим работы.

В программу микроконтроллера для управления вентилятором заложены в виде констант следующие исходные данные:

— Tmin = 87 — температура охлаждающей жидкости, оС, при которой вентилятор должен начинать работать с минимальной частотой вращения;

— Tmax = 92 — температура охлаждающей жидкости, оС, при которой частота вращения вентилятора должна достичь максимального значения;

— N1 = 70 — значение загружаемого в регистр сравнения таймера кода, обеспечивающее вращение ротора вентилятора с минимальной частотой.

Как известно, промышленные датчики, предназначенные для управления работой вентиляторов охлаждения, имеют два основных параметра — температуру включения и температуру выключения. Их и следует выбрать в качестве Tmax и Tmin. Значение N1 нужно задать таким, при котором постоянная составляющая напряжения на двигателе вентилятора равна напряжению его трогания Uтр.

Проблема в том, что напряжение трогания не принято указывать в технических данных вентиляторов, поэтому найти в литературе или в документации значение этого параметра автору не удалось. Его пришлось определять экспериментально. Методика проста — подавая напряжение на двигатель, найти его значение, при котором вал начнёт медленно (оборот за одну-две секунды), но устойчиво вращаться. Для большинства двигателей постоянного тока с номинальным напряжением питания 12 В напряжение трогания лежит в пределах 3…5 В.

При запуске программы микроконтроллер на основании значений Tmax, Tmin и N1 рассчитывает Dn — требуемую крутизну зависимости значения загружаемого регистр сравнения таймера кода от температуры:

Dn = (255 — N1) / (Tmax — Tmin).

Затем начинается главный цикл программы. Прежде всего, происходит проверка связи с датчиком температуры, а при её отсутствии — переход в аварийный режим работы. Такую проверку программа выполняет каждую секунду. Если очередная проверка показывает, что датчик работает, восстанавливается нормальный режим работы.

Когда датчик исправен, он измеряет текущую температуру охлаждающей жидкости T. Если она ниже Tmin, программа выключает вентилятор, в противном случае вычисляет требуемое значение управляющего кода по формуле

N = (T — Tmin)·Dn+N1.

Пропорционально ему будут установлены коэффициент заполнения питающего двигатель напряжения и, следовательно, частота вращения его ротора. В результате температура охлаждающей жидкости при неизменной нагрузке на двигатель поддерживается постоянной. При переменной нагрузке температура колеблется в небольших пределах внутри интервала Tmin…Tmax.

Все детали устройства, за исключением датчика BK1 и светодиода HL1, размещены на печатной плате размерами 58×65 мм, чертёж которой показан на рис. 2, а расположение элементов — на рис. 3.

Рис. 2. Чертёж печатной платы

 

Рис. 3. Расположение элементов на плате

 

Микросхемы впаяны непосредственно в плату без панелей, применение которых в условиях повышенной вибрации нежелательно. На плате имеются не показанные на схеме контактные площадки SCK, RST, VCC, MISO, MOSI, GND, к которым на время программирования микроконтроллера припаивают одноимённые провода от программатора. При этом плату и программатор во время программирования следует питать напряжением +5 В (VCC) от одного источника.

Плата рассчитана на установку резисторов и конденсаторов типоразмера 1206 для поверхностного монтажа. Диод SR2040 (URL: http://files.rct.ru/ pdf/diode/5261755198365.pdf (27.06.16)) — в двухвыводном корпусе TO220AC. Вместе с транзистором IRF3808 он закреплён с применением теплопроводной пасты на общем теплоотводе с площадью охлаждающей поверхности около 60 см2.

Принцип крепления транзистора 5 или диода к теплоотводу 1 и всего узла к печатной плате 2 показан на рис. 4. Диод изолирован от теплоотвода слюдяной прокладкой, а от крепящего винта 4 и металлической втулки 3 — изоляционной втулкой (изолирующие элементы на рисунке не показаны). Между корпусами диода и транзистора находится третья точка крепления теплоотвода к плате. Здесь он также закреплён винтом и втулкой.

Рис. 4. Принцип крепления транзистора или диода к теплоотводу и всего узла к печатной плате 

 

Все печатные проводники платы, по которым течёт ток двигателя вентилятора, должны быть покрыты слоем припоя толщиной не менее 0,7… 1 мм, а сечение подводящих проводов должно обеспечивать пропускание этого тока.

Светодиод HL1 целесообразно вынести в салон автомобиля, чтобы водитель имел оперативную информацию о текущем режиме работы устройства.

Датчик DS18B20 (ВК1) следует поместить в корпус от штатного контактного датчика температуры охлаждающей жидкости, из которого предварительно следует удалить всю «начинку». Такой корпус можно и выточить из латуни с сохранением габаритных и присоединительных размеров. Размещение датчика DS18B20 в корпусе показано на рис. 5. Датчик 4 с припаянным к его выводам разъёмом 1 помещают в полость корпуса 3 так, чтобы его верхушка, на которую нанесён слой теплопроводной пасты 5, касалась дна полости.

Рис. 5. Размещение датчика DS18B20 в корпусе

 

После этого полость заливают термостойким герметиком 2.

Разъём 1 должен иметь антикоррозийное покрытие контактов, бытьбрызгозащищённым, надёжно фиксировать ответную часть, не допуская её отстыковки под действием вибрации. Подготовленный датчик устанавливают на место штатного.

Собранная плата помещена в корпус подходящих размеров, который размещён в моторном отсеке автомобиля. В корпусе предусмотрены вентиляционные отверстия.

Микроконтроллер ATtiny2313A может быть заменён другим семейства AVR, имеющим как минимум один 8-разрядный и один 16-разрядный таймер и не менее 2 Кбайт программной памяти. Естественно, замена микроконтроллера потребует перекомпиляции программы и, возможно, изменения топологии печатной платы.

Вместо неинвертирующего драйвера нижнего плеча TC4420EPA можно использовать другой подобный, например, MAX4420EPA.

Диод с барьером Шотки SR2040 можно заменить аналогичным с допустимым обратным напряжением не менее 25 В и допустимым прямым током не менее рабочего тока вентилятора. Однако диоды Шотки с обратным напряжением более 40 В применять не рекомендуется, так как большее прямое падение напряжения на таком диоде приведёт к возрастанию тепловыделения.

Замену полевому транзистору IRF3808 с изолированным затвором и каналом n-типа следует подбирать с опустимым постоянным током стока при температуре 100 °C в 2,5…3 раза больше рабочего тока вентилятора и с сопротивлением открытого канала при рабочем токе вентилятора до 20 А — не более 10 мОм, а 20…30 А — не более 7 мОм. Допустимое напряжение сток-исток должно быть не менее 25 В, а затвор-исток — не менее 20 В.

Правильно собранное из исправных деталей устройство потребует налаживание только в том случае, если исходные данные в прилагаемом варианте программы, о которых было сказано ранее, не соответствуют требуемым. В этом случае их нужно откорректировать в исходном тексте программы, заново откомпилировать его в среде разработки Bascom AVR и загрузить в память микроконтроллера вместо приложенного к статье файла Cooler-test.hex полученный HEX-файл.

Если напряжение трогания двигателя вентилятора неизвестно, его можно определить экспериментально. Для этого в память микроконтроллера вместо рабочей программы нужно загрузить разработанную мной отладочную программу. В приложенном к статье файле Cooler-test.hex содержатся её коды. Конфигурацию микроконтроллера программируют одинаково для рабочей и тестовой программ в соответствии с рис. 6, где показано окно установки конфигурации программатора AVRISP mkII.

Рис. 6. Программирование микроконтроллера

 

Через 3 с после включения питания программа Cooler-test начинает управлять вентилятором, постепенно увеличивая от 55 до 95 шагами по 5 единиц код, задающий коэффициент заполнения питающего вентилятор импульсного напряжения. Это примерно соответствует изменению постоянной составляющей этого напряжения от трёх до пяти вольт. Длительность каждой ступени — 10 с, в течение которых вентилятор и светодиод HL1 включены, и пауза длительностью 5 с, в течение которой напряжение с вентилятора снято, а светодиод погашен. Об окончании работы программы сигнализирует серия из пяти коротких вспышек светодиода.

Наблюдая за светодиодом, несложно определить, на какой ступени вентилятор начал вращаться, и определить значение N1, которое следует записать в основную программу.

Работу устройства в аварийном режиме проверяют, отключив разъём от датчика температуры. При этом вентилятор должен включиться и работать на полную мощность в прерывистом режиме (33 с — работа, 33 с — пауза). Светодиод HL1 при этом должен светиться. Его желаемую яркость устанавливают подборкой резистора R3.

Программы микроконтроллера можно скачать здесь.

Автор: А. Савченко, пос. Зеленоградский Московской обл.

Автоматическое термореле для охлаждения двигателя в автомобиле

У многих, даже у большинства, легковых автомобилей в системе охлаждения двигателя работает электрический вентилятор, периодически обдувающий воздухом радиатор системы охлаждения двигателя. В разных автомобилях, схема управления этим вентилятором решена по-разному, в одних на радиаторе установлен датчик-термовыключатель, который уже на заводе-изготовителе настроен на определенную температуру, и при её достижении, замыкает контакты, подающие ток на обмотку реле включения электромотора электровентилятора.

В других, используется общий датчик датчик температуры двигателя, представляющий собой терморезистор, а решение включать электроветилятор или не включать принимает ЭБУ (электронный блок управления)автомобиля.

И там и здесь, есть одна и та же проблема, — температурный порог включения вентилятора не регулируется ни в зависимости от погоды, времени года, режима эксплуатации, используемой охлаждающей жидкости, или просто, желания водителя. В результате, машина летом перегревается и может вскипеть, а зимой печка греет плохо. К тому, же возникают большие проблемы при замене одного типа охлаждающей жидкости на другой.

У современных автомобилей, у которых решение о включении вентилятора принимает ЭБУ на основе сопротивления датчика температуры, проблему можно решить внесением изменений в прошивку ЭБУ, но это дорого и не всегда возможно. У автомобилей с термовыключателем есть возможность один термовыключатель заменить другим, на другую температуру, но это процесс трудоемкий и не всегда можно найти подходящий датчик.

А ведь, хотелось бы, просто иметь возможность подкрутить отверткой некий подстречный винтик, и им отрегулировать необходимую (или желаемую) температуру включения вентилятора системы охлаждения. Понятно, что решить вопрос можно обыкновенной схемой терморегулятора, где информацию о температуре можно будет брать с датчика температуры. Это может быть тот самый датчик, который взаимодействует с ЭБУ, либо датчик на стрелочный индикатор температуры, все зависит от конкретного автомобиля, вернее, его схемы.

Схема термореле

Схем терморегуляторов в радиолюбительской литературе описано великое множество, поэтому, ни сколько не претендуя на оригинальность, привожу ту схему, которую собрал лично для своего автомобиля. Как уже сказал выше, схема практически типовая. Состоит она из компаратора на операционном усилителе и двух цепей, задающих напряжение на его входах.

Напряжение на неинвертирующем входе устанавливается подстроечным резистором R2, а напряжение на инвертирующем входе берется с датчика температуры двигателя, который представляет собой терморезистор, образующий, вместе с другими деталями схемы автомобиля, термозависимый делитель напряжения.

Рис. 1. Принципиальная схема термореле для включения охлаждения двигателя в авто.

На выходе схемы есть ключ на транзисторе VT1, его коллектор подключают к обмотке реле, управляющего электровентилятором. А питание на схему подают с выхода замка зажигания автомобиля, так, чтобы питание на схему поступало только при включенном зажигании. Это нужно потому, что при выключенном зажигании напряжение на цепь датчика температуры обычно не поступает, соответственно, напряжение на датчике температуры падает до нуля, независимо от величины температуры.

Работа схемы

Подстроечным резистором R2 устанавливается некоторое напряжение на выводе 3, которому соответствует температура включения вентилятора.

Когда температура охлаждающей жидкости ниже заданной, сопротивление датчика температуры высоко, и напряжение на нем существенно выше напряжения на выводе 3 А1. Поэтому, на выходе операционного усилителя А1, работающего как компаратор, будет низкое напряжение. Транзистор VT1 будет закрыт, и ток через него на обмотку реле включения вентилятора поступать не будет.

Так как в качестве компаратора здесь используется обычный операционный усилитель типаКР140УД608, минимальное напряжение на его выходе несколько отлично от нуля, поэтому, чтобы улучшить закрывание транзистора VT1 в цепь его эмиттера включены два диода типа 1N4004. Если при налаживании этого окажется недостаточно, количество этих диодов нужно увеличить.

Когда температура охлаждающей жидкости достигает и превышает заданную, сопротивление датчика температуры низко, и напряжение на нем ниже напряжения на выводе 3 А1. Поэтому, на выходе операционного усилителя А1 высокое напряжение. Транзистор VT1 открывается и пускает ток на обмотку реле включения вентилятора. Подстроечный резистор R2 — многооборотный.

Шеклев М. В. РК-2016-03.

Товаров с меткой «Вентилятор охлаждения»

Канал Petsfang для CR10 MicroSwiss / Stock / E3Dv6 / Volcano / TevoTornado / Tarantula Hot End / E3Dv6 CNC Mount & 5015 fan Bullseye автор: dpetsel 16 янв.2018 г. 11677 20258 5032 Защита вентилятора платы Creality Ender 3 по Admant77 29 мая 2018 г. 8976 15242 249 Вентиляционное кольцо Ender 3 автор Filboyt 15 мая 2018 г. 6851 10342 366 Hero Me Gen4 — Устарело (ищите новое поколение 5) по медиамену 29 октября 2018 г. 5173 8084 3056

Как управлять ODROID-XU4 Вентилятор охлаждения — ODROID

Если вам нужно настроить пороговые значения температуры, просто измените узлы терморегулирования в sysfs.

Например, если вы хотите активировать точку срабатывания 1 при 30 ° C, вы можете просто записать на них значение.

 $ echo 30000 | sudo tee / sys / devices / virtual / Thermal / Thermal_zone {0,1,2,3} / trip_point_0_temp
$ cat / sys / devices / virtual / Thermal / Thermal_zone {0,1,2,3} / trip_point_0_temp
# полученные результаты
30000
30000
30000
30000
 

Затем вентилятор начинает вращаться при 30 ° C.

Если вы хотите сделать это автоматически, напишите код в файле / etc / rc.локальный файл.
Скопируйте следующие коды и вставьте.

 # Целевая температура: 30 ° C, 50 ° C, 70 ° C
TRIP_POINT_0 = 30000
TRIP_POINT_1 = 50000
TRIP_POINT_2 = 70000

echo $ TRIP_POINT_0> / sys / devices / virtual / Thermal / Thermal_zone0 / trip_point_0_temp
echo $ TRIP_POINT_0> / sys / devices / virtual / Thermal / Thermal_zone1 / trip_point_0_temp
echo $ TRIP_POINT_0> / sys / devices / virtual / Thermal / Thermal_zone2 / trip_point_0_temp
echo $ TRIP_POINT_0> / sys / devices / virtual / Thermal / Thermal_zone3 / trip_point_0_temp

echo $ TRIP_POINT_1> / sys / devices / virtual / Thermal / Thermal_zone0 / trip_point_1_temp
echo $ TRIP_POINT_1> / sys / devices / virtual / therm / Thermal_zone1 / trip_point_1_temp
echo $ TRIP_POINT_1> / sys / devices / virtual / therm / therm_zone2 / trip_point_1_temp
echo $ TRIP_POINT_1> / sys / devices / virtual / therm / Thermal_zone3 / trip_point_1_temp

echo $ TRIP_POINT_2> / sys / devices / virtual / Thermal / Thermal_zone0 / trip_point_2_temp
echo $ TRIP_POINT_2> / sys / devices / virtual / therm / Thermal_zone1 / trip_point_2_temp
echo $ TRIP_POINT_2> / sys / devices / virtual / Thermal / Thermal_zone2 / trip_point_2_temp
echo $ TRIP_POINT_2> / sys / devices / virtual / Thermal / Thermal_zone3 / trip_point_2_temp 

Перезагрузитесь и проверьте, правильно ли применились изменения.

Если вы хотите изменить значения скорости вращения вентилятора в точках срабатывания, измените этот системный узел.

 / sys / устройства / платформа / pwm-fan / hwmon / hwmon0 / fan_speed 

Вы можете проверить текущую скорость вращения вентилятора.

 $ cat / sys / devices / platform / pwm-fan / hwmon / hwmon0 / fan_speed
# полученные результаты
0120 180 240 

Вы можете настроить эти значения, записав набор значений в файл.
Если вы хотите сделать своего вентилятора более агрессивным, напишите, как показано ниже.

 $ echo "0 204 220 240" | sudo tee / sys / устройства / платформа / pwm-fan / hwmon / hwmon0 / fan_speed
# полученные результаты
0 204 220 240 

Если вы хотите сделать это автоматически, напишите код в файле / etc / rc.локальный файл.
Скопируйте следующие коды и вставьте.

 # Целевая скорость вентилятора (ШИМ): 0, 204, 220, 240
echo "0 204 220 240"> / sys / devices / platform / pwm-fan / hwmon / hwmon0 / fan_speed 

Вы также можете полностью контролировать скорость вращения вентилятора вручную.

 # Установить вентилятор в ручной режим
$ echo 0 | sudo tee / sys / устройства / платформа / pwm-fan / hwmon / hwmon0 / автоматический 
 # Установить скорость на 100%
$ echo 255 | sudo tee / sys / устройства / платформа / pwm-fan / hwmon / hwmon0 / pwm1 

Если вам нужна дополнительная информация, обратитесь к этой странице WiKi.
https://wiki.odroid.com/odroid-xu4/application_note/manually_control_the_fan#fully_manual_way_to_control_the_fan_speed

вентиляторов для охлаждения | Министерство энергетики

Потолочные вентиляторы считаются наиболее эффективными из этих типов вентиляторов, так как они эффективно циркулируют воздух в помещении, создавая сквозняк. Если вы используете кондиционер, потолочный вентилятор позволит вам поднять настройку термостата примерно на 4 ° F без снижения комфорта. В умеренном климате или в умеренно жаркую погоду потолочные вентиляторы могут позволить вам вообще отказаться от использования кондиционера. Установите вентилятор в каждой комнате, который нужно охлаждать в жаркую погоду. Выключайте потолочные вентиляторы, когда выходите из комнаты; вентиляторы охлаждают людей, а не комнаты, создавая эффект охлаждения ветром.

Потолочные вентиляторы подходят только для помещений с высотой потолка не менее восьми футов. Вентиляторы работают лучше всего, когда лопасти находятся на высоте 7–9 футов над полом и на 10–12 дюймов ниже потолка. Вентиляторы следует устанавливать так, чтобы их лопасти находились не ближе 8 дюймов от потолка и 18 дюймов от стен.

Потолочные вентиляторы большего размера могут перемещать больше воздуха, чем вентиляторы меньшего размера.Вентилятор диаметром 36 или 44 дюйма охлаждает помещения площадью до 225 квадратных футов, а вентиляторы диаметром 52 дюйма и более следует использовать в больших помещениях. Несколько вентиляторов лучше всего работают в помещениях длиной более 18 футов. Вентиляторы малого и среднего размера обеспечивают эффективное охлаждение на площади от 4 до 6 футов в диаметре, тогда как более крупные вентиляторы эффективны на расстоянии до 10 футов.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *