Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Схема включения твердотельного реле: Подключение твердотельного реле (схема)

Содержание

Твердотельное реле: схема, принцип работы, подключение

Чтобы обеспечить бесконтактную коммуникацию различных устройств без использования электромагнитов применяют твердотельное реле. Об особенностях, принципе действия и схеме подключения данного устройства поговорим далее.

Оглавление:

  1. Твердотельное реле — принцип работы
  2. Преимущества и сфера использования твердотельного реле
  3. Разновидности твердотельных реле
  4. Выбор и покупка твердотельного реле
  5. Особенности подключения твердотельного реле

Твердотельное реле — принцип работы

Твердотельное реле — это устройство, обеспечивающее контакт между низковольтными и высоковольтными электрическими цепями.

Рассматривая структуру данного прибора, большинство моделей схожи между собой, имеют незначительные отличия, которые никак не влияют на принцип их работы.

Структура твердотельного реле включает наличие:

  • входа,
  • оптической развязки,
  • триггерной цепи,
  • цепи переключателя,
  • цепи защиты.

Входом является первичная цепь, которая характеризуется наличием резистора на постоянном изоляторе, который имеет последовательное подключение. Основная функция цепи входа состоит в принятии сигнала и передаче команды устройству твердотельного реле, которое коммутирует нагрузку.

В качестве изоляции входной и выходной сети с переменным током используется устройство оптической развязки. От типа данного компонента, зависит вид реле и его принцип работы.

Для обработки входного сигнала и переключения выхода используется конструкция триггерной цепи. Она выступает, как отдельный элемент, а в некоторых моделях входит в состав оптической развязки.

Чтобы подать силу напряжения на нагрузку используется цепь переключающего типа, которая включает транзистор, кремниевый диод и симистор.

Чтобы защитить твердотельное реле от сбоев в работе или возникновения ошибок, используется отдельная защитная цепь. Это устройство бывает двух видов: внутреннего и внешнего.

Твердотельное реле схема состоит из:

  • системы контроля,
  • устройства твердотельного реле,
  • двигателя, насоса, сварочного аппарата, трансформатора или нагревателя.

Чтобы коммутировать индуктивную нагрузку с помощью твердотельного реле следует увеличить запас тока в 6-8 раз.

Принцип работы твердотельного реле состоит в замыкании или размыкании контактов, которые передают напряжение непосредственно на реле. Чтобы привести в действие контакты необходимо наличие активатора. Его роль в твердотельном реле выполняет полупроводник или твердотельный прибор. В устройствах которые работают при переменном токе это тиристор или симистор, а для приборов с постоянным током — транзистор.

Прибор, который характеризуется наличием ключевого транзистора, является твердотельным реле. Это, например, датчик движения или света, который с помощью транзистора осуществляет передачу напряжения.

Между напряжением в катушке и силовых контактах появляется действие гальванической развязки, которое исчезает в следствие наличия оптической цепи.

Преимущества и сфера использования твердотельного реле

Твердотельное реле часто заменяет обычные контактеры из-за большого количества преимуществ перед ними. Рассмотрим основные достоинства твердотельного реле:

1. Небольшое потребление энергии — из-за отсутствия электромагнитного разнесения, электромагнитное реле потребляет много электроэнергии, так как в твердотельном реле используется полупроводник, количество электроэнергии для его работы меньше на 90%.

2. Твердотельное реле малогабаритное устройство, это качество позволяет его легко транспортировать и устанавливать.

3. Данное устройство характеризуется высоким уровнем быстродействия и не требует ожидания для запуска.

4. Низкая шумопроизводительность — еще одно преимущество твердотельного реле перед контактерами.

5. Такие приборы отличаются более длительным сроком эксплуатации и не требуют дополнительного технического обслуживания.

6. Имеют большую сферу использования и подходят для разных приборов.

7. Твердотельное реле позволяет включать цепь не допуская помех электромагнитного характера.

8. Высокий уровень быстродействия позволяет избежать дребезга контактов во время работы устройства.

9. Твердотельное реле позволяет осуществить более миллиарда срабатываний.

10. Наличие надежной изоляции между цепями входа и коммутации повышает производительность прибора.

11. Реле отличается наличием компактной герметичной конструкции и стойкой вибрацией перед ударами.

Сфера использования твердотельного реле достаточно широкая. Их используют в том случае, если возникает необходимость в коммутации индуктивной нагрузки. Рассмотрим основные области применения данного устройства:

  • система, в которой производится регулировка температуры при помощи тэна;
  • чтобы поддержать постоянную температуру в технологическом процессе;
  • для коммутирования цепи управления;
  • при выполнении замены пускателей бесконтактного реверсного типа;
  • управление электрическими двигателями;
  • контроль нагрева, трансформаторов и других технических приборов;
  • регулирование уровня освещения.

Разновидности твердотельных реле

Есть несколько разновидностей твердотельного реле, которые отличаются особенностями контролирующего и коммутируемого напряжения:

1. Твердотельные реле постоянного тока — используется при действии постоянного электричества в диапазоне от 3 до 32-х Вт. Характеризуется высокими удельными характеристиками, светодиодной индикацией, высокой надежностью. Большинство моделей имеют широкий диапазон рабочих температур от -30 до +70 градусов.

2. Твердотельные реле переменного тока отличается низким уровнем электромагнитных помех, отсутствием шума во время работы, низким потреблением электроэнергии и высокой скоростью работы. Рабочий интервал составляет 90-250 Вт.

3. Твердотельные реле с ручным управление, позволяют настраивать тип работы.

В соотношении с типом нагрузки выделяют:

  • однофазное твердотельное реле,
  • трехфазное твердотельное реле.

Однофазное реле позволяет коммутировать электричество в диапазоне 10-120 А, или в диапазоне 100-500 А. Фазовое управление осуществляется при помощи аналогового сигнала и переменного резистора. Трехфазные реле применяют для коммутации тока сразу на трех фазах одновременно. Они имеют рабочий интервал от 10 до 120 А. Среди трехфазных реле выделяют устройства реверсивного типа, которые отличаются маркировкой и бесконтактной коммукацией. Их функция состоит в надежной коммутации каждой цепи отдельно. Специальные устройства способны надежно защищать реле от ложных включений.

Они используются во время запуска и работы асинхронного двигателя, который производит их реверс. При выборе данного устройства необходимо соблюдать большой запас мощности тока, который безопасно и эффективно эксплуатирует устройство.

Чтобы избежать возникновения перенапряжений при использовании реле, следует обязательно приобрести варистор или предохранитель быстрого действия.

Трехфазные реле отличаются более длительным сроком эксплуатации, чем однофазные. Коммукация происходит в следствие перехода тока через ноль и светодиодную индикацию.

В соотношении с методом коммукации выделяют:

  • устройства, выполняющие нагрузки емкостного типа, редуктивного типа, слабой индукции;
  • реле со случайным или мгновенным включением, используются в том случае, когда требуется мгновенное срабатывание;
  • реле с наличием фазового управления, позволяют производить настройку нагревательных элементов, ламп накаливания.

В соотношении с конструкцией твердотельные реле бывают:

  • монтируемые на Д И Н рейки,
  • универсальные, устанавливаемые на планки переходного типа.

Выбор и покупка твердотельного реле

Чтобы купить твердотельное реле, следует обратиться в специализированный магазин электроники, в котором опытные специалисты помогут подобрать устройство, в соотношении с необходимой мощностью.

Твердотельное реле цена определяется такими характеристиками:

  • тип устройства,
  • наличие крепежных элементов,
  • материал, из которого изготовлен корпус,
  • мгновенное или постепенное включение,
  • наличие дополнительных функций,
  • производитель,
  • мощность,
  • потребление электроэнергии,
  • габариты прибора.

Во время покупки твердотельного реле, следует учесть один очень важный момент. Данные устройства должны работать с запасом мощности, который превышает мощность устройства в несколько раз. Если не придерживаться этого правила, при небольшом повышении мощности, прибор мгновенно выйдет из строя.

Рекомендуется использование специальных предохранителей, которые помогут избежать поломки реле.

Есть несколько разновидностей предохранителей:

  • g R — используются во широком диапазоне мощностей, отличаются быстрым действием;
  • g S — используются во всем диапазоне тока, защищаю элементы полупроводников от повышенных нагрузок электросети;
  • a R — защищают элементы полупроводникового типа от возникновения коротких замыканий.

Такие устройства имеют достаточно высокую стоимость, которая приравнивается к стоимости самого реле, но они обеспечивают высокоэффективную защиту устройства от поломки.

Существуют другие предохранители, которые относятся к классу В, С и D. Они отличаются меньшим спектром защиты и более дешевой стоимостью.

Во время эксплуатации твердотельного реле, следует учесть, что данный прибор очень быстро нагревается. Если корпус устройства очень сильно нагрелся, то оно не способно коммутировать ток в обычном режиме, количество тока очень сильно снижается. Если температура нагрева достигнет 65 градусов, то прибор сгорит.

Поэтому во время использования реле обязательно требуется установка охлаждающего радиатора. И запас тока должен быть в три, четыре раза выше. Если производится регулировка двигателей асинхронного типа, то запас тока увеличивается в восемь-десять раз.

Особенности подключения твердотельного реле

Рекомендации по самостоятельному подключению твердотельного реле:

1. Соединения не требуют использования пайки, а осуществляются винтовым способом.

2. Чтобы избежать повреждения прибора нельзя допускать попадания в него пыли или элементов металлического происхождения.

3. Не разрешается прилагать недопустимые внешние воздействия на корпус устройства.

4. Не размещайте твердотельное реле рядом с легко воспламеняющимися предметами, а также не прикасайтесь к прибору, в то время когда он работает, чтобы избежать получения ожогов.

5. Перед включением реле следует убедиться в правильной коммутации соединений.

6. В случае нагрева корпусы выше 60 градусов, рекомендуется установка реле на радиатор охлаждения.

7. Чтобы избежать повреждения прибора нельзя допускать возникновения короткого замыкания на выходе.

 

Твердотельные реле — примеры использования и подключения

Для коммутации нагрузок в различном оборудовании обычно используются контакторы и реле. Всем известны основные минусы этих устройств – подгорание контактов и наличие подвижных частей. От этих недостатков полностью свободны Твердотельные реле (ТТР), которые всё шире и шире используются в промышленном оборудовании.

В статье рассмотрим подключение и электрическую защиту твердотельных реле, а также различные примеры применения.

Варианты использования

ТТР имеет смысл ставить там, где нет возможности контролировать работоспособность обычных электромеханических реле. Да, ТТР дороже, но основное их преимущество – «поставил и забыл». Часто их ставят для коммутации индуктивной нагрузки (электромагниты), для которой обычные реле подходят слабо – контакты подгорают быстро, нужно их чистить или менять. Либо ставить реле на заведомо больший ток работы.

Другой вариант использования ТТР – включение мощной нагрузки типа ТЭНов, когда мощные контакторы прослужат недолгое время из-за частых включений-выключений. Такое бывает в случае, когда нужно точное поддержание температуры, а для этого устанавливают небольшую ширину петли гистерезиса.

Как и в случае с контакторами и реле, ТТР легче работать, когда нагрузка чисто активная (АС1), то есть не содержит индуктивности (cosφ стремится к 1). Тогда он легко может коммутировать ток, указанный на его корпусе. В большинстве же случаев нагрузка является частично реактивной (cosφ = 0,7-0,8), поэтому ток ТТР нужно всегда выбирать с запасом.

Запас по току нужен также и для надежной работы системы защиты, но об этом расскажем чуть позже.

Коммутация ТЭНа нагревателя

В этом примере, как мы уже отмечали выше, ТТР работает в самом простом режиме – коммутация напряжения питания 220 В для ТЭНа. Реле рассчитано на ток 40 А, для однофазного напряжения 220 В это означаем максимальную мощность 8,8 кВт.

Однако, в целях повышения надежности в данном случае никто не будет подключать через ТТР ТЭНы мощностью 8 кВт. Обычно, даже в этом случае выбирают запас 50 %, не менее. В данном примере применяется ТЭН на 1,5 кВт. Защита обеспечивается автоматическим выключателем с номинальным током 10 А.

Управление твердотельными реле

Фактически ТТР – это управляемый коммутатор. В каком-то смысле, обычный транзистор является твердотельным реле – при подаче управляющего сигнала он открывается, и пропускает ток в нагрузку.

В ТТР в более чем 90% случаев в качестве управляющего сигнала нужно постоянное напряжение. Диапазон напряжений – от 3 до 35 В, и может быть разным для разных моделей и производителей..

В редких случаях (в зависимости от модели) в качестве управляющего сигнала применяют переменное напряжение (порядка 100…250 В), токовый сигнал 4…20 мА, либо для управления используют обычный потенциометр.

Схема подключения проста, и обычно приводится на корпусе ТТР:

Приведенная схема включения твердотельного реле является наиболее распространенной. На управляющий вход ТТР подается постоянное напряжение порядка 12…24 В. Подача напряжения производится от внешнего источника питания через любой подходящий коммутирующий элемент – кнопка, переключатель, транзистор, реле. На работу ТТР не оказывает влияния схема включения и принцип действия схемы на его входе. Важен лишь сам факт подачи напряжения нужного значения и полярности.

В ТТР с управляющим сигналом в виде переменного напряжения принцип работы аналогичный.

В большинстве моделей ТТР реализована светодиодная индикация подачи управляющего сигнала, что позволяет «на лету» отслеживать и анализировать работу ТТР.

Силовая часть ТТР

Эта важная часть ТТР коммутирует ток нагрузки.

Входная и выходная части твердотельного реле гальванически развязаны при помощи оптопары. Твердотельное реле не имеет отдельного источника питания. И если входная часть ТТР питается от входного источника питания, то выходная часть питается через нагрузку, получая питание при условии, что эта нагрузка подключена.

Таким образом, если нагрузка имеет высокое сопротивление, с одной стороны, это хорошо – меньше ток через реле, и оно меньше испытывает перегрузки, работая с большим запасом. Но если этот ток продолжить уменьшать, ТТР просто не сможет работать – хотя, входная индикация будет показывать, что всё нормально.

Коммутация индуктивной нагрузки

С индуктивной нагрузкой (как правило, это электромагнит), не так всё просто.

В этом случае нужно учитывать переходные процессы в моменты включения и выключения ТТР. В эти моменты возможны всплески напряжения, которые могут привести к неприятным последствиям, например – «зависание» ТТР в открытом или закрытом состоянии, которое снимается перезапуском питания. Самый неприятный вариант – ТТР может полностью выйти из строя, при этом оно может остаться в опасном включенном состоянии.

Существуют особенности при подключении индуктивной нагрузки типа электромагнитов. Производители рекомендуют выбирать пару ТТР-электромагнит таким образом, чтобы ток нагрузки был не более чем 10% от максимально допустимого тока ТТР. Это обусловлено возможной нестабильностью работы. Кроме того, при коммутации постоянного тока рекомендуется параллельно нагрузке подключать обратно включенный диод.

Защита

Большинство производителейрекомендуют в качестве защиты устанавливать быстродействующие предохранители. Это нужно для того, чтобы в случае перегрузки или короткого замыкания нагрузки не произошло поломки ТТР.

Однако, поскольку стоимость таких предохранителей сопоставима со стоимостью самого ТТР, существует вариант установки вместо предохранителей защитных автоматов. Причем, производители рекомендуют только защитные автоматы с время-токовой характеристикой типа «В».

Чтобы пояснить принцип защиты, рассмотрим известные графики время-токовых характеристик автоматических выключателей:

Из графика видно, что при превышении тока защитного автомата с характеристикой «В» более чем в 5 раз время его выключения – около 10 мс (пол периода напряжения частотой 50 Гц).

Из этого можно сделать вывод, что для того, чтобы иметь большие шансы по сохранению работоспособности ТТР в случае КЗ, нужно применять защитные автоматы с характеристикой «В». При этом нужно соответственно рассчитывать токи нагрузки и защитного автомата в зависимости от максимального тока твердотельного реле.

Пример неправильной защиты ТТР

Случаются грубые ошибки в проектировании систем на ТТР. Пример – электронагреватель приточной вентиляции мощностью 18,5 кВт, питаемый через трехфазное твердотельное реле с рабочим током 25 А. Основная проблема в том, что защищается это ТТР через автоматический выключатель с номинальным током 25 А и время-токовой характеристикой С.

Даже в случае частичного превышения рабочего тока (например, до 35 А) в первую очередь выгорит ТТР, при этом время отключения защитного автомата – около 1 часа.

Твердотельное реле сделать самому своими руками: схема

Изготовить твердотельное реле своими руками под силу даже начинающему радиолюбителю. Ничего сложного в конструкции этого устройства нет, но разобраться со схемотехникой, особенностями применения и подключения, все же нужно. Твердотельное реле – это элемент, изготовленный на основе полупроводников. В его конструкции имеются силовые ключи на симисторах, тиристорах или транзисторах. Эти реле, работающие бесшумно, являются хорошей заменой контакторам и пускателям. С их помощью устройства подключаются более надежно и безопасно.

Простая схема реле

В силовой электронике часто возникает необходимость использовать одно- или 3 х-фазное твердотельное реле. Своими руками изготовить это устройство можно по одной из схем, представленных в статье.

Преимущество твердотельного реле перед механическими контакторами очевидно – у них ресурс намного выше. И это из-за того, что в них нет ни одного механического компонента, а именно они являются наиболее уязвимыми.

Для изготовления твердотельного реле можно использовать цепочки, состоящие из схемы управления и симистора. Гальваническую развязку осуществляет симисторная оптопара. В схеме используются такие элементы:

  1. Оптопара типа МОС3083.
  2. Симистор марки ВТ139-800 16А с изолированным анодом.
  3. Ограничивающий резистор, который снижает ток, проходящий через светодиод.
  4. Светодиод для индикации работы устройства.
  5. К управляющему электроду симистора подключается резистор 160 Ом.

А теперь давайте рассмотрим более детально процесс изготовления устройства.

Особенности процесса изготовления

Рекомендуется заключать все элементы схемы в металлический корпус, чтобы охлаждение происходило намного лучше. Для надежности нужно заливать короб при помощи клеевого пистолета. Главное при работе – это правильно подобрать металлическую подложку, чтобы обеспечить наилучшее отведение тепла. Для изготовления используется опалубка, в которую заключается твердотельное реле постоянного тока. Своими руками ее изготовить можно из любого материала.

Идеально подойдет пластиковая коробка или отрезок трубы. Все зависит от того, какой размер у изделия. Металлическая подложка должна размещаться в этой опалубке. Тщательно нужно залить клеем все элементы схемы, отверстия в корпусе, чтобы обеспечить качественную изоляцию. Обратите внимание на то, что у симисторов выводы обычно неоднозначно определяются, поэтому их нужно заранее проверить. Для проверки открытия симистора необходимо использовать мегомметр. Как только симистор откроется, сопротивление изменится от нескольких десятков мегаом до 1-2 кОм.

Особенности устройства твердотельного реле

Независимо от того, какой производитель твердотельного реле, элементная база у него постоянна – в редких случаях можно найти незначительные различия. На входе обычно устанавливается резистор, соединяется он последовательно с оптическим устройством. Иногда сопротивление изготавливается по сложной конструкции, в которую включается защита от обратной полярности и регулятор тока. Нужно выделить такие свойства твердотельных реле:

  1. При помощи оптической развязки обеспечивается изоляция различных цепей электронного устройства.
  2. При помощи переключающей цепи удается осуществить подачу на нагрузку питающего напряжения.
  3. С помощью триггерной цепи обрабатывается входной сигнал и происходит его переключение на выход.

Промышленный образец Siemens V23103-S2232-B302

Схема твердотельного приведена на рисунке:

По этой схеме своими руками твердотельное реле можно довольно быстро изготовить, трудностей при этом не возникнет. Главное – это найти необходимые компоненты или аналоги. Защита может находиться как внутри корпуса реле, так и отдельно. Теперь нужно рассмотреть дополнительные устройства, которые необходимо использовать совместно с реле.

Особенности защитной цепи

Как видите, трудностей при изготовлении нет никаких. Если сомневаетесь в своих силах, то лучше, конечно, приобрести промышленный образец устройства. Можно выделить ключевые особенности самодельных реле:

  1. Управляющее напряжение – 3..30 В, ток постоянный.
  2. К выходу допускается подключать источники напряжением 115..280 В.
  3. Выходная мощность порядка 400 Вт.
  4. Минимальный ток, при котором работает устройство, составляет около 50 мА.

Если устройство используется для коммутации низких токов (до 2 А), то нет необходимости устанавливать радиатор. Но если токи высокие, будет происходить сильный нагрев элементов. Поэтому об охлаждении нужно позаботиться – установите дополнительный радиатор и кулер (если имеется возможность организовать питание для него).

Обратите внимание на то, что при управлении асинхронными моторами нужно увеличивать примерно в 10 раз запас по току. При запуске двигатель «тянет» из сети ток, который в несколько раз превышает рабочее значение. Именно по этой причине нужно использовать силовые элементы со значительным запасом по току.

Особенности работы и схемы включения реле

При изготовлении своими руками твердотельного реле на полевом транзисторе важно учитывать параметры схемы, в которой оно будет использоваться. Но давайте, чтобы разобраться в особенностях работы твердотельных элементов, рассмотрим обычные электромагнитные реле. В них, когда на обмотку подается напряжение, генерируется магнитное поле. С его помощью происходит притягивание контактов.

При этом цепь либо размыкается, либо замыкается. Есть один недостаток у такого механизма – имеется в конструкции немало подвижных элементов. У твердотельных их нет, а это является основным преимуществом. Также можно выделить следующие особенности:

  1. Включение и отключение нагрузки происходит только в том случае, когда напряжение проходит через нуль.
  2. При работе не происходит появление помех электрического типа.
  3. Достаточно большой диапазон напряжений, при котором работает устройство.
  4. Между цепями управления и нагрузкой качественная изоляция.
  5. Высокая механическая прочность изделия.

А еще при работе не издается ни единого звука – просто открывается и закрывается переход полупроводника.

Пример подключения твердотельного реле

Вы знаете, как изготовить твердотельное реле своими руками. Аналоги такого устройства встречаются в продаже достаточно часто. Можно использовать как любительские схемы, так и промышленные – зависит от того, какие возможности нужно получить от устройства. С помощью такого устройства обеспечивается контакт высоковольтной и низковольтной цепей.

Большая часть промышленных устройств и самоделок имеет схожую структуру. Отличия несущественные, на работу не влияют никак. Убедиться в этом несложно. На рисунке приведена простейшая схема включения реле:

Структура устройства:

  1. Оптическая развязка цепей.
  2. Триггерная цепь (может быть несколько).
  3. Защитные устройства и переключатели.
  4. Входы.

Вход – это первичная цепь, в которой устанавливается постоянное сопротивление. Функция входа заключается в приеме сигнала и передаче нужной команды на устройство, которое производит коммутацию нагрузки.

Развязка оптического типа

Оптическая развязка – это прибор, который осуществляет изоляцию входов и выходов. Когда происходит обработка сигнала, поступающего на вход, обязательно нужно использовать триггерную цепь. Это отдельный компонент, но иногда он включен в конструкцию оптической развязки. Цепь переключения используется в том случае, когда нужно подать напряжение к нагрузке.

Рекомендации по выбору твердотельных реле

Перейти в каталог твердотельных реле 

 

Способы коммутации твердотельных реле:

  1. Управление с коммутаций при переходе тока через ноль

   Преимущество этого метода коммутации заключается в отсутствии помех создающихся при включении. Недостатками являются прерывание выходного сигнала и невозможность использования на высокоиндуктивные нагрузки. Основное применение данного вида коммутации подходит для резистивной нагрузки (системы контроля и управления нагревом). Также применяют на емкостные и слабоиндуктивные нагрузки.

 

2. Фазовое управление

 

    Преимущество фазового метода регулирования заключается в непрерывности и плавности регулирования. Этот метод позволяет регулировать величину напряжения на выходе (регулятор мощности). Недостатком является наличие помех при переключении. Применяется для резистивных (системы управления нагревом), переменных резистивных (инфракрасные излучатели), индуктивных нагрузок (транcформаторы) и упрвление освещением (лампы накаливания).

 

Ток и характер нагрузки

    Одним из важнейших параметров для выбора реле является ток нагрузки. Для надежной и длительной эксплуатации необходимо выбирать реле с запасом по току, но при этом надо учитывать и пусковые токи, т. к. реле способно выдерживать 10-ти кратную перегрузку по току только в течение короткого времени (10мс). Так при работе на активную нагрузку (нагреватель) номинальный ток реле должен быть на 30-40% больше номинального тока нагрузки, а при работе на индуктивную нагрузку (электродвигатель) необходимо учитывать пусковой ток, и запас по току должен быть увеличен в 6-10 раз.

Примеры запаса по току для различных типов нагрузки:

  • активная нагрузка (ТЭНы) – запас 30-40%
  • асинхронные электродвигатели – 6…10 кратный запас по току
  • лампы накаливания – 8…12 кратный запас по току
  • катушки электромагнитных реле – 4…10 кратный запас по току

 

Расчет тока реле при активной нагрузке:

Однофазная нагрузка 

Iреле = Pнагр / U
Pнагр = 5кВт, U = 220В
Iреле = 5000 / 220 = 22,7А
Учитывая необходимый запас по току
выбираем реле на 40А.

Трехфазная нагрузка 

Iреле = Pнагр /(U x 1,732)
Pнагр = 27кВт, U = 380В
Iреле = 27000 /(380 x 1,732) = 41,02А
С учетом запаса по току выбираем
реле на 60А.

 

Охлаждение

    Еще одним немаловажным фактором для надежной работы твердотельных реле является его рабочая температура. При работе твердотельного реле SSR из-за потерь на силовых элементах выделяется большое количество тепла, которое необходимо отводить с помощью радиаторов охлаждения. Заявленный номинальный ток реле способны коммутировать при его температуре не более 40°С. При увеличении температуры реле снижается его пропускная способность из расчета 20-25% на каждые 10°С. При температуре примерно 80°С его пропускная способность по току сводится к нулю, и как следствие реле выходит из строя. На температурный режим реле могут влиять многие факторы: место установки, температура окружающей среды, циркуляция воздуха, нагрузка на твердотельном реле и др. При использовании на «тяжелые» нагрузки (пуск асинхронного двигателя) необходимо применять дополнительные меры по усилению отвода тепла: устанавливать на радиатор большего размера, сделать принудительное охлаждение (установить вентилятор).

 

Защита

  • Твердотельные реле имеют встроенную RC-цепь для защиты от ложного включения при использовании на индуктивной нагрузке.
  • Для защиты от кратковременного перенапряжения со стороны нагрузки необходимо использовать варисторы. Они подбираются исходя из величины коммутируемого напряжения Uвар=1,6-2Uком. Следует отметить, что современные тв реле выдерживают значительные перенапряжения и без применения варисторов. Гораздо опаснее для тв реле перегрузка по току.

  • Для защиты от перегрузки по току необходимо использовать специальные быстродействующие полупроводниковые предохранители. Они подбираются с учетом величины номинального тока реле Iпр=1 — 1,3Iном. реле, причем само тв реле должно быть с гораздо большим запасом по току, в т. ч. учитывая пусковые токи нагрузки. Это самый эффективный способ защитить реле от перегрузки по току. Поскольку реле способно выдерживать только кратковременную (10мс) перегрузку, то использование автоматов защиты не спасет их от выхода из строя.
  • Для корректной работы твердотельного реле при маленьких токах нагрузки (соизмеримых с током утечки) необходимо устанавливать шунтирующее сопротивление параллельно нагрузке.

 

Примеры применения

  Основное применение твердотельные реле находят в системах управления нагревом. Твердотельные реле ZD3, VD, LA чаще всего применяют в технологических процессах, где требуется поддержание температуры с большой точностью (ПИД, Fuzzy режим). При этом реле VD, LA будут обеспечивать плавную регулировку за счет фазового метода управления.

   Твердотельные реле ZA2 чаще применяют в системах, где не требуется высокая точность поддержания температуры (двухпозиционный режим).

    Твердотельные реле VA (управление переменным резистором) применяют для ручной регулировки мощности на нагрузке. Таким реле можно отрегулировать мощность ТЭНа или ИК-излучателя, изменять яркость свечения лампы накаливания.

    Соблюдая определенный ряд условий, твердотельные реле можно использовать для пуска асинхронных двигателей. Необходимо учитывать пусковые токи двигателя и реле подбирать с многократным запасом по току. Применять меры по дополнительному отводу тепла (радиаторы охлаждения). Для защиты реле от кратковременных перенапряжений использовать варисторы, а для защиты от перегрузки по току быстродействующие предохранители.

   Можно организовать управление группой реле от одного источника питания. В данном случае необходимо подобрать источник с мощностью достаточной для включения всей группы реле. При этом можно оставить возможность включения – выключения отдельного реле для управления требуемой зоной.

 

Перейти в каталог твердотельных реле 

 

Твердотельное реле (SSR) | LAZY SMART

Твердотельное реле (ТТР) — это устройство, предназначенное для коммутации силовой нагрузки. Функционально оно ничем не отличается от обычного электромагнитного реле, но имеет другое устройство, характеристики и принцип действия. Этими особенностями обусловлены сферы, в которых использование твердотельных реле предпочтительнее, чем электромагнитных. Обо всём об этом далее по тексту…

Устройство и принцип работы

Твердотельное реле, как уже было сказано, предназначено для включения/выключения внешней нагрузки. Для этого оно имеет выходной контакт, который замыкается при подаче управляющего напряжения.

Однако, в отличие от электромагнитного реле, где выходной контакт — это два реальных металлических проводника, выходные контакты твердотельного реле выполнены на основе полупроводниковых компонентов (транзисторов, тиристоров или симисторов), то есть его выход — это электронный ключ.

Поскольку электронный ключ не может иметь нормально закрытое состояние, выход твердотельного реле всегда нормально-открытый.

Твердотельное реле имеет гальваническую развязку, то есть управляющая и коммутируемая цепи не связаны между собой электрически. Управляющий сигнал передаётся на электронный ключ с помощью встроенного оптрона.

Особенности твердотельного реле
  1. Меньшие габариты по сравнению с «электромагнитным собратом»
  2. Бесшумное переключение и работа
  3. Высокая надёжность и долгий срок службы
  4. Высокая скорость переключения (сравнима со скоростью света)
  5. Отсутствие эффекта искрения и подгорания контактов
  6. Сравнительно высокая стоимость
  7. Более чувствительны к перегрузкам, поэтому должны выбираться с большим коэффициентом запаса (2-4 раза для обычных нагрузок и 6-11 раз для устройств с большими пусковыми токами).

Характеристики твердотельного реле
  1. Тип управляющего напряжения. Это может быть постоянный или переменный ток. Так же стоить обратить внимание на диапазон управляющих напряжений. Например, для постоянного тока это может быть 3-32 В, а для переменного 80 -250 В.
  2. Тип коммутируемого напряжения. Аналогично управляющему напряжению может быть постоянным и переменным. Минимальные и максимальные значения коммутируемого напряжения также указываются в паспорте устройства.
  3. Максимальный ток нагрузки  —  выбирается сообразно с мощностью предполагаемой нагрузки.
  4. Количество фаз коммутируемого переменного напряжения — одно- или трёхфазные.

Области применения твердотельных реле

Исходя из принципа работы и особенностей твердотельных реле, можно сказать, что они применяются в тех случаях, когда требуется большое количество включений/выключений нагрузки за короткое время (высокая частота переключений). В таких системах обычные реле быстро вырабатывают свой ресурс и выходят из строя.

Твердотельные реле часто применяют для включения индуктивной нагрузки (например ТЭНы).

Кроме того, малые габариты и бесшумная работа, тоже могут стать причиной установки твердотельных реле.

Однако, не стоит забывать, что такие реле дороже, поэтому если можно обойтись обычным  электромагнитным реле, лучше так и сделать

Твердотельное реле постоянного тока

Используется для коммутации цепей постоянного тока. Как правило выдерживают достаточно широкий диапазон коммутируемого напряжения (порядка 5 — 230 В). В качестве электронного ключа используется транзистор.

Схема подключения:

Твердотельное реле переменного тока

Предназначены для коммутации цепей переменного тока. В качестве электронного ключа используется симистор или тиристор. Бывают однофазные и трёхфазные версии таких реле.

Реле твердотельное однофазное

Предназначено для коммутации однофазной нагрузки. Схема подключения похожа на схему в случае реле постоянного тока.

Реле твердотельное трёхфазное

Используются для коммутации трёхфазной нагрузки (например электродвигателей).

На входные контакты реле «приходят» три фазы питания, а при подаче управляющего сигнала эти фазы «появляются» на соответствующих выходных клеммах, к которым подключена нагрузка. На следующей схеме через трёхфазное реле запитаны три ТЭНа, соединённых звездой:

Для управления электродвигателями применяют специальные трёхфазные реле с реверсом.

Такое реле имеет три управляющих контакта. Один из них — общий, а два других в паре с ним образуют два управляющих входа. При подаче напряжения на первый, фазы коммутируются для прямого вращения электродвигателя, а при подаче «управляющей фазы» на другой вход — для обратного вращения.


коммутация мощных нагрузок / Хабр

Привет, Geektimes!

Управление мощными нагрузками — достаточно популярная тема среди людей, так или иначе касающихся автоматизации дома, причём в общем-то независимо от платформы: будь то Arduino, Rapsberry Pi, Unwired One или иная платформа, включать-выключать ей какой-нибудь обогреватель, котёл или канальный вентилятор рано или поздно приходится.

Традиционная дилемма здесь — чем, собственно, коммутировать. Как убедились многие на своём печальном опыте, китайские реле не обладают должной надёжностью — при коммутации мощной индуктивной нагрузки контакты сильно искрят, и в один прекрасный момент могут попросту залипнуть. Приходится ставить два реле — второе для подстраховки на размыкание.

Вместо реле можно поставить симистор или твердотельное реле (по сути, тот же тиристор или полевик со схемой управления логическим сигналом и опторазвязкой в одном корпусе), но у них другой минус — они греются. Соответственно, нужен радиатор, что увеличивает габариты конструкции.

Я же хочу рассказать про простую и довольно очевидную, но при этом редко встречающуюся схему, умеющую вот такое:

  • Гальваническая развязка входа и нагрузки
  • Коммутация индуктивных нагрузок без выбросов тока и напряжения
  • Отсутствие значимого тепловыделения даже на максимальной мощности

Но сначала — чуть-чуть иллюстраций. Во всех случаях использовались реле TTI серий TRJ и TRIL, а в качестве нагрузки — пылесос мощностью 650 Вт.

Классическая схема — подключаем пылесос через обычное реле. Потом подключаем к пылесосу осциллограф (Осторожно! Либо осциллограф, либо пылесос — а лучше оба — должны быть гальванически развязаны от земли! Пальцами и яйцами в солонку не лазить! С 220 В не шутят!) и смотрим.

Включаем:

Пришлось почти на максимум сетевого напряжения (пытаться привязать электромагнитное реле к переходу через ноль — задача гиблая: оно слишком медленное). В обе стороны бабахнуло коротким выбросом с почти вертикальными фронтами, во все стороны полетели помехи. Ожидаемо.

Выключаем:

Резкое пропадание напряжения на индуктивной нагрузке не сулит ничего хорошего — ввысь полетел выброс. Кроме того, видите вот эти помехи на синусоиде за миллисекунды до собственно отключения? Это искрение начавших размыкаться контактов реле, из-за которого они однажды и прикипят.

Итак, «голым» реле коммутировать индуктивную нагрузку плохо. Что сделаем? Попробуем добавить снаббер — RC-цепочку из резистора 120 Ом и конденсатора 0,15 мкФ.

Включаем:

Лучше, но не сильно. Выброс сбавил в высоте, но в целом сохранился.

Выключаем:

Та же картина. Мусор остался, более того, осталось искрение контактов реле, хоть и сильно уменьшившееся.

Вывод: со снаббером лучше, чем без снаббера, но глобально проблемы он не решает. Тем не менее, если вы желаете коммутировать индуктивные нагрузки обычным реле — ставьте снаббер. Номиналы надо подбирать по конкретной нагрузке, но 1-Вт резистор на 100-120 Ом и конденсатор на 0,1 мкФ выглядят разумным вариантом для данного случая.

Литература по теме: Agilent — Application Note 1399, «Maximizing the Life Span of Your Relays». При работе реле на худший тип нагрузки — мотор, который, помимо индуктивности, при старте имеет ещё и очень низкое сопротивление — добрые авторы рекомендуют уменьшить паспортный ресурс реле в пять раз.

А теперь сделаем ход конём — объединим симистор, симисторный драйвер с детектированием нуля и реле в одну схему.

Что есть на этой схеме? Слева — вход. При подаче на него «1» конденсатор C2 практически мгновенно заряжается через R1 и нижнюю половину D1; оптореле VO1 включается, дожидается ближайшего перехода через ноль (MOC3063 — со встроенной схемой детектора нуля) и включает симистор D4. Нагрузка запускается.

Конденсатор C1 заряжается через цепочку из R1 и R2, на что уходит примерно t=RC ~ 100 мс. Это несколько периодов сетевого напряжения, то есть, за это время симистор успеет включиться гарантированно. Далее открывается Q1 — и включается реле K1 (а также светодиод D2, светящий приятным изумрудным светом). Контакты реле шунтируют симистор, поэтому далее — до самого выключения — он в работе участия не принимает. И не греется.

Выключение — в обратном порядке. Как только на входе появляется «0», C1 быстро разряжается через верхнее плечо D1 и R1, реле выключается. А вот симистор остаётся включённым примерно 100 мс, так как C2 разряжается через 100-килоомный R3. Более того, так как симистор удерживается в открытом состоянии током, то даже после отключения VO1 он останется открытым, пока ток нагрузки не упадёт в очередном полупериоде ниже тока удержания симистора.

Включение:

Выключение:

Красиво, не правда ли? Причём при использовании современных симисторов, устойчивых к быстрым изменениям тока и напряжения (такие модели есть у всех основных производителей — NXP, ST, Onsemi, etc. , наименования начинаются с «BTA»), снаббер не нужен вообще, ни в каком виде.

Более того, если вспомнить умных людей из Agilent и посмотреть, как меняется потребляемый мотором ток, получится вот такая картинка:

Стартовый ток превышает рабочий более чем в четыре раза. За первые пять периодов — то время, на которое симистор опережает реле в нашей схеме — ток падает примерно вдвое, что также существенно смягчает требования к реле и продлевает его жизнь.

Да, схема сложнее и дороже, чем обычное реле или обычный симистор. Но часто она того стоит.

Твердотельное реле: принцип работы и схема устройства


Твердотельное реле своими руками: схема подключения

Элементная база данного радиоэлектронного модуля, в не независимости от производителя, можно сказать относительна постоянна, иногда только имеются небольшие отличительные моменты.

Входная цепь устройства состоит из привычного сопротивления, которое соединено последовательно с общим оптическим изолятором, или же обладает более сложной конструкцией, имеющей в своем составе регулятор тока и защиту от обратной полярности.

Свойства устройства:

  • Оптическая развязка обычно обеспечивает изоляцию между разными цепями электронного модуля;
  • Переключающая цепь осуществляет подачу напряжения на нагрузку;
  • Триггерная цепь ответственна за обрабатывание входного сигнал и переключения его на выход;

Защитная цепь механизма может как иметь свободное подключение, так и быть внутри устройства.

Защита твердотельного реле

Твердое реле можно, не только купить, но и попробовать изготовить самостоятельно. Работы по его сборке не трудные, и практически каждый радиолюбитель в состоянии сделать для себя простой вариант конструкции.

Особенностями такой самодельной конструкции можно назвать следующие позиции:

  • Управляющее напряжения в диапазоне от 3 В до 30 В тока постоянного;
  • Выходное напряжение подключений от 115 В до 280 В;
  • Минимальный рабочий ток предполагается от 50 мА;
  • Мощность выходная 400 Вт.

Если вам нужно использовать устройство при коммутации токов, которое будет выше 2 ампер, то нужно предусмотреть возможность охлаждения прибора с помощью радиатора. Во время управления асинхронными двигателями параметры запаса по току следует увеличить до 10 раз.

Удобное твердотельные реле: принцип работы и схема включения

В системах автоматик для управления силовыми соединениями с помощью низковольтных сигналов применяют коммутаторы, которые называются реле. Эти элементы могут быть самых разных устройств и видов.

Наиболее простые электромагнитные реле обычно содержат контакты и обмотку на сердечнике. Во время подачи на обмотку напряжения в сердечниках возникают магнитные поля, притягивающие контакты. Они либо размыкают, либо замыкают цепь нагрузки. Вместе с электромагнитными, сегодня, частое применение находят изделия нового поколения, которые обладают рядом преимуществ – твердотельные реле.

Главным преимуществом твердотельного реле можно считать отсутствие механических деталей и узлов, которые обычно подвержены износу.

Кроме того, можно отметить следующие положительные факторы использования прибора:

  • Отключение и включение нагрузки осуществляется лишь в случае прохождения напряжения через ноль;
  • Не создается электрических помех в процессе работы;
  • Большой диапазон рабочего напряжения;
  • Отличный уровень изоляции, существующий между управлением и нагрузкой;
  • Уверенная механическая прочность.

Также немаловажным фактором, которые отмечают многие пользователи, является отсутствие звуков при коммутации нагрузки.

Рассмотрим, как подключить твердотельное реле к светильнику: структура прибора

Твердотельным реле называется устройство, которое обеспечивает контакт между низковольтной и высоковольтной электрическими цепями.

Ели рассматривать структуру данного прибора, то можно заметить, что большинство моделей похожи между собой. Они имеют лишь незначительные отличия, никак не влияющие на принцип работы устройства, что очень легко проверить.

Структура твердотельного реле следующая:

  • Входы,
  • Оптические развязки,
  • Триггерные цепи,
  • Цепи защиты и переключателя.

Входом есть первичная цепь, характеризующаяся наличием резистора, имеющемся на постоянном изоляторе, с последовательным подключением. Основная функция схемы входа состоит в том, чтобы принять сигнал и передаче команду устройству твердотельного реле, коммутирующему нагрузку.

Схема твердотельного реле переменного тока: проверка прибора

В качестве изоляции выходной и входной сети переменного тока используют прибор оптической развязки. Тип данного компонента, влияет на общий вид реле и общий принцип его работы. При обработке входного сигнала, а также, при переключении выхода нужно использовать конструкцию триггерной цепи. Выступает она в роли отдельного элемента, а иногда, входит в состав развязки оптической.

Для того, чтобы можно было подать напряжение на нагрузку используют цепь переключающего типа, включающая транзистор, симистор, и кремниевый диод.

Для обеспечения твердотельному реле защиты от сбоев при работе, а также для устранения возможности возникновения ошибок, используют отдельную защитную цепь. Данное устройство может быть двух видов: внешнего и внутреннего.

Схема твердотельного реле состоит из:

  • Систем контроля;
  • Самого твердотельного реле;
  • Насоса;
  • Двигателя;
  • Трансформатора;
  • Нагревателя.

Для того, чтобы можно было коммутировать индуктивную нагрузку при помощи твердотельного реле нужно увеличить запас переменного тока в 6-9 раз.

Как работает твердотельное реле российского производства

Принцип работы устройства прибора твердотельного реле заключается в размыкании и замыкании контактов, передающих напряжение именно на реле. Для того, чтобы привести в движение контакты, нужно наличие активатора. Такую его роль в твердотельном реле осуществляет полупроводник или, как еще его называют, твердотельный прибор. В устройствах, работающих при переменном токе данную функцию выполняет тиристор или симистор, а в приборах с постоянным, транзистор.

Прибор, характеризующийся наличием ключевого транзистора, называется твердотельным реле. К нему относятся, например, датчики света или движения, которые при помощи транзистора осуществляют передачу напряжения. Между током в катушке и силовыми контактами появляется процесс гальванической развязки, исчезающий в следствие появления оптической цепи.

Область применения твердотельного реле очень широкая. Его принято использовать в том случае, если появляется необходимость коммутировать индуктивную нагрузку.

Твердотельное реле применяют в следующих случаях:

  • В системах, где производится регулировка температурных показателей при помощи тэна;
  • Для поддержания постоянной температуры в определенном технологическом процессе;
  • При коммутировании цепей управления;
  • В случае замены пускателей реверсного бесконтактного типа;
  • Управление электродвигателями;
  • Для регулирования уровня и силы освещения.

Кроме того, необходимо знать, что реле твердотельные постоянного тока – используют при работе постоянного электричества в диапазонах от 3 до 30 Вт. Ему характерны высокие удельные характеристики, со светодиодной индикацией, отличающейся высокой надежностью.

Как работает твердотельное реле (видео)

Твердотельные реле переменного тока имеют такие отличия, как низкий уровень помех, отсутствие треска и шума во время работы, пониженное потребление электроэнергии, большая скорость работы.

Как работает твердотельное реле?

Твердотельное реле (SSR) — это особый тип устройства управления, которое переключает электрические цепи с помощью полупроводниковых элементов без движущихся частей или обычных контактов. Самая большая особенность твердотельного реле заключается в том, что в нем не используются коммутирующие контакты, которые физически изнашиваются. Вот почему его принцип работы отличается от электромеханического реле.

Твердотельные реле обычно состоят из входа оптоизолятора, такого как оптопара или фототриак.Оптоизолятор активирует твердотельное переключающее устройство, такое как симистор, транзисторный MOSFET или тиристор.

Хотя это самые быстрые переключающие элементы при сравнении времени срабатывания, время срабатывания или отключения велико. Управление переменным током — обычное применение для симисторов и тиристоров, потому что время выключения уменьшается, когда устройство выключается во время перехода через нуль. Кроме того, их изоляция ограничена токами утечки полупроводниковых устройств, и они имеют высокие вносимые потери для сигналов низкого уровня.Управление постоянным током — обычное приложение для транзисторов и полевых МОП-транзисторов.

Как работает твердотельное реле?

Твердотельные реле похожи на электромеханические реле в том, что оба используют схему управления и отдельную схему для переключения нагрузки. Но принцип их действия другой.

Принцип работы твердотельного реле можно описать следующим образом:

  1. Когда на вход твердотельного реле подается напряжение, реле активируется с помощью оптопары или другого электронного устройства (диода, светодиода, резистора и транзистора).Оптопара преобразует электрические сигналы в оптические и передает сигналы через пространство, тем самым полностью изолируя секции ввода и вывода при передаче сигналов на высокой скорости.
  2. Электрический сигнал передается в цепь триггера в выходных цепях.
  3. Включается переключающий элемент в выходной цепи.
  4. Когда переключающий элемент включается, течет ток нагрузки, и можно управлять устройством, подключенным к выходу.
  5. Снятие входного напряжения отключает цепь управления, и твердотельный переключатель выключается.

По способу переключения твердотельные реле можно разделить на две основные группы:

  • реле переключения при переходе через ноль,
  • реле случайного включения.

Реле нулевого перехода

Реле включается, когда напряжение достигает нуля, и выключается, когда ток достигает нуля. Этот метод переключения позволяет ограничить импульсные токи, возникающие во время операций переключения. Реле рекомендуется использовать для управления резистивными, емкостными или слабоиндуктивными нагрузками.

Реле случайного включения (мгновенного включения)

Реле активируется сразу после появления управляющего сигнала (подано управляющее напряжение). В этом случае время включения меньше, чем при переключении через нуль. Этот тип переключения используется для индуктивных нагрузок в приложениях, где требуется быстрое время отклика.

Чтобы полностью понять принцип работы твердотельного реле, необходимо знать его технические параметры.

Технические определения для входной стороны

Номинальное напряжение — это напряжение, которое служит стандартным значением для напряжения входного сигнала.

Рабочее напряжение — это допустимый диапазон напряжения, в котором напряжение входного сигнала может колебаться.

Должное рабочее напряжение — это минимальное входное напряжение, когда состояние выхода меняется с ВЫКЛ на ВКЛ.

Напряжение, необходимое для отпускания. — это максимальное входное напряжение, когда состояние выхода меняется с ВКЛ на ВЫКЛ.

Входной ток — это ток, протекающий через твердотельное реле при подаче номинального напряжения.

Входное сопротивление входной цепи и сопротивление используемых токоограничивающих резисторов. В реле состояния Soldi, которые имеют широкий диапазон входных напряжений, входное сопротивление изменяется в зависимости от входного напряжения, что вызывает изменение входного тока.

Технические определения выходной стороны

Напряжение нагрузки — это эффективное напряжение источника питания, при котором нагрузка может переключаться, и SSR может непрерывно использоваться, когда SSR выключен.

Максимальный ток нагрузки — это эффективное значение максимального тока, который может непрерывно течь на выходные клеммы при определенных условиях охлаждения (таких как размер, материалы и толщина радиатора, а также условия излучения температуры окружающей среды).

Ток утечки — это эффективное значение тока, протекающего через выходные клеммы, когда заданное напряжение нагрузки приложено к SSR с выключенным выходом.

Падение выходного напряжения во включенном состоянии — это эффективное значение переменного напряжения на выходных клеммах, когда максимальный ток нагрузки протекает через SSR при определенных условиях охлаждения (таких как размер, материалы и толщина радиатора, а также температура окружающей среды. радиационные условия).

Минимальный ток нагрузки — это минимальный ток нагрузки, при котором ТТР может нормально работать.

Продолжить чтение

Основы SSR (твердотельные реле): коммутационное устройство

Эта статья представляет собой введение в основы работы твердотельных реле, уделяя особое внимание устройствам вывода в современных твердотельных реле.

Существует множество обстоятельств, при которых нам необходимо управлять нагрузкой с высоким током / напряжением на основе работы схемы с низким энергопотреблением, например, при использовании выхода 5 В микроконтроллера для включения нагрузки 10 А, 240 В. В этих случаях необходимо обеспечить достаточную изоляцию между мощной и маломощной частями системы. Для достижения этой цели могут использоваться различные типы реле, такие как электромеханические реле (EMR), герконовые реле и твердотельные реле (SSR).

Хотя EMR все еще широко используются, они имеют ряд недостатков по сравнению с SSR.В этой статье кратко рассматриваются недостатки EMR и приводятся некоторые подробности, касающиеся базовой работы SSR, с акцентом на устройства вывода.

ЭМИ и их недостатки

Электромеханическое реле (ЭМИ) активирует катушку, намотанную на железный сердечник, для управления положением якоря. Для нормально разомкнутого выхода катушка под напряжением заставляет якорь переводить электрические контакты во включенное состояние. Когда катушка обесточена, пружины могут вернуть контакты в положение ВЫКЛ.

Рис. 1. В EMR катушка под напряжением перемещает якорь для подключения или отключения выходных клемм.

Электромеханическое реле отличается прочностью и универсальностью. Однако он занимает больше места и работает медленнее, чем SSR. Обычно для переключения и установления EMR требуется от 5 до 15 мс — задержка, которая неприемлема в некоторых приложениях. Более того, из-за их движущихся частей ЭМИ имеют более короткий срок эксплуатации.

Электромеханическое реле использует магнитные поля для обеспечения изоляции; SSR, напротив, достигает этой цели обычно за счет оптосвязи.Как показано на рисунке 2, в SSR небольшое входное напряжение, обычно от 3 до 32 В постоянного тока, используется для освещения светодиода. Когда светодиод включен, выходное светочувствительное устройство, такое как TRIAC, включается и проводит ток.

Рис. 2. Базовая структура SSR. Изображение адаптировано из pc-control.

SSR может быть разработан для переключения нагрузки постоянного или переменного тока, а некоторые типы способны переключать нагрузки как переменного, так и постоянного тока. Тип выхода SSR (AC, DC или AC / DC) определяется типом переключающего устройства: транзистор (биполярный или MOS), SCR или TRIAC.

SSR на основе BJT

Упрощенная структура вывода этих SSR показана на рисунке 3 (обратите внимание, что это только устройство вывода, а оптрон не показан). Когда светодиод горит, транзистор начинает проводить ток. Как показано на рисунке 3, SSR имеет гибкость нагрузки: RL может быть подключен либо к клемме коллектора (RL на рисунках 3 и 5), либо к эмиттеру (RL (ALT) на рисунках 3 и 5) транзистора. Принимая во внимание хорошо известные кривые ВАХ BJT, показанные на рисунке 4, желательно, чтобы транзистор работал в режиме A (насыщение) или B (почти полностью выключен).

По мере того, как рабочая точка транзистора перемещается дальше от A или B к центру линии нагрузки, транзистор входит в область, в которой как напряжение коллектор-эмиттер ($$ V_ {CE} $$), так и ток коллектора ( $$ I_ {C} $$) высоки. Это приводит к высокому рассеянию мощности, которое может повредить SSR (в точках A и B значение $$ V_ {CE} $$ или $$ I_C $$ мало, и с выделенным теплом можно справиться). Чтобы ускорить переход между состояниями ВКЛ и ВЫКЛ, некоторые SSR используют положительную обратную связь.

Рисунок 3. Использование BJT в качестве устройства вывода SSR. Изображение адаптировано из Руководства по твердотельным реле с приложениями Энтони Бишопа.

Рисунок 4. Вольт-амперная характеристика БЮТ. Изображение адаптировано из Руководства по твердотельным реле с приложениями Энтони Бишопа.

Когда переключающее устройство SSR включено (см. Пункт A выше), на выходных клеммах SSR возникает падение напряжения, которое называется «падением напряжения в открытом состоянии».Этот параметр указан в паспорте устройства. Для SSR на основе BJT, таких как серия DC60, максимальное падение напряжения в открытом состоянии может составлять от 1 до 1,3 В. Предполагая падение напряжения на выходе SSR на 1 В, мы можем оценить рассеиваемую мощность SSR на основе BJT как примерно 1 ватт на ампер.

В транзисторах BJT SSR для достижения более высокого коэффициента усиления от фотоэлемента к каскаду переключения производители используют такие структуры, как схема Дарлингтона и дополнительные конфигурации, как показано ниже.

Рисунок 5. Дарлингтона и дополнительные конфигурации, используемые в некоторых SSR на основе BJT. Изображение адаптировано из Руководства по твердотельным реле с приложениями Энтони Бишопа.

ССР на основе МОП

Многие ССР используют МОП-транзисторы в качестве переключающего устройства. На рисунке 6 показан пример SSR, который можно использовать как для нагрузок переменного, так и постоянного тока. Зачем этим ТТР два транзистора? Используя только один транзистор, SSR не может должным образом блокировать напряжение переменного тока. Это связано с тем, что, как показано на рисунке 6, каждый МОП-транзистор обычно имеет паразитный диод, называемый внутренним диодом, между стоком и истоком.

При наличии только одного транзистора между выводами 4 и 3 на рис. 6 внутренний диод будет проводить половину цикла при питании от сети переменного тока. Следовательно, хотя ток не может протекать через сам полевой транзистор, диод включен на половину цикла и позволяет току проходить через устройство. Чтобы обойти эту проблему, два транзистора используются последовательно, так что в каждом полупериоде есть один диод с обратным смещением, и ток блокируется.

Откуда этот диод? Каждый МОП-транзистор имеет четыре вывода: исток, сток, затвор и корпус.Для NMOS исток и сток относятся к типу N, а корпус легирован Р. Следовательно, у нас есть один диод между истоком и корпусом, а другой — между стоком и корпусом. Поскольку исток обычно подключен к корпусу (особенно в силовых полевых МОП-транзисторах), между корпусом (который подключен к истоку) и стоком остается один диод. Во время нормальной работы N-канального транзистора, когда сток находится под более высоким напряжением, чем исток, диод смещен в обратном направлении. Однако, если исток подключен к более высокому напряжению, чем вывод стока, диод начнет проводить ток.

Рис. 6. SSR на основе MOS. Изображение предоставлено Omron.

В то время как в таблицах данных для SSR на основе BJT указывается падение напряжения в открытом состоянии, в таблицах данных для SSR на основе MOS указано сопротивление в открытом состоянии, которое значительно варьируется от одного устройства к другому и может составлять всего несколько миллиомов.

Некоторые SSR на основе MOS обеспечивают вывод к исходному терминалу. Это позволяет использовать две разные конфигурации, как показано на рисунке 7. Конфигурация только постоянного тока на рисунке 7 может иметь почти половину сопротивления конфигурации переменного / постоянного тока.

Рис. 7. Конфигурация AC / DC и только постоянный ток для SSR на основе MOS. Изображение любезно предоставлено IXYS (PDF).

Высоковольтные / токовые твердотельные реле переменного тока обычно используют тиристоры или тиристоры в качестве переключающего устройства. Эти SSR переменного тока можно использовать для переключения нагрузки 90 А, 480 В (среднеквадратичное значение) только с приводом на затвор 50 мА. В отличие от ранее обсуждавшихся коммутационных устройств, тиристоры и симисторы не могут использоваться для переключения постоянного тока. Это связано с механизмом положительной обратной связи, который присутствует в SCR и TRIAC и предотвращает отключение устройства, если ток, проходящий через устройство, не упадет ниже определенного уровня (а это обычно не происходит с нагрузкой постоянного тока).Основные характеристики этих SSR кратко обсуждаются в оставшейся части статьи.

SSR на основе SCR и TRIAC

Кремниевый управляемый выпрямитель (SCR) представляет собой четырехслойную структуру PNPN с тремя выводами: анодом, затвором и катодом. SCR включает в себя регенеративную обратную связь, поэтому он имеет два стабильных состояния: ВКЛ и ВЫКЛ. Когда SCR выключен, он блокирует ток в обоих направлениях, а при включении SCR действует как выпрямитель и позволяет току течь от анода к катоду. Работу SCR можно понять, сравнив структуру PNPN SCR с аналогом транзистора, показанным на рисунке 8. Обратите внимание, что аналог транзистора на рисунке 8 (b) имеет два трехслойных элемента (транзистор PNP и NPN-транзистор). ), но, учитывая связь между уровнями, показанную на рисунке 8 (a), мы можем разделить некоторые из этих слоев между двумя транзисторами и построить всю структуру, используя только четырехуровневое устройство PNPN.

Рис. 8. Структура PNPN действует как два BJT-транзистора.Изображение адаптировано из Руководства по твердотельным реле с приложениями Энтони Бишопа.

Когда напряжение затвора на Рисунке 8 (B) увеличивается, $$ I_ {C2} $$ увеличивается, что приводит к увеличению $$ I_ {B2} $$. Это, в свою очередь, еще больше увеличивает напряжение затвора Q2. В результате возникает механизм положительной обратной связи, который пытается увеличить анодно-катодный ток SCR. Хотя мы можем включить SCR, подав сигнал на его затвор, мы не можем выключить его, управляя затвором. SCR можно выключить, только уменьшив ток, протекающий в устройство, ниже определенного уровня, чтобы коэффициент усиления положительной обратной связи упал ниже единицы и устройство перестало проводить ток.Из-за этого механизма обратной связи мы не можем использовать тиристоры для включения и выключения нагрузки постоянного тока.

Поскольку SCR работает только половину цикла, для переключения источника питания переменного тока необходимо использовать один SCR в мостовой конфигурации или использовать два SCR в обратно-параллельной конфигурации, как показано на Рисунке 9.

Рис. 9. SSR на основе SCR можно получить, поместив один SCR в мост (A) или два SCR в обратной параллели (B). Изображение адаптировано из Руководства по твердотельным реле с приложениями Энтони Бишопа.

На рисунке 9 (A), когда тиристор включен, мостовая структура обеспечивает путь для прохождения тока независимо от полярности источника питания. Одним из основных недостатков этой схемы является падение напряжения на двух дополнительных диодах, которые необходимо добавить к падению напряжения на тиристоре. Структура, показанная на рисунке 9 (B), не вносит дополнительных потерь мощности, но требует двух управляющих сигналов для работы тиристоров. Одним из способов создания этих двух управляющих сигналов является использование варианта схемы, показанной на рисунке 9 (A), в качестве каскада возбуждения на рисунке 9 (B).Общая структура будет очень похожа на структуру, показанную на рисунке 11. Обратите внимание, что структура на рисунке 9 (A) подходит для использования в качестве драйвера для другого переключающего устройства, потому что на предыдущем этапе ток может быть намного ниже, а мощность расход управляемый.

Интегрируя два тиристора в обратную параллельную структуру, производители получают настоящий переключатель переменного тока, называемый TRIAC. TRIAC имеет три контакта: затвор, главный вывод 2 и главный вывод 1. Интересно, что TRIAC имеет только один вход управляющего сигнала, и когда устройство активируется через этот вывод затвора, он проводит в любом направлении.Общая характеристика переключения TRIAC аналогична характеристике двух тиристоров в обратно-параллельной конфигурации.

Как показано на рисунке 10, TRIAC может использоваться в качестве коммутирующего устройства SSR. Однако можно использовать TRIAC в качестве драйвера для другого коммутационного устройства, как показано на рисунке 11. Эта схема позволяет маломощному SSR управлять сильноточными нагрузками с помощью внешних мощных SCR. На рисунке 11 показано, как можно использовать симистор вместе с тремя резисторами для получения двух управляющих сигналов, показанных на рисунке 9 (B).Считыватель может проверить, что, независимо от полярности выходного переменного напряжения, затвор тиристоров будет иметь положительное напряжение из-за тока, который проходит через симистор. Теперь, в зависимости от полярности переменного напряжения, один из двух тиристоров будет проводить ток.

Рис. 10. TRIAC как устройство вывода SSR. Изображение любезно предоставлено Руководством по твердотельным реле с приложениями Энтони Бишопа.

Рисунок 11. Использование TRIAC в качестве драйвера для двух SCR в обратно-параллельной конфигурации. Изображение любезно предоставлено Crydom.

Компоненты цепи твердотельного реле | Электрооборудование A2Z

Реле — это устройство, которое управляет одной электрической цепью, размыкая и замыкая другую цепь. Небольшое напряжение, приложенное к реле, приводит к переключению большего напряжения. Твердотельное реле (SSR) — это коммутационное устройство, которое не имеет контактов и переключается полностью с помощью электронных средств.

SSR использует кремниевый выпрямитель (SCR), симистор или транзисторный выход вместо механических контактов для переключения регулируемой мощности.Выход оптически связан со светодиодным источником света внутри реле. Реле включается, когда светодиод находится под напряжением, обычно от источника постоянного тока низкого напряжения. См. Рисунок 1.

Рисунок 1. Твердотельное реле (SSR) — это электронное переключающее устройство, не имеющее движущихся частей.

Рынок промышленных систем управления перешел на твердотельную электронику. Из-за снижения стоимости, высокой надежности и огромных возможностей твердотельные устройства заменяют многие устройства, которые работают на механических и электрических принципах.

Выбор твердотельного реле зависит от электрических, механических и стоимостных характеристик каждого устройства и требуемого применения.

Цепь твердотельного реле

Цепь твердотельного реле состоит из входной цепи , цепи управления и выходной цепи (переключения нагрузки) . Эти схемы могут использоваться в любой комбинации для обеспечения множества различных применений твердотельной коммутации. См. Рисунок 2.

Рисунок 2. Цепь твердотельного реле состоит из входной цепи, цепи управления и выходной цепи (переключения нагрузки).

1. Входная цепь

Входная цепь — это часть SSR, к которой подключен компонент управления. Входная цепь выполняет ту же функцию, что и катушка ЭМИ.

Входная цепь активируется путем подачи на вход реле напряжения, превышающего заданное срабатывание реле. Входная цепь деактивируется при подаче напряжения ниже указанного минимального напряжения падения реле.

Некоторые SSR имеют фиксированное номинальное входное напряжение, например 12 В постоянного тока. Большинство SSR имеют диапазон входного напряжения, например от 3 до 32 В постоянного тока. Диапазон напряжения позволяет использовать один SSR с большинством электронных схем.

Входным напряжением твердотельного реле можно управлять (переключать) через механические контакты, транзисторы, цифровые вентили и т. Д. Большинство SSR можно переключать напрямую маломощными устройствами, в том числе интегральными схемами, без добавления внешних буферов или тока. -ограничивающие устройства.Устройства с переменным входом, такие как термисторы, также могут использоваться для переключения входного напряжения SSR.

2. Цепи управления

Цепь управления — это часть твердотельного реле, которое определяет, когда выходной компонент включен или отключен.

Схема управления функционирует как интерфейс между входными и выходными цепями. В твердотельном реле интерфейс обеспечивается электронной схемой внутри SSR. В ЭМИ интерфейс обеспечивается магнитной катушкой, замыкающей набор механических контактов.

Когда на схему управления поступает входное напряжение, схема переключается или не переключается в зависимости от того, является ли реле переключением нуля, мгновенным включением, переключением пиков или реле аналогового переключения.

Каждое реле предназначено для включения цепи переключения нагрузки при заданном напряжении. Например, , реле переключения нуля позволяет включать нагрузку только после того, как напряжение на нагрузке достигнет нуля или приблизится к нему. Функция переключения нуля обеспечивает ряд преимуществ, таких как устранение высоких пусковых токов на нагрузке.

3. Выходные цепи (переключение нагрузки)

Выходная цепь (переключение нагрузки) твердотельного реле — это нагрузка, переключаемая SSR. Выходная цепь выполняет ту же функцию, что и механические контакты электромеханического реле. Однако, , в отличие от нескольких выходных контактов EMR, SSR обычно имеют только один выходной контакт.

В большинстве твердотельных реле в качестве компонента переключения выхода используется тиристор. Тиристоры очень быстро переходят из выключенного состояния (контакты разомкнуты) в состояние включения (контакты замкнуты) при включении их затвора.Это быстрое переключение позволяет переключать нагрузки с высокой скоростью.

Используемое устройство переключения выхода зависит от типа управляемой нагрузки. При переключении цепей постоянного тока требуются другие выходы, чем при переключении цепей переменного тока.

Общие выходные переключающие устройства, используемые в SSR, включают следующее:

  • SCR используются для переключения сильноточных нагрузок постоянного тока.
  • Симисторы используются для коммутации слаботочных нагрузок переменного тока.
  • Транзисторы используются для коммутации слаботочных нагрузок постоянного тока.
  • Антипараллельные тиристоры используются для переключения сильноточных нагрузок переменного тока. Они способны рассеивать больше тепла, чем симистор.
  • Тиристоры в диодных мостах используются для коммутации слаботочных нагрузок переменного тока.

Возможности цепей твердотельного реле

Твердотельное реле может использоваться для управления большинством тех же цепей, для управления которыми используется ЭМИ. Поскольку SSR отличается от EMR по функциям, схема управления SSR отличается от схемы управления EMR. Эта разница заключается в том, как реле подключено к цепи. SSR выполняет те же функции схемы, что и EMR, но с немного другой схемой управления.

Твердотельное реле может использоваться для управления нагрузкой с помощью мгновенного управления, такого как кнопка. См. Рисунок 3. В этой схеме кнопка сигнализирует SSR, который включает нагрузку.

Чтобы нагрузка оставалась включенной, необходимо удерживать кнопку . Нагрузка отключается при отпускании кнопки.Эта схема идентична по работе стандартной двухпроводной схеме управления, используемой с ЭМИ, пускателями магнитных двигателей и контакторами. По этой причине кнопка может быть заменена на любое ручное, механическое или автоматическое устройство управления для простого включения / выключения.

Та же схема может использоваться для контроля уровня жидкости, если кнопка заменена поплавковым выключателем.

  • Трехпроводное управление памятью

Твердотельное реле может использоваться с тиристором для фиксации нагрузки во включенном состоянии. См. Рисунок 4. Эта схема идентична по работе стандартной трехпроводной схеме управления памятью.

SCR используется для добавления памяти после нажатия кнопки запуска. SCR действует как выключатель, работающий по току.

SCR не пропускает управляющий ток постоянного тока до тех пор, пока ток не будет подан на его затвор. Для включения тиристора должен быть определенный минимальный ток. Это достигается при нажатии кнопки пуска.

После того, как на затвор SCR подано напряжение, SCR фиксируется в состоянии ВКЛ и позволяет управляющему напряжению постоянного тока проходить даже после отпускания кнопки запуска.

Резистор R 1 используется как токоограничивающий резистор для затвора и определяется током затвора и напряжением питания.

Рис. 3. Твердотельное реле может использоваться для управления нагрузкой с помощью мгновенного управления, такого как кнопка.

Рисунок 4 . Твердотельное реле может использоваться с SCR для фиксации нагрузки во включенном состоянии.

Tech Fact

Когда моторный привод запрограммирован, цепь управления должна быть запрограммирована на двухпроводную или трехпроводную работу.

Термин «двухпроводной» означает, что переключатель может выполнять две функции. Термин «трехпроводный» означает, что переключатель может выполнять только одну функцию. Все трехпроводные переключатели требуют второго переключателя для управления нагрузкой.

Эквивалентные нормально замкнутые контакты

Твердотельное реле может использоваться для имитации состояния эквивалентного нормально замкнутого (NC) контакта. НЗ-контакт должен быть электрически замкнут, потому что большинство ТТР имеют эквивалент нормально разомкнутого (НО) контакта. Это достигается путем подключения управляющего напряжения постоянного тока к SSR через токоограничивающий резистор (R). См. Рисунок 5.

Нагрузка удерживается во включенном состоянии, поскольку на SSR присутствует управляющее напряжение. Селекторный переключатель перемещается для отключения нагрузки. Это позволяет управляющему напряжению постоянного тока идти по пути наименьшего сопротивления и электрически снимать управляющее напряжение с реле. Это также отключает нагрузку до тех пор, пока кнопка не будет отпущена.

Рисунок 5 . Твердотельное реле с токоограничивающим резистором может использоваться для имитации эквивалентного состояния нормально замкнутого (NC) контакта.

Управление транзисторами

Твердотельные реле также могут управляться электронными управляющими сигналами от логических вентилей и транзисторов. См. Рисунок 6.

В этой схеме SSR управляется через NPN-транзистор, который получает свой сигнал от логических вентилей IC и т. Д.Два резистора (R 1 и R 2 ) используются в качестве токоограничивающих резисторов.

Рис. 6. SSR могут управляться электронными управляющими сигналами от логических вентилей и транзисторов

Последовательное и параллельное управление

Твердотельные реле могут быть подключены последовательно или параллельно для создания управляемых мульти-контактов одним устройством ввода. Также могут использоваться многоконтактные SSR.

Три входа управления SSR могут быть подключены параллельно, так что, когда переключатель замкнут, все три срабатывают. См. Рисунок 7. Управляет цепью 3φ.

В этом приложении управляющее напряжение постоянного тока на каждом SSR равно напряжению питания постоянного тока, поскольку они подключены параллельно. Когда используется многоконтактный SSR, есть только один вход, который управляет всеми выходными переключателями.

SSR могут быть подключены последовательно для управления цепью 3φ. См. Рисунок 8. Напряжение питания постоянного тока делится между тремя SSR, когда переключатель замкнут. По этой причине напряжение питания постоянного тока должно как минимум в три раза превышать минимальное рабочее напряжение каждого реле.

Рис. 7. Три твердотельных реле могут быть подключены параллельно для управления цепью 3φ или может использоваться многоконтактный SSR.

Рис. 8. Три твердотельных реле могут быть соединены последовательно для управления цепью 3φ. Когда SSR соединены последовательно, напряжение питания постоянного тока должно в три раза превышать минимальное рабочее напряжение каждого реле.

Основы твердотельного реле: работа, характеристики и структура

Твердотельное реле (SSR) — это бесконтактный переключатель, состоящий из микроэлектронных схем, дискретных электронных устройств и силовых электронных силовых устройств.Изолирующее устройство используется для обеспечения изоляции между контрольным концом и концом нагрузки. Входная клемма твердотельного реле использует крошечный управляющий сигнал для непосредственного управления большой токовой нагрузкой.

Каталог

Ⅰ Введение

Твердотельное реле — это новый тип бесконтактного переключающего устройства, состоящего из твердотельных электронных компонентов. Он использует коммутационные характеристики электронных компонентов (таких как переключающие транзисторы, симисторы и другие полупроводниковые устройства), которые могут достигать цели замыкания и размыкания цепи без контакта и искры, поэтому его также называют «бесконтактным переключателем». Твердотельное реле — это активное устройство с четырьмя выводами, два из которых являются выводами управления входом, а два других вывода — выводами, управляемыми по выходу. Он имеет как усилительные, так и управляющие функции, а также функции изоляции, которые очень подходят для управления мощными переключающими приводами. По сравнению с электромагнитными реле, оно имеет более высокую надежность, отсутствие контакта, длительный срок службы, высокую скорость и меньше помех для внешнего мира. Он получил широкое распространение.

Ⅱ Принцип работы

SSR можно разделить на тип переменного и постоянного тока в зависимости от случая использования.Они используются в качестве переключателей нагрузки в источниках питания переменного или постоянного тока и не могут быть смешаны. Ниже приводится пример SSR с переменным током, чтобы проиллюстрировать его принцип работы. На рисунке 1 представлена ​​блок-схема принципа его работы. Компоненты ① ~ ④ на Рисунке 1 составляют основной корпус SSR переменного тока. В целом ТТР имеет только две входные клеммы (A и B) и две выходные клеммы (C и D), это четырехконтактное устройство.

Рис. 1. Блок-схема принципа работы SSR

При работе, пока определенный управляющий сигнал добавлен к A и B, «включено» и «выключено» между двумя концами C и D можно контролировать, и можно реализовать функцию «переключателя».Функция схемы связи заключается в обеспечении канала между входными / выходными клеммами для входного управляющего сигнала от клемм A и B, но электрически разъединяет (электрическое) соединение между входной клеммой и выходной клеммой в SSR для предотвращения выходной терминал от воздействия на входной терминал. Компонент, используемый в схеме связи, представляет собой «оптический ответвитель», который является чувствительным, имеет высокую скорость отклика и имеет высокий уровень изоляции (выдерживаемого напряжения) между входными и выходными клеммами.Поскольку нагрузка на входной клемме представляет собой светоизлучающий диод, это позволяет легко согласовывать входную клемму SSR с уровнем входного сигнала и может напрямую подключаться к выходному интерфейсу компьютера во время использования, который контролируется логическим уровнем. из «1» и «0».

Функция схемы триггера заключается в генерировании триггерного сигнала, который отвечает требованиям для работы схемы переключателя ④, но поскольку в схеме переключателя нет специальной схемы управления, она будет генерировать радиочастотные помехи и загрязнять мощность сетка с высокими гармониками или всплесками.Поэтому была разработана «Схема управления переходом через ноль». Так называемое «пересечение нуля» означает, что когда добавляется управляющий сигнал и напряжение переменного тока пересекает ноль, SSR находится во включенном состоянии; и когда управляющий сигнал отключен, SSR ожидает пересечения положительного полупериода и отрицательного полупериода переменного тока, SSR находится в выключенном состоянии. Такая конструкция может предотвратить гармонические помехи высокого порядка и загрязнение электросети. Схема поглощения предназначена для предотвращения ударов и помех (или даже неисправности) симистора переключающего устройства из-за всплесков и скачков (напряжения) от источника питания. Обычно используется цепь последовательного поглощения «RC» или нелинейное сопротивление (варистор).

Ⅲ Характеристики

Твердотельное реле представляет собой бесконтактный электронный переключатель с функцией изоляции. В процессе переключения отсутствуют механические контактные детали. Таким образом, в дополнение к тем же функциям, что и электромагнитные реле, твердотельные реле также обладают совместимостью логических цепей, устойчивостью к вибрации и механическим ударам, неограниченным количеством монтажных положений, хорошей влажностью, плесенью и коррозионной стойкостью, а также отличными характеристиками во взрывозащите и предотвращении озоновое загрязнение.Он обладает такими характеристиками, как низкая входная мощность, высокая чувствительность, низкая мощность управления, хорошая электромагнитная совместимость, низкий уровень шума и высокая рабочая частота.

(1) Внутри SSR нет механических частей, и в конструкции используется полностью герметичный метод перфузии. Таким образом, SSR обладает такими преимуществами, как виброустойчивость, коррозионная стойкость, долгий срок службы и высокая надежность, а срок его службы составляет до 10,1 миллиона раз;

(2) Низкий уровень шума: SSR переменного тока использует технологию триггера по переходу через ноль, поэтому скорость нарастания напряжения dv / dt и скорость нарастания тока di / dt фактически снижаются на линии, так что SSR имеет минимальные помехи для сети при длительной эксплуатации;

(3) Время переключения короткое, около 10 мс, что может использоваться в более высокочастотных случаях;

(4) Между входной и выходной цепями используется фотоэлектрическая изоляция, а напряжение изоляции превышает 2500 В;

(5) Потребляемая мощность очень низкая, совместима со схемами TTL и COMS;

(6) На выходе есть схема защиты;

(7) Высокая грузоподъемность.

1 Преимущество

(1) Длительный срок службы и высокая надежность: твердотельное реле не имеет механических частей, а контактная функция выполняется твердотельными устройствами. Поскольку в нем нет движущихся частей, он может работать в условиях сильных ударов и вибрации. Из-за компонентов, которые составляют твердотельное реле, присущие твердотельные реле характеристики определяют долгий срок службы и высокую надежность твердотельных реле.

Рисунок 2.твердотельное реле

(2) Высокая чувствительность, низкая мощность управления и хорошая электромагнитная совместимость: твердотельное реле имеет широкий диапазон входного напряжения и низкую мощность привода и совместимо с большинством логических интегральных схем без необходимости в буферах или драйверы.

(3) Быстрое переключение: поскольку твердотельные реле используют твердотельные устройства, скорость переключения может варьироваться от нескольких миллисекунд до нескольких микросекунд.

(4) Небольшие электромагнитные помехи: твердотельное реле не имеет входной «катушки», нет зажигания и отскока дуги, что снижает электромагнитные помехи.Большинство выходных твердотельных реле переменного тока представляют собой переключатель нулевого напряжения, который включается при нулевом напряжении и выключается при нулевом токе, уменьшая внезапное прерывание формы волны тока, тем самым уменьшая переходный эффект переключения.

2 Недостаток

(1) Падение напряжения на лампе после включения велико, прямое падение напряжения тиристора или симистора может достигать 1 ~ 2 В, а падение напряжения насыщения для мощных транзистор также находится между 1 ~ 2 В, и общее сопротивление трубки с силовым полевым эффектом также больше, чем контактное сопротивление механических контактов.

(2) Полупроводниковый прибор все еще может иметь ток утечки от нескольких микроампер до нескольких миллиампер после выключения, поэтому идеальная электрическая изоляция не может быть достигнута.

(3) Из-за большого падения давления в трубке потребление энергии и тепловыделение после проводимости также велики, объем твердотельного реле высокой мощности намного больше, чем у электромагнитного реле той же мощности. , и стоимость тоже выше.

(4) Температурные характеристики электронных компонентов и электронных схем имеют низкую помехоустойчивость, а также низкую радиационную стойкость. Без принятия эффективных мер надежность работы невысока.

Рис. 3. Полупроводниковое реле 2

(5) Полупроводниковые реле более чувствительны к перегрузке и должны быть защищены от перегрузки быстродействующим предохранителем или демпфирующей цепью RC. Нагрузка твердотельного реле, очевидно, связана с температурой окружающей среды. При повышении температуры грузоподъемность быстро падает.

(6) Основными недостатками являются падение напряжения в открытом состоянии (требуются соответствующие меры по рассеиванию тепла), ток утечки в закрытом состоянии, переменный и постоянный ток не могут использоваться повсеместно, количество групп контактов невелико.

Ⅳ Структура

Твердотельное реле состоит из трех частей: входной цепи, развязки (связи) и выходной цепи.

1 Входная цепь

В соответствии с различными типами входного напряжения входную цепь можно разделить на три типа: входная цепь постоянного тока, входная цепь переменного тока и входная цепь переменного / постоянного тока. Некоторые входные схемы управления также совместимы с TTL / CMOS, положительной и отрицательной логикой управления и функциями инверсии и могут быть легко подключены к логическим схемам TTL и MOS.

Для управляющего сигнала с фиксированным управляющим напряжением используется резистивная входная цепь. Управляющий ток гарантированно превышает 5 мА. Для управляющего сигнала с большим диапазоном изменения (например, 3 ~ 32 В) используется цепь постоянного тока, чтобы гарантировать надежную работу с током более 5 мА во всем диапазоне изменения напряжения.

2 Изолирующая муфта

Входные и выходные цепи твердотельных реле могут быть изолированы и связаны двумя способами: фотоэлектрическая связь и трансформаторная связь: в фотоэлектрической связи обычно используется фотодиод-фототранзистор, фотодиод-двунаправленный тиристор, управляемый светом, фотоэлектрический элемент и реализовать контроль изоляции стороны управления и стороны нагрузки; высокочастотная трансформаторная связь использует самовозбуждающийся высокочастотный сигнал, генерируемый входным управляющим сигналом, который направляется во вторичную обмотку, обнаруживается и выпрямляется и обрабатывается логической схемой для формирования сигнала возбуждения.

3 Выходная цепь

Выключатель питания SSR напрямую подключен к источнику питания и стороне нагрузки, чтобы реализовать двухпозиционный переключатель источника питания нагрузки. В основном используются мощные транзисторы, односторонний тиристор (тиристор или SCR), двунаправленный тиристор (Triac), силовой полевой транзистор (MOSFET), биполярный транзистор с изолированным затвором (IGBT). Выходная цепь твердотельного реле также может быть разделена на выходную цепь постоянного тока, выходную цепь переменного тока и выходную цепь переменного / постоянного тока.По типу нагрузки его можно разделить на твердотельное реле постоянного тока и твердотельное реле переменного тока. Биполярные устройства или силовые полевые транзисторы могут использоваться для выхода постоянного тока, а два тиристора или один двунаправленный тиристор обычно используются для выхода переменного тока. Твердотельное реле переменного тока можно разделить на однофазное твердотельное реле переменного тока и трехфазное твердотельное реле переменного тока. Твердотельные реле переменного тока можно разделить на произвольные твердотельные реле переменного тока и твердотельные реле переменного тока с переходом через ноль в зависимости от времени включения и выключения.

Основы и принцип работы твердотельного реле

Основы твердотельного реле
Что такое твердотельное реле (SSR)? Твердотельное реле — это бесконтактный переключатель, полностью состоящий из твердотельного электрического элемента, который может управлять сильноточной нагрузкой с помощью небольшого управляющего сигнала. Он может включать и выключать без контакта и искры благодаря характеристикам переключения электрического элемента (т.е. полупроводниковых компонентов, таких как переключающий транзистор, симистор и т. Д.).Твердотельное реле имеет следующие преимущества перед электромагнитными реле: высокая надежность, отсутствие контакта, отсутствие искры, длительный срок службы, быстрая скорость переключения, сильная противоинтерференционная способность и небольшие размеры. Он широко используется в различных приложениях, таких как станки с ЧПУ, системы дистанционного управления и устройства промышленной автоматизации, химическая промышленность, медицинское оборудование, системы безопасности и т. Д.

Характеристики твердотельного реле

  1. SSR не имеют внутренних механических элементов и полностью герметичны в структуре.Таким образом, твердотельные реле обладают такими преимуществами, как виброустойчивость, коррозионная стойкость, длительный срок службы и высокая надежность.
  2. Низкий уровень шума. В ТТР переменного тока используется технология запуска по переходу через ноль, что эффективно снижает скорость нарастания напряжения dv / dt и скорость нарастания тока di / dt в линии, делая SSR минимальными помехами для источника питания в долгосрочной перспективе.
  3. Время переключения короткое, поэтому SSR можно использовать в высокочастотных приложениях.
  4. Используется оптоэлектронная изоляция между входными и выходными цепями, а напряжение изоляции превышает 2500 В.
  5. Низкое энергопотребление, совместимость со схемами TTL и COMS.
  6. Схема защиты установлена ​​на выходных клеммах.
  7. Высокая грузоподъемность.

Принцип работы твердотельного реле
Как работает твердотельное реле? Твердотельные реле можно разделить на SSR переменного тока и SSR постоянного тока в зависимости от применения. Теперь возьмем твердотельное реле переменного тока в качестве примера, чтобы объяснить принцип работы SSR. Как показано на Рисунке 1, это принципиальная схема работы ТТР переменного тока, и части ① ~ ④ образуют его основной корпус.В целом, SSR имеет только 2 входных терминала (A и B) и 2 выходных терминала (C и D). Это четырехконтактное активное устройство.

При работе подайте только определенный управляющий сигнал на A&B, чтобы можно было управлять состоянием включения-выключения между C и D, а затем выполнить функцию переключения. Схема связи играет роль в обеспечении канала между входными и выходными клеммами для входного сигнала управления от A и B, но разрывает электрическое соединение между входом и выходом, чтобы выход не влиял на вход. Компоненты, используемые в цепях связи, представляют собой «оптические соединители», которые обладают хорошей чувствительностью к действию, высокой скоростью отклика, высоким уровнем изоляции входа / выхода (выдерживаемым напряжением). Нагрузка на входной клемме представляет собой светодиод, что позволяет очень легко согласовать вход SSR с уровнем входного сигнала. При использовании он может быть напрямую связан с выходным интерфейсом компьютера, то есть управляется логическим уровнем «1» и «0». Функция триггерной схемы состоит в том, чтобы генерировать требуемый триггерный сигнал для запуска работы схемы переключения.Однако без специальной схемы управления переключающая схема будет создавать RFI (радиочастотные помехи) и загрязнять электросеть в виде высоких гармоник или пиков, поэтому для этой цели настроена схема управления переходом через нуль. Означает переход через ноль, SSR находится во включенном состоянии при подаче управляющего сигнала и перехода напряжения переменного тока через ноль; после выключения управляющего сигнала SSR не находится в выключенном состоянии до тех пор, пока переменный ток не будет на стыке положительного полупериода и отрицательного полупериода (нулевой потенциал). Такая конструкция предотвращает влияние высших гармоник и загрязнение электросети.Схема демпфера предназначена для предотвращения воздействия и помех для коммутирующего компонента симистора от скачков и скачков (напряжения) от источника питания. Обычно используется демпферная цепь RC или нелинейное сопротивление (MOV). По сравнению с AC SSR, DC SSR не имеет внутри цепи управления переходом через ноль и демпфирующей цепи, а в качестве переключающего компонента обычно используется транзистор большой мощности. К тому же остальные принципы работы такие же.

Хотите купить твердотельное реле? ATO.com предлагает однофазные твердотельные реле с током нагрузки от 10 А, 25 А до 120 А и трехфазные твердотельные реле, включая 10 А, 40 А…, 80А, 100А и др.

Solid State Relay (SSR) — Типы реле SSR

Что такое твердотельное реле? Конструкция, работа, применение и типы реле SSR

В этой статье мы кратко обсудим SSR (твердотельное реле) , его конструкцию, работу, схемы и различные типы реле SSR в зависимости от его коммутационных свойств и форм ввода / вывода. Мы также обсудим преимущества и недостатки твердотельного реле (SSR) по сравнению с реле электромагнитных реле (EMR) .

Что такое твердотельное реле (SSR)?

Твердотельное реле ( SSR ) — это электронное переключающее устройство, изготовленное из полупроводников , которое переключает (включает и выключает) цепь высокого напряжения, используя низкое напряжение на ее управляющих клеммах.

В отличие от EMR (электромагнитное реле), которое имеет катушку и механический переключатель (физические контакты), реле SSR использует оптопару для изоляции цепи управления от управляемой цепи.

Разница между SSR и EMR

Работа SSR (твердотельного реле) и EMR (электромагнитного реле) или контактного реле одинакова, в то время как основное различие между SSR и EMR заключается в том, что в реле SSR нет механических частей и контактов. Обычно SSR имеет контакт 1a, тогда как EMR имеет несколько контактов.

Другое отличие твердотельного реле от электромагнитного реле заключается в отсутствии скачков напряжения и шума во время работы SSR. Существует вероятность утечки тока от нескольких мкА до мА в реле SSR, в то время как значение тока утечки равно нулю (0) в EMR. С другой стороны, SSR отключает нагрузки переменного тока в точке нулевого тока нагрузки, что приводит к устранению шума, дребезга контактов и электрической дуги в случае индуктивной нагрузки по сравнению с реле EMR.

Конструкция твердотельного реле (SSR)
Клеммы реле SSR Реле

SSR имеет два набора клемм, т.е. входные клеммы и выходные клеммы. Эти терминалы приведены ниже:

Клеммы ввода или управления

Эти две клеммы являются клеммами управления входом. Он подключен к цепи малой мощности, которая управляет его переключением.

Клеммы и соединения реле SSR

Управляющий вход реле SSR разработан отдельно для цепей постоянного или переменного тока.

Выходные нормально открытые (NO) клеммы

Выходные клеммы реле SSR включаются и выключаются в зависимости от управляющего входа.

Обычно электрическое соединение между этими клеммами остается открытым. Когда реле срабатывает, эти клеммы соединяются вместе, обеспечивая замкнутый путь.

Выходные клеммы специально разработаны для цепи AC или DC . В отличие от реле EMR, реле SSR не может переключать сигнал постоянного и переменного тока с помощью одних и тех же клемм.

Выходной нормально закрытый (NC) Клемма

Эта клемма реле остается закрытой, пока реле не сработает. Когда реле срабатывает, ток не течет. Он открывается при срабатывании реле.

ПРИМЕЧАНИЕ: Обычно используемые реле SSR не имеют нормально закрытых клемм. Но реле SSR форм B и C (обсуждается ниже) использует клемму NC.

Работа и работа реле SSR

Когда низкое напряжение подается на входные управляющие клеммы реле SSR , выходные клеммы нагрузки становятся электрически замкнутыми.

Вход реле SSR активирует оптопару, которая переключает цепь нагрузки. Оптопара не имеет физического соединения и изолирует цепь низкого напряжения от цепи высокого напряжения.

Оптопара

имеет на входе светодиод LED , который излучает инфракрасный свет при подаче напряжения. Эти ИК-волны принимаются фотодатчиком (фототранзистор, фотодиод и т. Д.) На его выходе. Фотодатчик преобразует световой сигнал в электрический сигнал и включает цепь.

Чтобы активировать оптрон, его входное напряжение должно быть больше, чем его прямое напряжение . По этой причине реле SSR не срабатывают при напряжении ниже указанного.

Выходная схема реле SSR различается для цепей переменного и постоянного тока. Обычно он состоит из тиристоров TRIAC или для цепи AC, и полевых МОП-транзисторов для цепи постоянного тока.

Схематическая модель реле SSR

Общая схема работы реле постоянного тока в переменный ток SSR Работа с модельной схемой приведена ниже:

На управляющие входные клеммы подается достаточное напряжение DC .Имеется диод для защиты от обратной полярности применен DC .

Когда напряжение подается на светодиод LED оптопары, он излучает инфракрасный свет.

С другой стороны, Opto-TRIAC (приемник) улавливает свет и включается. Как только оптопара включается, на выходе AC начинает течь ток

В свою очередь, выход этой оптопары активирует TRIAC . Таким образом разрешается протекание AC Ток цепи нагрузки

Типы реле SSR

Существует различных типов твердотельных реле .Они классифицируются либо по форме ввода / вывода, либо по свойству переключения.

Классификация на основе ввода / вывода

Ниже приведены некоторые из распространенных типов реле SSR, классифицированных на основе его входной и выходной цепи (AC / DC).

Реле постоянного тока в переменный ток SSR

Это реле работает от входа постоянного тока для переключения цепи нагрузки переменного тока . Управляющий вход этого реле SSR работает только с входом DC .

Тот факт, что это реле не работает на входе AC , связан с тем, что оптрон работает на DC . Его входные клеммы также являются направленными. Изменение полярности входа не активирует реле. Для защиты от обратной полярности входа используется диод.

Даже после подачи требуемого входа выходной переключатель этого SSR не активируется, а только тогда, когда на его выходные клеммы подается напряжение AC .

Ниже приведена схема реле SSR постоянного тока переменного тока.

Сообщение по теме: Типы трансформаторов и их применение

Реле переменного тока переменного тока SSR

Реле SSR работает только тогда, когда обе цепи входа и выхода имеют значение AC .

Как известно, оптопара работает от напряжения постоянного тока и постоянного тока. Таким образом, перед оптопарой используется выпрямитель для преобразования AC в DC .

Когда на его вход управления подается достаточное напряжение переменного тока, он активируется, обеспечивая протекание тока нагрузки переменного тока .

Его схема приведена ниже.

Реле постоянного тока в постоянный ток SSR

Это реле может переключать нагрузку постоянного тока большой мощности с использованием источника постоянного тока малой мощности.

Вход постоянного тока подается на оптрон, как описано в другом примере выше.

Однако для переключения нагрузки постоянного тока используется силовой полевой транзистор MOSFET или IGBT .

Mosfet проводит ток только в одном направлении, поэтому также необходимо убедиться, что выходная нагрузка подключена с соблюдением правильной полярности.Защитный диод используется, чтобы избежать повреждения при обратной полярности.

Если имеется индуктивная нагрузка, с нагрузкой следует использовать обратный диод.

Реле постоянного / переменного тока SSR

Этот тип реле SSR может переключать нагрузку AC и DC с помощью отдельных клемм.

В таких реле SSR используются полевые МОП-транзисторы , соединенные последовательно с общими клеммами источника для переключения цепей AC и DC .

Его схема приведена ниже.

На этой схеме показана матрица фотодиодных ячеек в качестве светового датчика, который вырабатывает напряжение при активации светодиода. Это напряжение подается на затвор и исток N-MOSFET , соединенных последовательно.

Чтобы использовать это реле для цепи переменного тока , используются клеммы Drain полевых МОП-транзисторов , а клеммы источника должны оставаться неиспользованными.

При использовании цепи постоянного тока , Дренаж и исток клеммы полевых МОП-транзисторов используются для переключения.

Классификация на основе коммутационного свойства Реле

SSR также классифицируются на основе их свойств переключения , которые приведены ниже.

Эти реле управляют цепями переменного тока и используются для управления желаемыми выходами в конкретном приложении.

Реле мгновенного включения SSR

Реле такого типа мгновенно переключает на цепь нагрузки всякий раз, когда подается достаточное входное напряжение. Он отключается при следующем переходе напряжения нагрузки через ноль после снятия управляющего входа.

Реле SSR с нулевым переключением

Реле этого типа включается, когда подается входное напряжение и переменное напряжение нагрузки пересекает следующее нулевое напряжение.

Отключается как обычные реле SSR , когда входное напряжение снимается и напряжение переменного тока нагрузки достигает нуля вольт.

Работа реле переключения нуля достигается с помощью схемы, известной как схема перехода через ноль , которая обнаруживает переход через нуль и активирует TRIAC .

Пиковое реле SSR

Эти типы реле SSR включаются, когда выходное напряжение переменного тока достигает своего следующего пика после подачи необходимого входного управляющего напряжения.

Он также отключается после снятия входного напряжения и перехода через ноль выходного переменного тока.

В этих реле используется блок обнаружения пика, который запускает TRIAC , когда цикл выходного переменного тока достигает своего пика.

Реле аналогового переключения SSR

В то время как эти другие типы переключения SSR зависят от выходного цикла переменного тока, переключение этого реле зависит от его входной амплитуды.

Пусковое выходное напряжение аналогового реле SSR пропорционально входному управляющему напряжению.

Предположим, что 3-32 В постоянного тока входное реле 3 В представляет 0% и 32 В представляют 100% пикового напряжения переменного тока нагрузки.

При удалении управляющего входа реле выключается при следующем переходе через нуль переменного тока на выходе.

Классификация на основе шестов и броска Реле

SSR подразделяются на три типа или « Forms », в зависимости от их полюсов и конфигурации хода.

Форма A или SPST NO Тип SSR

Форма A Тип реле SSR — это реле SPST (однополюсное, одноходовое) с нормально разомкнутыми ( NO ) клеммами. Клеммы выходной нагрузки обычно разомкнуты, когда нет внешнего управляющего входа. Когда реле активируется, выходные клеммы соединяются вместе и пропускают ток.

На схеме ниже показано реле SSR, способное переключать переменный и постоянный ток на отдельных клеммах.

Фотодиодный элемент используется в качестве светоприемника, а полевые МОП-транзисторы с общими источниками используются для переключения цепи нагрузки.

Форма B или SPST NC Тип SSR:

Форма B Реле SSR типа имеет нормально замкнутые клеммы нагрузки. Клеммы выходной нагрузки обычно подключены и пропускают ток при отсутствии управляющего входа. Предоставление управляющего входа откроет клеммы нагрузки и остановит прохождение тока.

Этот тип реле использует истощение MOSFET , которые включаются при нулевом входе и выключаются, когда его Vgs отрицательный.

На схеме ниже показано реле SPST NC формы B, использующее полевые МОП-транзисторы с истощением.

Форма C или SPDT типа SSR:

Форма C Реле SSR типа имеет две переключающие клеммы.

Имеется три клеммы нагрузки: Common, NC и NO .

Когда реле неактивно , общая клемма остается подключенной к клемме NC .

Когда реле активирует , общая клемма подключается к клемме NO .

Схема реле SPDT SSR приведена ниже.

Также имеется управляющая схема переключения , которая предотвращает одновременное включение полевых МОП-транзисторов, обеспечивая временную задержку между их переключениями.

Преимущества и недостатки твердотельных реле)
Преимущества:
  • Время переключения SSR на быстрее, чем у реле EMR (электромеханическое реле).
  • Не имеет физических контактов .
  • Нет проблем с контактами Искры и износ .
  • Они имеют более длительный срок службы , чем реле EMR.
  • Реле
  • SSR Отключается при токе нагрузки 0 АС, что предотвращает любые дуги или электрические помехи .
  • Вибрация или движение не влияет на его работу.
  • Он имеет очень низкое энергопотребление по сравнению с реле EMR.
  • Реле
  • SSR очень легко управляется логикой схем (микроконтроллеры )
Недостатки
  • Имеет сложную конструкцию по сравнению с реле ЭМИ
  • Падение напряжения на клеммах нагрузки.
  • Имеет ток утечки в выключенном состоянии .
  • Реле
  • SSR рассеивают слишком много тепла .
  • Он не может переключать низкого напряжения по сравнению с реле EMR.
  • Коммутация реле SSR зависит от напряжения контролируемой цепи.

Сообщение по теме: Типы микросхем. Классификация интегральных схем и их ограничения

Применение твердотельных реле ( твердотельных) Реле

Ниже приведены примеры использования твердотельных реле в области электротехники и электроники.

  • Как правило, реле SSR используется для переключения, то есть для управления включением / выключением питания переменного тока.
  • Он используется для управления мощностью, например, для управления скоростью двигателя, затемнения света и вентилятора, переключения мощности и т. Д.
  • Они также используются для управления электронагревателями для регулирования температуры.
  • Кабина
  • SSR может использоваться как защелка, которая пригодится в случае чайников.
  • В линиях связи реле SSR с оптопарой исключает протекающий через него управляющий ток реле.
  • Твердотельное реле в основном используется при переключении с высокой нагрузкой.

Меры предосторожности при использовании твердотельных реле | Средства автоматизации | Промышленные устройства

1.Конструкция со снижением номинальных характеристик

Снижение номинальных характеристик является важным фактором надежности конструкции и срока службы продукта.
Даже если условия использования (температура, ток, напряжение и т. Д.) Изделия находятся в пределах абсолютных максимальных номинальных значений, надежность может значительно снизиться при продолжительном использовании в условиях высокой нагрузки (высокая температура, высокая влажность, высокий ток, высокое напряжение. и т. д.) Поэтому, пожалуйста, снизьте номинальные характеристики до уровня ниже абсолютного максимума и оцените устройство в фактическом состоянии.
Более того, независимо от области применения, если можно ожидать, что неисправность будет представлять высокий риск для жизни человека или имущества, или если продукты используются в оборудовании, в противном случае требующем высокой эксплуатационной безопасности, в дополнение к проектированию двойных цепей, то есть с включением таких функций, как цепи защиты или резервной цепи, также должны быть выполнены испытания на безопасность.

2. Приложение напряжения, превышающее абсолютный максимум

Если значение напряжения или тока для любой из клемм превышает абсолютный максимальный номинал, внутренние элементы выйдут из строя из-за перенапряжения или перегрузки по току.В крайних случаях может расплавиться проводка или разрушиться кремниевые контакты P / N.
Следовательно, схема должна быть спроектирована таким образом, чтобы нагрузка никогда не превышала абсолютные максимальные значения, даже на мгновение.

3. Фотоэлемент

Соединитель фототриака предназначен исключительно для управления симистором. Предварительно необходимо запитать симистор.

4. неиспользуемые клеммы

1) Фотоприемник

Клемма № 3 используется со схемой внутри устройства.
Поэтому не подключайте его к внешним цепям. (6 контактов)

2) AQ-H

Терминал № 5 подключен к воротам.
Не подключайте напрямую клеммы № 5 и 6.

5. Короткое замыкание на клеммах

Не допускайте короткого замыкания между клеммами, когда устройство находится под напряжением, так как существует возможность поломки внутренней ИС.

6.При использовании для нагрузки ниже номинальной

SSR может выйти из строя, если он используется ниже указанной нагрузки.В таком случае используйте фиктивный резистор параллельно нагрузке.

Характеристики нагрузки

Тип Ток нагрузки
AQ-G Все модели 20 мА
AQ1 Все модели 50 мА
AQ8 Все модели 50 мА
AQ-J Все модели 50 мА
AQ-A (тип выхода переменного тока) 100 мА

7.

Защита от шума и перенапряжения на входе
1) Фотоэлемент и AQ-H

Если на входных клеммах присутствуют обратные перенапряжения, подключите диод в обратной параллели к входным клеммам и поддерживайте обратные напряжения ниже обратного напряжения пробоя.
Ниже показаны типовые схемы.

<Фотоэлемент (6-контактный)>

2) SSR

Сильно шумящее импульсное напряжение, приложенное к входной цепи SSR, может вызвать неисправность или необратимое повреждение устройства.Если ожидается такой сильный выброс, используйте во входной цепи поглотитель шума C или R.
Ниже показаны типовые схемы

8.Рекомендуемый входной ток соединителя Phototriac и AQ-H

Дизайн в соответствии с рекомендованными условиями эксплуатации для каждого продукта.
Поскольку на эти условия влияет рабочая среда, убедитесь в соответствии со всеми соответствующими спецификациями.

9. Пульсация на входе источника питания

Если во входном источнике питания присутствует пульсация, обратите внимание на следующее:

1) Чувствительный к току тип (Phototriac Coupler, AQ-H)

(1) Для прямого тока светодиода при Emin поддерживайте значение, указанное в «Рекомендуемом входном токе».
(2) Убедитесь, что прямой ток светодиода для Emax. не превышает 50 мА.

2) Чувствительный к напряжению тип (AQ-G, AQ1, AQ8, AQ-J, AQ-A)

(1) им. Эмина.должно превышать минимальное номинальное управляющее напряжение
(2) Emax. не должно превышать максимальное номинальное управляющее напряжение

10.Если входные клеммы подключены с обратной полярностью

Название продукта Если полярность входного управляющего напряжения обратная
AQ1 、 AQ-J 、 AQ-A (AC) Изменение полярности не приведет к повреждению устройства из-за наличия защитного диода, но устройство не будет работать.
AQ-H 、 AQ-G 、 AQ8
AQ-A (DC)
Изменение полярности может привести к необратимому повреждению устройства. Будьте особенно осторожны, чтобы избежать обратной полярности, или используйте защитный диод во входной цепи.

11.Защита от шума и перенапряжения на выходной стороне

1) Фотоэлемент и AQ-H

На рисунке ниже показана обычная схема управления симистором. Добавьте демпферную цепь или варистор, так как шум / скачок напряжения на стороне нагрузки могут повредить устройство или вызвать сбои в его работе.
Типовые схемы показаны ниже.

<Фотоприемник типов SOP4 и DIP4>

<Фотоприемник типа DIP6>

Примечание: подключение внешнего резистора и т. Д., к терминалу №5 (выход) не нужен.

2) SSR

(1) Тип выхода переменного тока

Сильный импульсный импульс напряжения, приложенный к цепи нагрузки SSR, может вызвать неисправность или необратимое повреждение устройства. Если ожидается такой сильный выброс, используйте варистор на выходе SSR.

(2) Тип выхода постоянного тока

Если индуктивная нагрузка генерирует скачки напряжения, превышающие абсолютный максимум номинального значения, скачки напряжения должны быть ограничены.
Типовые схемы показаны ниже.

3) Ограничивающий диод и демпфирующая цепь могут ограничивать выбросы напряжения на сторона нагрузки.
Однако длинные провода могут вызвать скачки напряжения. из-за индуктивности. Рекомендуется, чтобы провода были короче можно минимизировать индуктивность.
4) Выходные клеммы могут стать токопроводящими, хотя входная мощность не подается, когда на них подается внезапное повышение напряжения, даже когда реле выключено.Это может произойти, даже если повышение напряжения между клеммами меньше повторяющегося пикового напряжения в выключенном состоянии. Поэтому, пожалуйста, проведите достаточные испытания в реальных условиях.
5) При управлении нагрузками, в которых фазы напряжения и тока различаются, при выключении происходит резкое повышение напряжения, и симистор иногда не выключается. Пожалуйста, проведите достаточные испытания на реальном оборудовании.
6) При управлении нагрузками с использованием типов напряжения с переходом через нуль, в которых фазы напряжения и тока различаются, симистор иногда не включается независимо от состояния входа, поэтому, пожалуйста, проведите достаточные испытания с использованием реального оборудования.

12. Очистка (для монтажа на печатной плате)

Для очистки флюса припоя следует использовать погружную промывку с органическим растворителем. Если вам необходимо использовать ультразвуковую очистку, примите следующие условия и убедитесь, что при фактическом использовании нет проблем.

  • Частота: от 27 до 29 кГц
  • Ультразвуковая мощность: не более 0,25 Вт / см 2 (Примечание)
  • Время очистки: 30 с или менее
  • Используемое очищающее средство: Асахиклин АК-225
  • Другое: Погрузите печатную плату и устройство в очищающий растворитель, чтобы предотвратить контакт с ультразвуковым вибратором.

Примечание: относится к ультразвуковой мощности на единицу площади для ультразвуковых ванн

13. Замечания по монтажу (для типа монтажа на печатной плате)

1) Когда на печатной плате устанавливаются разные типы корпусов, повышение температуры на выводе пайки сильно зависит от размера корпуса.
Поэтому, пожалуйста, установите более низкую температуру пайки, чем условия пункта «14. Пайка »и подтвердите фактический температурный режим использования перед пайкой.
2) Если условия монтажа превышают наши рекомендации, это может отрицательно повлиять на характеристики устройства. Это может произойти из-за несоответствия тепловому расширению и снижения прочности смолы. Пожалуйста, свяжитесь с нашим офисом продаж, чтобы узнать, в каком состоянии находится изделие.
3) Пожалуйста, подтвердите тепловую нагрузку, используя настоящую плату, потому что она может быть изменена в зависимости от состояния платы или условий производственного процесса.
4) Ползучесть припоя, смачиваемость или прочность пайки будут зависеть от условий монтажа или используемого типа пайки.

Пожалуйста, внимательно проверьте их в соответствии с фактическим производственным состоянием.
5) Нанесите покрытие, когда устройство вернется к комнатной температуре.

14. Пайка

1) При пайке клемм для поверхностного монтажа рекомендуются следующие условия.

(1) Метод пайки инфракрасным оплавлением
(Рекомендуемые условия оплавления: макс.2 раза, точка измерения: паяльный провод)

T 1 = от 150 до 180 ° C
Т 2 = 230 ° C
T 3 = от 240 до 250 ° C
t 1 = от 60 до 120 с
t 2 = В течение 30 с
t 3 = В течение 10 с

(2) Другие способы пайки
Другие методы пайки (VPS, горячий воздух, горячая пластина, лазерный нагрев, импульсный нагреватель и т. Д.)) по-разному влияют на характеристики реле, пожалуйста, оцените устройство в соответствии с фактическим использованием.

(3) Метод паяльника
Температура наконечника: от 350 до 400 ° C
Мощность: от 30 до 60 Вт
Время пайки: в пределах 3 с

2) При пайке стандартных клемм печатной платы рекомендуются следующие условия.

(1) Метод пайки DWS
(Рекомендуемое количество раз: макс. 1 раз, точка измерения: паяльный провод * 1)

Т 1 = 120 ° C
T 2 = Макс.260 ° С
t 1 = в течение 60 с
t 2 + t 3 = в течение 5 с

* 1 Температура пайки: макс. 260 ° С

(2) Другой метод пайки погружением (рекомендуемые условия: 1 раз)
Предварительный нагрев: Макс. 120 ° C, в течение 120 с, точка измерения: паяльный провод
Пайка: Макс. 260 ° C, в течение 5 с *, область измерения: температура пайки
* Фотоэлемент и AQ-H: в течение 10 с

(3) Ручной метод пайки
Температура наконечника: от 350 до 400 ° C
Мощность: от 30 до 60 Вт
Время пайки: в пределах 3 с

• Мы рекомендуем сплав со сплавом Sn3. 0Ag0.5Cu.

15. прочие

1) Если SSR используется в непосредственной близости от другого SSR или тепловыделяющего устройства, его температура окружающей среды может превышать допустимый уровень. Тщательно спланируйте компоновку SSR и вентиляцию.
2) Клеммные соединения должны выполняться в соответствии с соответствующей электрической схемой.
3) Для большей надежности проверьте качество устройства в реальных условиях эксплуатации.
4) Во избежание опасности поражения электрическим током отключайте источник питания при проведении технического обслуживания.Хотя AQ-A (тип выхода постоянного тока) сконструирован с изоляцией для входных / выходных клемм и задней алюминиевой пластины, изоляция между входом / выходом и задней алюминиевой пластиной не одобрена UL.

16. Транспортировка и хранение

1) Сильная вибрация во время транспортировки может деформировать провод или повредить характеристики устройства.
Пожалуйста, обращайтесь с внешней и внутренней коробкой осторожно.
2) Неправильные условия хранения могут ухудшить пайку, внешний вид и характеристики.Рекомендуются следующие условия хранения:
  • Температура: от 0 до 45 ° C
  • Влажность: Макс. 70% относительной влажности
  • Атмосфера: Без вредных газов, таких как сернисто-кислый газ, минимальное количество пыли.
3) Хранение фотоэлемента (тип SOP)

В случае теплового воздействия пайки на устройство, которое поглощает влагу внутри своей упаковки, испарение влаги увеличивает давление внутри упаковки и может вызвать вздутие или трещину на упаковке.Устройство чувствительно к влаге и упаковано в герметичную влагонепроницаемую упаковку. После распечатывания убедитесь в соблюдении следующих условий.

• Пожалуйста, используйте устройство сразу после распечатывания. (В течение 30 дней при температуре от 0 до 45 ° C и относительной влажности макс. 70%)
• Если устройство будет храниться в течение длительного времени после вскрытия упаковки, храните его в другой влагонепроницаемой упаковке, содержащей силикагель. (Используйте в течение 90 дней.)

17.Конденсация воды

Конденсация воды происходит, когда температура окружающей среды внезапно меняется с высокой температуры на низкую при высокой влажности, или когда устройство внезапно переключается с низкой температуры окружающей среды на высокую температуру и влажность.
Конденсация вызывает такие отказы, как ухудшение изоляции. Panasonic Corporation не гарантирует отказы, вызванные конденсацией воды.
Теплопроводность оборудования, на котором установлен SSR, может ускорить конденсацию воды. Убедитесь, что в худших условиях фактического использования конденсата нет.
(Особое внимание следует уделять, когда детали, нагревающиеся при высоких температурах, находятся близко к твердотельному реле.)

18. Ниже показан формат упаковки

※ Если щелкнуть каждую фигуру, откроется увеличение.

1) Лента и катушка (соединитель Phototriac)
2) Лента и катушка (AQ-H)
Тип Размеры ленты (единица измерения: мм) Размеры катушки с бумажной лентой
(Единицы: мм)
8-контактный SMD
тип

(1) При выборе со стороны 1/2/3/4 контактов: № детали AQH ○○○○ AX (Показано выше)
(2) При выборе со стороны 5/6/8 контактов: Номер детали. AQH ○○○○ AZ
3) Трубка
Соединитель

Phototriac и AQ-H SSR упакованы в трубку, так как штифт № 1 находится на стороне стопора B. Соблюдайте правильную ориентацию при установке их на печатные платы.

<Тип СОП фотоэлемента>

<Тип DIP фотоэлемента и AQ-H SSR>

1.Уменьшить дв / дт

SSR, используемый с индуктивной нагрузкой, может случайно сработать из-за высокой скорости нарастания напряжения нагрузки (dv / dt), даже если напряжение нагрузки ниже допустимого уровня (срабатывание индуктивной нагрузки).
Наши SSR содержат демпферную цепь, предназначенную для уменьшения dv / dt (кроме AQ-H).

2. Выбор постоянных демпфера

1) Выбор C

Коэффициент зарядки тау для C цепи SSR показан в формуле (1)

τ = (R L + R) × C ———— (1)

Установив формулу (1) так, чтобы она была ниже значения dv / dt, вы получите:

С = 0.632V A / [(dv / dt) × (R L + R)] —— (2)

Установив C = 0,1–0,2 мкФ, dv / dt можно регулировать в диапазоне от нВ / мкс до n + В / мкс или ниже. Для конденсатора используйте либо металлизированную полиэфирную пленку конденсатора MP. Для линии 100 В используйте напряжение от 250 до 400 В, а для линии 200 В используйте напряжение от 400 до 600 В.

2) Выбор R

Если сопротивление R отсутствует (сопротивление R управляет разрядным током конденсатора C), при включении SSR произойдет резкое повышение dv / dt и начнет течь разрядный ток с высоким пиковым значением.
Это может вызвать повреждение внутренних элементов SSR.
Следовательно, всегда необходимо вставлять сопротивление R. В обычных приложениях для линии 100 В нужно иметь R = от 10 до 100 Ом, а для линии 200 В — R = от 20 до 100 Ом. (Допустимый ток разряда при включении будет отличаться в зависимости от внутренних элементов SSR.) Потери мощности от R, записанные как P, вызванные током разряда и током заряда от C, показаны в формуле (3) ниже. Для линии 100 В используйте мощность 1/2 Вт, а для линии 200 В используйте мощность выше 2 Вт.

P =

C × V A 2 × f

……… (3)

2

f = частота источника питания

Кроме того, при выключении SSR формируется цепь вызывного сигнала с конденсатором C и индуктивностью L цепи, и на обоих выводах SSR генерируется всплеск напряжения. Сопротивление R служит контрольным сопротивлением для предотвращения этого звона.Кроме того, требуется хорошее неиндуктивное сопротивление для R. Часто используются углеродные пленочные резисторы или металлопленочные резисторы.
Для общих приложений рекомендуемые значения: C = 0,1 мкФ и R = от 20 до 100 Ом. В индуктивной нагрузке бывают случаи резонанса, поэтому при выборе необходимо соблюдать соответствующие меры.

Высоконадежные цепи SSR требуют соответствующей схемы защиты, а также тщательного изучения характеристик и максимальных номиналов устройства.

1. Защита от перенапряжения

Источник питания нагрузки SSR требует соответствующей защиты от ошибок перенапряжения по разным причинам. К методам защиты от перенапряжения относятся следующие:

1) Используйте устройства с гарантированным выдерживаемым обратным перенапряжением

(лавинные управляемые устройства и др.)

2) Подавление кратковременных выбросов

Используйте переключающее устройство во вторичной цепи трансформатора или используйте переключатель с медленной скоростью размыкания.

3) Используйте схему поглощения скачков напряжения

Используйте поглотитель перенапряжения CR или варистор на источнике питания нагрузки или SSR.
Следует проявлять особую осторожность, чтобы скачки включения / выключения или внешние скачки не превышали номинальное напряжение нагрузки устройства. Если ожидается скачок напряжения, превышающий номинальное напряжение устройства, используйте устройство и схему поглощения скачков напряжения (например, ZNR от Panasonic Corporation.).

Выбор номинального напряжения ЗНР

(1) Пиковое напряжение питания
(2) Изменение напряжения питания
(3) Ухудшение характеристики ZNR (1 мА ± 10%)
(4) Допуск номинального напряжения (± 10%)
Для подключения к линиям переменного тока 100 В выберите ZNR со следующим номинальным напряжением:
(1) × (2) × (3) × (4) = (100 × √2) × 1.1 × 1,1 × 1,1 = 188 (В)

D : 17,5 диам. Максимум.
T 6,5 макс.
H : 20,5 макс.
W : 7,5 ± 1
(Единицы: мм)

Пример ЗНР (Panasonic)

Типы Напряжение варистора Макс.допустимое напряжение цепи Макс. управляющее напряжение Макс. средняя
импульсная электрическая
мощность
Устойчивость к энергии Выдерживает импульсный ток Электростатическая емкость
(справочная)
(10/1000 мкс) (2 мс) 1 раз (8/20 мкс)
2 раза
V1mA (В) ACrms (В) постоянного тока (В) V50A (В) (Вт) (Дж) (Дж) (А) (А) @ 1 кГц (пФ)
ERZV14D201 200 (от 185 до 225) 130 170 340 0. 6 70 50 6 000 5 000 770
ERZV14D221 220 (198–242) 140 180 360 0,6 78 55 6 000 5 000 740
ERZV14D241 240 (от 216 до 264) 150 200 395 0.6 84 60 6 000 5 000 700
ERZV14D271 270 (с 247 по 303) 175 225 455 0,6 99 70 6 000 5 000 640
ERZV14D361 360 (324–396) 230 300 595 0.6 130 90 6 000 4,500 540
ERZV14D391 390 (от 351 до 429) 250 320 650 0,6 140 100 6 000 4,500 500
ERZV14D431 430 (от 387 до 473) 275 350 710 0. 6 155 110 6 000 4,500 450
ERZV14D471 470 (с 423 по 517) 300 385 775 0,6 175 125 6 000 4,500 400
ERZV14D621 620 (от 558 до 682) 385 505 1,025 0.6 190 136 5 000 4,500 330
ERZV14D681 680 (с 612 по 748) 420 560 1,120 0,6 190 136 5 000 4,500 320

2. Защита от перегрузки по току

Цепь SSR, работающая без защиты от перегрузки по току, может привести к повреждению устройства.Спроектируйте схему таким образом, чтобы номинальная температура перехода устройства не превышалась при продолжительном токе перегрузки.
(например, импульсный ток в двигателе или лампочке)
Номинальный импульсный ток применяется к ошибкам перегрузки по току, которые возникают менее нескольких десятков раз в течение срока службы полупроводникового прибора. Для этого номинала требуется устройство координации защиты.
К методам защиты от перегрузки по току относятся следующие:

1) Защита от сверхтоков

Используйте токоограничивающий реактор последовательно с источником питания нагрузки.

2) Используйте устройство отключения тока

Используйте токоограничивающий предохранитель или автоматический выключатель последовательно с источником питания нагрузки.

Пример выполнения выбора предохранителя для взаимодействия защиты от сверхтоков

1. Обогреватели (резистивная нагрузка)

SSR лучше всего подходит для резистивных нагрузок. Уровень шума можно значительно снизить с помощью переключения через нуль.

2. Лампы

Вольфрамовые или галогенные лампы потребляют высокий пусковой ток при включении (примерно в 7-8 раз больше, чем ток в установившемся режиме для SSR с переходом через ноль; примерно в 9-12 раз, в худшем случае, для SSR произвольного типа). Выберите SSR так, чтобы пик пускового тока не превышал 50% от тока хирурга SSR.

3. Соленоиды

Электромагнитные контакторы или электромагнитные клапаны с приводом от переменного тока

также потребляют пусковой ток, когда они активированы.Выберите SSR таким образом, чтобы пик пускового тока не превышал 50% от тока хирурга SSR. Для небольших электромагнитных клапанов и, в частности, реле переменного тока ток утечки может вызвать сбой в работе нагрузки после выключения SSR. В таком случае используйте фиктивный резистор параллельно нагрузке.

• Использование SSR ниже указанной нагрузки

4.

Моторы нагрузка

При запуске электродвигатель потребляет симметричный пусковой ток переменного тока, который в 5-8 раз превышает установившийся ток нагрузки, который накладывается на постоянный ток. Время пуска, в течение которого поддерживается этот высокий пусковой ток, зависит от мощности нагрузки и источника питания нагрузки. Измерьте пусковой ток и время в реальных условиях эксплуатации двигателя и выберите SSR, чтобы пик пускового тока не превышал 50% от пускового тока SSR.
Когда нагрузка двигателя отключена, на SSR подается напряжение, превышающее напряжение питания нагрузки, из-за противо-ЭДС.
Это напряжение примерно в 1,3 раза больше напряжения питания нагрузки для асинхронных двигателей и примерно в 2 раза больше напряжения синхронных двигателей.

• Управление реверсивным двигателем

Когда направление вращения двигателя меняется на противоположное, переходный ток и время, необходимые для реверсирования, намного превышают те, которые требуются для простого запуска. Ток и время реверсирования также следует измерять в реальных условиях эксплуатации.
В однофазном асинхронном двигателе с конденсаторным пуском в процессе реверсирования возникает ток емкостного разряда.Обязательно используйте токоограничивающий резистор или дроссель последовательно с SSR.
Кроме того, SSR должен иметь высокое предельное значение напряжения, поскольку в процессе реверсирования на SSR возникает напряжение, вдвое превышающее напряжение питания нагрузки.
Для управления реверсивным двигателем тщательно спроектируйте схему драйвера, чтобы реле прямого и обратного хода не включались одновременно.

5. емкостная нагрузка

Емкостная нагрузка (импульсный стабилизатор и т. Д.) Потребляет пусковой ток для зарядки конденсатора нагрузки при включении SSR.
Выбирайте SSR так, чтобы пик пускового тока не превышал 50% пускового тока SSR. Ошибка синхронизации до одного цикла может произойти, когда переключатель, используемый последовательно с SSR, размыкается или замыкается. Если это проблема, используйте дроссель (от 200 до 500 мкГн) последовательно к SSR, чтобы подавить ошибку dv / dt.

6. Другое электронное оборудование

Как правило, в электронном оборудовании в первичной цепи питания используются сетевые фильтры.
Конденсаторы, используемые в сетевых фильтрах, могут вызвать неисправность SSR из-за включения dv / dt при включении или выключении оборудования.В таком случае используйте индуктор (от 200 до 500 мкГн) последовательно с SSR, чтобы подавить включение du / dt.

Волна и время пускового тока нагрузки

(1) Нагрузка лампы накаливания

Пусковой ток / номинальный ток: i / io ≒ от 10 до 15 раз

(2) Нагрузка ртутной лампы i / io 3 раза

Газоразрядная трубка, трансформатор, дроссельная катушка, конденсатор и т. Д., объединены в общие цепи газоразрядных ламп. Обратите внимание, что пусковой ток может быть от 20 до 40 раз, особенно если полное сопротивление источника питания низкое в типе с высоким коэффициентом мощности.

(3) Нагрузка люминесцентной лампы i / io ≒ от 5 до 10 раз

(4) Нагрузка двигателя i / io ≒ от 5 до 10 раз

  • Условия становятся более суровыми, если выполняется заглушка или толчковый режим, поскольку переходы между состояниями повторяются.
  • При использовании реле для управления двигателем постоянного тока и тормозом, пусковой ток во включенном состоянии, ток установившегося состояния и ток отключения во время торможения различаются в зависимости от того, является ли нагрузка на двигатель свободной или заблокированной. В частности, с неполяризованными реле, при использовании контакта «от B» или «от контакта» для тормоза двигателя постоянного тока, на механический срок службы может влиять ток тормоза.
    Поэтому, пожалуйста, проверьте ток при фактической нагрузке.

(5) Нагрузка на соленоид i / io ≒ от 10 до 20 раз

Обратите внимание, что поскольку индуктивность велика, дуга длится дольше при отключении питания.
Контакт может легко изнашиваться.

(6) Нагрузка на электромагнитный контакт
i / io ≒ от 3 до 10 раз

(7) Емкостная нагрузка i / io ≒ от 20 до 40 раз

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *