Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Тепловое реле схема: Подключение теплового реле (схема)

Содержание

Схема подключения теплового реле для электродвигателя

Техника, которая оснащается двигателями нуждается в защите. Для этих целей в нее устанавливается система принудительного охлаждения, чтобы обмотки не превышали допустимую температуру. Иногда ее бывает недостаточно, поэтому дополнительно может быть смонтировано тепловое реле. В самоделках его приходится монтировать своими руками. Поэтому важно знать схему подключения теплового реле.

Принцип работы теплового реле


В некоторых случаях тепловое реле может быть встроено в обмотки двигателя. Но чаще всего оно применяется в паре с магнитным пускателем. Это дает возможность продлить срок службы теплового реле. Вся нагрузка по запуску ложится на контактор. В таком случае тепловой модуль имеет медные контакты, которые подключаются непосредственно к силовым входам пускателя. Проводники от двигателя подводятся к тепловому реле. Если говорить просто, то оно является промежуточным звеном, которое анализирует проходящий через него ток от пускателя к двигателю.

В основе теплового модуля лежат биметаллические пластины. Это означает, что они изготавливаются из двух различных металлов. Каждый из них имеет свой коэффициент расширения при воздействии температуры. Пластины через переходник воздействуют на подвижный механизм, который подключен к контактам, уходящим к электродвигателю. При этом контакты могут находиться в двух положениях:

  • нормально замкнутом;
  • нормально разомкнутом.

Первый вид подходит для управления пускателем двигателя, а второй используется для систем сигнализации. Тепловое реле построено на принципе тепловой деформации биметаллических пластин. Как только через них начинает протекать ток, их температура начинает повышаться. Чем с большей силой протекает ток, тем выше поднимается температура пластин теплового модуля. При этом происходит смещение пластин теплового модуля в сторону металла с меньшим коэффициентом теплового расширения. При этом происходит замыкание или размыкание контактов и остановка двигателя.

Важно понимать, что пластины теплового реле рассчитаны на определенный номинальный ток. Это означает, что нагрев до некоторой температуры, не будет вызывать деформации пластин. Если из-за увеличения нагрузки на двигатель произошло срабатывания теплового модуля и отключение, то по истечении определенного промежутка времени, пластины возвращаются в свое естественное положение и контакты снова замыкаются или размыкаются, подавая сигнал на пускатель или другой прибор. В некоторых видах реле доступна регулировка силы тока, которая должна протекать через него. Для этого выносится отдельный рычаг, которым можно выбрать значение по шкале.

Кроме регулятора силы тока, на поверхности может также находиться кнопка с надписью Test. Она позволяет проверить тепловое реле на работоспособность. Ее необходимо нажат при работающем двигателе. Если при этом произошел останов, тогда все подключено и функционирует правильно. Под небольшой пластинкой из оргстекла скрывается индикатор состояния теплового реле. Если это механический вариант, то в нем можно увидеть полоску двух цветов в зависимости от происходящих процессов. На корпусе рядом с регулятором силы тока располагается кнопка Stop. Она в отличие от кнопки Test отключает магнитный пускатель, но контакты 97 и 98 остаются разомкнутыми, а значит сигнализация не срабатывает.

Обратите внимание! Описание приводится для теплового реле LR2 D1314. Другие варианты имеют схожее строение и схему подключения.

Функционировать тепловое реле может в ручном и автоматическом режиме. С завода установлен второй, что важно учитывать при подключении. Для перевода на ручное управление, необходимо задействовать кнопку Reset. Ее нужно повернуть против часовой стрелки, чтобы она приподнялась над корпусом. Разница между режимами заключается в том, что в автоматическом после срабатывания защиты, реле вернется к нормальному состоянию после полного остывания контактов. В ручном режиме это можно сделать с использованием клавиши Reset. Она практически моментально возвращает контактные площадки в нормальное положение.

Тепловое реле имеет и дополнительный функционал, который оберегает двигатель не только от перегрузок по току, но и при отключении или обрыве питающей сети или фазы. Это особенно актуально для трехфазных двигателей. Бывает, что одна фаза отгорает или с ней происходят другие неполадки. В этом случае металлические пластины реле, к которым поступают другие две фазы начинают пропускать через себя больший ток, что приводит к перегреву и отключению. Это необходимо для защиты двух оставшихся фаз, а также двигателя. При худшем раскладе такой сценарий может привести к выходу из строя двигателя, а также подводящих проводов.

Обратите внимание! Тепловое реле не предназначено для защиты двигателя от короткого замыкания. Это связано с высокой скоростью пробоя. Пластины просто не успевают отреагировать. Для этих целей необходимо предусматривать специальные автоматические выключатели, которые также включаются в цепь питания.

Характеристики реле


При выборе ТР необходимо ориентироваться в его характеристиках. Среди заявленных могут быть:

  • номинальный ток;
  • разброс регулировки тока срабатывания;
  • напряжение сети;
  • вид и количество контактов;
  • расчетная мощность подключаемого прибора;
  • минимальный порог срабатывания;
  • класс прибора;
  • реакция на перекос фаз.

Номинальный ток ТР должен соответствовать тому, который указан на двигателе, к которому будет происходить подключение. Узнать значение для двигателя можно на шильдике, который находится на крышке или на корпусе. Напряжение сети должно строго соответствовать той, где будет применяться. Это может быть 220 или 380/400 вольт. Количество и тип контактов также имеют значение, т. к. различные контакторы имеют различное подключение. ТР должно выдерживать мощность двигателя, чтобы не происходило ложного срабатывания. Для трехфазных двигателей лучше брать ТР, которые обеспечивают дополнительную защиту при перекосе фаз.

Процесс подключения


Ниже приведена схема подключения ТР с обозначениями. На ней можно найти сокращение КК1.1. Оно обозначает контакт, который в нормальном состоянии является замкнутым. Силовые контакты, через которые ток поступает на двигатель обозначены сокращением KK1. Автоматический выключатель, который находится в ТР обозначен как QF1. При его задействовании происходит подача питания по фазам. Фаза 1 управляется отдельной клавишей, которая обозначена маркировкой SB1. Она выполняет аварийную ручную остановку в случае возникновения непредвиденной ситуации. От нее контакту уходит на клавишу, которая обеспечивает пуск и обозначена сокращением SB2. Дополнительный контакт, который отходит от клавиши пуска, находится в дежурном состоянии. Когда выполняется запуск, тогда ток от фазы через контакт поступает на магнитный пускатель через катушку, которая обозначается KM1. Происходит срабатывание пускателя. При этом те контакты, которые в нормальном положении являются разомкнутыми замыкаются и наоборот.

Когда замыкаются контакты, которые на схеме находятся под сокращением KM1, тогда происходит включение трех фаз, которые пускают ток через тепловое реле на обмотки двигателя, который включается в работу. Если сила тока будет расти, тогда из-за воздействия контактных площадок ТР под сокращением KK1 произойдет размыкание трех фаз и пускатель обесточивается, а соответственно останавливается и двигатель. Обычная остановка потребителя в принудительном режиме происходит посредством воздействия на клавишу SB1. Она разрывает первую фазу, которая прекратит подачу напряжения на пускатель и его контакты разомкнутся. Ниже на фото можно увидеть импровизированную схему подключения.

Есть еще одна возможная схема подключения этого ТР. Разница заключается в том, что контакт реле, который в нормальном состоянии является замкнутым при срабатывании разрывает не фазу, а ноль, который уходит на пускатель. Ее применяют чаще всего в силу экономичности при выполнении монтажных работ. В процессе нулевой контакт подводится к ТР, а с другого контакта монтируется перемычка на катушку, которая запускает контактор. При срабатывании защиты происходит размыкание нулевого провода, что приводит к отключению контактора и двигателя.

Реле может быть смонтировано в схему, где предусмотрено реверсивное движение двигателя. От схемы, которая была приведена выше различие заключается в том, что присутствует НЗ контакт, в реле, которое обозначено KK1.1.

Если реле срабатывает, тогда происходит разрыв нулевого провода контактами под обозначением KK1.1. Пускатель обесточивается и прекращает питания двигателя. В экстренной ситуации кнопка SB1 поможет быстро разорвать цепь питания, чтобы остановить двигатель. Видео о подключении ТР можно посмотреть ниже.

Резюме


Схемы, на которых будет изображаться принцип подключения реле к контактору, могут иметь другие буквенные или цифровые обозначения. Чаще всего их расшифровка приводится внизу, но принцип всегда остается одинаковым. Можно немного попрактиковаться, собрав всю схему с потребителем в виде лампочки или небольшого двигателя. С помощью тестовой клавиши можно будет отработать нестандартную ситуацию. Клавиши запуска и остановки позволят проверить работоспособность всей схемы. При этом стоит обязательно учитывать тип пускателя и то, в каком нормальном состоянии находятся его контакты. Если есть определенные сомнения, тогда лучше посоветоваться с электромонтажником, который имеет опыт в сборке таких схем.

Отправить комментарий

Тепловая защита электродвигателя. Электротепловое реле.

Здравствуйте, уважаемые читатели сайта sesaga.ru. В предыдущей статье мы с Вами рассмотрели принципиальные схемы включения магнитного пускателя, обеспечивающие реверс вращения электродвигателя.

Продолжаем знакомиться с магнитным пускателем и сегодня рассмотрим типовые схемы подключения электротеплового реле типа РТИ, которое предназначено для защиты от перегрева обмоток электродвигателя при токовых перегрузках.

1. Устройство и работа электротеплового реле.

Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле.

Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя:

1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем;
2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации.

Принцип действия теплового реле основан на деформации биметаллической пластины при ее нагреве проходящим током.

Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку.

Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб.

По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (95 – 96) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя.

В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле.

Помимо поворотного регулятора на панели управления расположена кнопка «TEST», предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему.

«Индикатор» информирует о текущем состоянии реле.

Кнопкой «STOP» обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент.

Электротепловое реле может работать в ручном или автоматическом режиме (по умолчанию стоит автоматический режим).

Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET» против часовой стрелки, при этом кнопка слегка приподнимается.

Предположим, что сработало реле и своими контактами обесточило пускатель.
При работе в автоматическом режиме после остывания биметаллических пластин контакты (

95 — 96) и (97 — 98) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET».

Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает.

Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания.

При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки:

Например.
Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA.

2. Принципиальные схемы включения электротеплового реле.

В схеме с тепловым реле используют нормально-замкнутый контакт реле КК1.1 в цепи управления пускателем, и три силовых контакта КК1, через которые подается питание на электродвигатель.

При включении автоматического выключателя QF1 фаза «А», питающая цепи управления, через кнопку SB1 «Стоп» поступает на контакт №3 кнопки SB2 «Пуск», вспомогательный контакт 13НО пускателя КМ1, и остается дежурить на этих контактах. Схема готова к работе.

При нажатии на кнопку

SB2 фаза через нормально-замкнутый контакт КК1.1 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его все нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват. При замыкании силовых контактов КМ1 фазы «А», «В», «С» через контакты теплового реле КК1 поступают на обмотки электродвигателя и двигатель начинает вращение.

При увеличении тока нагрузки через силовые контакты термореле КК1, реле сработает, контакт КК1.1 разомкнется и пускатель КМ1 обесточится.

Если возникнет необходимость в простой остановке двигателя, то достаточно будет нажать на кнопку «Стоп». Контакты кнопки разорвутся, фаза прервется и пускатель обесточится.

На фотографиях ниже показана часть монтажной схемы цепей управления:

Следующая принципиальная схема аналогична первой и отличается лишь тем, что нормально-замкнутый контакт термореле (95 – 96) разрывает ноль пускателя. Именно эта схема получила наибольшее распространение из-за удобства и экономичности монтажа: ноль сразу заводят на контакт термореле, а со второго контакта реле бросают перемычку на катушку пускателя.

При срабатывании термореле контакт КК1.1 размыкается, «ноль» разрывается и пускатель обесточивается.

И в заключении рассмотрим подключение электротеплового реле в реверсивной схеме управления пускателем.

От типовой схемы она, как и схема с одним пускателем, отличается лишь наличием нормально-замкнутого контакта реле КК1.1 в цепи управления, и тремя силовыми контактами КК1, через которые запитывается электродвигатель.

При срабатывании защиты контакты КК1.1 разрываются и отключают «ноль». Работающий пускатель обесточивается и двигатель останавливается. При возникновении необходимости в простой остановке двигателя достаточно нажать на кнопку «Стоп».

Вот и подошел к логическому завершению рассказ о магнитном пускателе.
Понятно, что только одних теоретических знаний мало. Но если Вы будете практиковаться, то сможете собрать любую схему с применением магнитного пускателя.

И уже по сложившейся традиции небольшой видеоролик о применении электротеплового реле.

Удачи!

Тепловое реле | Заметки электрика

Здравствуйте, уважаемые посетители и гости сайта «Заметки электрика».

В этой статье я расскажу Вам про назначение, устройство, схему подключения теплового реле на примере LR2 D1314 от фирмы «Schneider Electric». Тепловой компонент рассматриваемого реле имеет номинальный ток 10 (А), а токовый диапазон уставок его составляет от 7 до 10 (А). Об остальных технических характеристиках поговорим чуть позже. А теперь давайте перейдем к определению и назначению теплового реле.

Как Вы уже знаете, тепловое реле, или другими словами реле перегрузки, устанавливается в схемах магнитного пускателя, как нереверсивного типа, так и реверсивного.

Более подробно об этом Вы можете ознакомиться здесь:

Назначение теплового реле

Тепловое реле — это электрический коммутационный аппарат, который предназначен для защиты трехфазных двигателей от токовой перегрузки недопустимой продолжительностью (например, при заклинивании ротора или механической его перегрузки), а также от обрыва любой из фаз питающего напряжения (по функции аналогично реле контроля фаз).

Вот список самых распространённых (известных) серий тепловых реле: ТРП, ТРН, РТТ, РТИ (аналог LR2 D13), РТЛ

О каждой серии тепловых реле я постараюсь написать отдельную статью, подписывайтесь на рассылку новостей сайта «Заметки электрика».

Прошу заметить, что тепловое реле не защищает электродвигатель от коротких замыканий по причине того, что оно срабатывает с выдержкой времени, т.е. не мгновенно — это отчетливо можно увидеть по графику (кривой) срабатывания теплового реле. Для защиты двигателя от короткого замыкания в силовую цепь перед магнитным пускателем устанавливаются автоматические выключатели или предохранители.

 

Технические характеристики теплового реле LR2 D1314

Вот его внешний вид:

Вид сбоку:

Я уже говорил выше, что тепловое реле LR2 D1314 имеет конструктивное исполнение один в один, как у теплового реле РТИ.

Ниже я приведу основные технические характеристики, рассматриваемого в данной статье, теплового реле LR2 D1314 от компании «Schneider Electric»:

  • номинальный ток теплового компонента — 10 (А)
  • предел регулирования тока уставки теплового расцепителя — 7-10 (А)

  • напряжение силовой (главной) цепи — 220 (В), 380 (В) и 660 (В)

  • два вспомогательных контакта — нормально-замкнутый NC (95-96) и нормально-разомкнутый NO (97-98)

  • коммутируемая мощность вспомогательных контактов — около 600 (ВА)
  • порог срабатывания — 1,14±0,06 от номинального тока
  • чувствительность к асимметрии фаз — срабатывает при 30% от номинального тока по одной фазе, при условии, что по другим фазам протекает номинальный ток
  • класс отключения — 20 (см. график кривой срабатывания теплового реле)

Кривая срабатывания теплового реле с классом отключения 20 — показывает среднее время срабатывания реле в зависимости от кратности тока уставки:

Согласно ГОСТ 30011.4.1-96 (п.4.7.3, таблица 2) время срабатывания теплового реле (класс 20) при кратности тока уставки реле 7,2 составляет 6 — 20 секунд.

Рассмотрим устройство передней панели теплового реле LR2 D1314

Рассмотрим устройство передней панели.

На ней имеется кнопка-переключатель (синего цвета) режима повторного взвода (включения) реле:

  • «А» — автоматический взвод
  • «Н» — ручной взвод

На данный момент выставлен автоматический режим повторного взвода — синяя кнопка-переключатель утоплена. Это значит, что при срабатывании теплового реле схему питания двигателя можно беспрепятственно и повторно включить.

Чтобы переключиться на ручной режим, нужно открыть защитное стекло и повернуть синюю кнопку-переключатель влево — он выступит наружу.  В ручном режиме после срабатывания теплового реле необходимо в ручную нажать синюю кнопку-переключатель, иначе нормально-замкнутый контакт NC (95-96) останется разомкнутым, тем самым не даст собрать схему питания и управления электродвигателя.

Также на передней панели теплового реле LR2 D1314 располагается красная кнопка «Тест» («Test»). С помощью нее имитируется работа внутренних механизмов реле и его вспомогательных контактов.

Кнопку «Test» я нажимаю с помощью небольшой отвертки.

У данного типа теплового реле имеется индикация срабатывания в виде желтого (оранжевого) флажка в окошке. Также по этому флажку можно ориентироваться о текущем состоянии вспомогательных контактов реле. Когда в окошке находится желтый флажок, то значит нормально-замкнутый контакт NC (95-96) находится в разомкнутом состоянии, а нормальный-разомкнутый контакт NO (97-98) — в замкнутом.

Ну вот мы плавно подобрались к красной кнопке «Стоп». Красная кнопка «Стоп» выполнена в виде выступающего «грибка» и нужна для принудительного размыкания нормально-замкнутого контакта NC (95-96). При этом катушка магнитного пускателя теряет питание и двигатель отключается от сети.

Еще на передней панели теплового реле LR2 D1314 имеется регулятор уставки, с помощью которого регулируется и настраивается уставка срабатывания теплового реле. В нашем случае ток уставки реле находится в пределах от 7 до 10 (А). Регулировка производится путем поворота регулятора до совмещения нужной уставки реле и риски-треугольника.

После всех настроек и регулировок защитная крышка теплового реле закрывается и пломбируется. Для этого на ней имеется специальное «ушко». Таким образом, доступ к регулировке уставок реле будет закрыт и никто из посторонних в процессе эксплуатации не сможет их изменить.

Схема подключения теплового реле LR2 D1314

Представляю Вашему вниманию схему теплового реле LR2 D1314:

Входные силовые цепи (медные выводы) не маркируются и подключаются непосредственно к пускателю или контактору. Маркировка выходных главных (силовых) цепей теплового реле имеют маркировку: T1 (2), Т2 (4), Т3 (6) и к ним подключается электродвигатель.

У данного типа реле существует две пары вспомогательных контактов:

  • нормально-замкнутый NC (95-96)
  • нормально-разомкнутый NO (97-98)

Нормально-замкнутый контакт используется в схеме управления магнитным пускателем и подключается, например, перед кнопкой «Стоп». Нормально-разомкнутый контакт чаще всего используется в цепях сигнализации для вывода световой индикации на панель оператору или диспетчеру при срабатывании теплового реле.

Для примера я подключил тепловое реле на выводы T1 (2), Т2 (4), Т3 (6) магнитного пускателя ПМЛ-1100. Вот так это выглядит:

Крепится тепловое реле к пускателю с помощью силовых выводов и специального крючка, который плотно фиксирует корпус реле в неподвижном состоянии.

В зависимости от величины и типа пускателей или контакторов выводы («ножки») теплового реле регулируются путем изменения своего межосевого расстояния.

На корпусе есть «подсказка» с рекомендациями по выставлению «ножек» теплового реле в зависимости от типа пускателя или контактора.

 

Конструкция и внутреннее устройство теплового реле LR2 D1314

Ну чтож, заглянем внутрь реле.

Для этого открутим 3 крепежных винта.

Затем тонкой отверточкой очень аккуратно вскроем защелки по периметру корпуса. Почему аккуратненько — да потому что корпус выполнен из пластика, который очень хрупкий и можно с необычайной легкостью сломать крепежные защелки.

Снимаем верхнюю крышку реле.

На фотографии видны три биметаллические пластины, которые установлены в каждом полюсе (фазе).

Откручиваем винты выходных клемм и вытаскиваем из корпуса биметаллические пластины.

Затем снимаем спусковой механизм теплового реле.

Принцип работы системы рычагов спускового механизма.

Вот так выглядит тепловое реле LR2 D1314 без биметаллических пластин и спускового механизма.

Чтобы добраться до контактной системы теплового реле, нужно снять регулятор уставок и выкрутить винт.

На фотографии ниже изображены контакты теплового реле в режиме готовности.

А сейчас показаны контакты при срабатывании теплового реле:

Я уже упоминал в начале статьи, что при нажатии на кнопку «Стоп» принудительно размыкается нормально-замкнутый контакт NC (95-96), при этом нормально-разомкнутый контакт не изменяет своего положения. Вот подтверждение моих слов.

А вот фотография всех деталей теплового реле LR2 D1314.

 

Принцип работы теплового реле LR2 D1314

Несколько слов о конструкции биметаллической пластины.

Биметаллическая пластина состоит из 2 пластин разных материалов, у которых коэффициент линейного теплового расширения значительно отличается друг от друга. Например:

  • сплав железа с никелем (инвар) со сталью
  • ниобий со сталью

Соединяются эти две пластины с помощью сварки или клепки.

Один конец биметаллической пластины закреплен (неподвижный), а другой — подвижный и соприкасается со спусковым механизмом теплового реле. Когда биметаллическая пластина нагревается от проходящего через нее тока, она начинает изгибаться в сторону материала, у которого коэффициент линейного теплового расширения меньше.

А теперь рассмотрим принцип работы теплового реле LR2 D1314.

В нормальном режиме работы электродвигателя через биметаллические пластины трех полюсов (трех фаз) протекает ток нагрузки электродвигателя — пластины нагреваются до определенной начальной температуры, которая не вызывает их изгиб. Предположим, что по некоторой причине ток нагрузки двигателя увеличился, соответственно, по биметаллическим пластинам будет протекать ток больше номинального, который и вызовет их подогрев (температура станет больше начальной). При этом подвижная часть биметаллических пластин начнет изгибаться и приведет в действие спусковой механизм теплового реле.

После срабатывания теплового реле нужно подождать определенное время, пока не остынут биметаллические пластины и не разогнутся в нормальное положение. Да и включать сразу же электродвигатель в сеть после срабатывания теплового реле совершенно нецелесообразно, ведь в первую очередь нужно определить причину и устранить ее.

P.S. Пожалуй на этом я закончу статью о тепловом реле LR2 D1314 от фирмы «Schneider Electric». В следующих статьях я расскажу Вам как правильно выбрать тепловое реле, а также покажу как его настроить и проверить на стенде. Если у Вас имеются вопросы по материалу статьи, то готов выслушать Вас — форма комментариев всегда открыта.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


виды, основные параметры и сфера использования

Использование тепловых реле позволяет защитить электрические двигатели от токовой перегрузки: при превышении определенных параметров они отключают подачу электроэнергии.

При перегрузке в цепи происходит значительное повышение температуры. В некоторых случаях это может стать причиной неисправности или поломки оборудования. Применение тепловых реле дает возможность значительно продлить период эксплуатации аппаратуры, так как обеспечиваются нормальные условия для его функционирования.

Стоимость устройств варьируется в широком диапазоне. Во многом она зависит от особенностей эксплуатации, назначения и вида теплового реле. Например, РТЛ. Обеспечивают защиту электрических моторов от возможных перегрузок, исключают вероятность заклинивания ротора, перекоса фаз и затяжного пуска.

Цены на тепловые реле также зависят от того, какими технико-эксплуатационными характеристиками они обладают.

Основные параметры тепловых реле:

  1. Номинальный ток. При определенном значении ТР не срабатывает в течение длительного промежутка времени. В то же время превышение лимита не приводит к незамедлительному отключению цепи. Например, если значение больше номинального на 20 %, то ТР сработает примерно через 20-30 минут.
  2. Номинальное напряжение. Обычно бытовые модели предназначены для эксплуатации в однофазных сетях переменного тока (220 вольт и 50 Гц). При этом выпускаются и промышленные тепловые реле, которые могут быть рассчитаны на использование в трехфазных сетях.
  3. Эксплуатационные условия. Категория размещения тепловых реле определяется в соответствии с нормами ГОСТ 15150. Стандарт описывает возможные температурные значения и уровень влажности, а также устойчивость прибора к вибрациям, ударам, взрывоопасным газам.
  4. Граница срабатывания теплового реле.
  5. Количество и вид дополнительных контактов управления.
  6. Чувствительность к перекосу фаз.

ВИДЫ ТЕПЛОВЫХ РЕЛЕ, ИХ ПРИНЦИП ДЕЙСТВИЯ И СФЕРА ПРИМЕНЕНИЯ

Область применения такого оборудования — цеха промышленных предприятий, ремонтные мастерские, некоторые объекты сельского и коммунального хозяйства. Внедрение этих устройств позволяет защищать электроприводы от перегрузок.

Принцип действия реле основан на способности электрического тока повышать температуру проводника при прохождении через него.

Любой материал при нагреве увеличивает свой объем, но по-разному. Если нагреть две жестко соединенные пластины из разных металлов, то они деформируются. Движение передается на механическую защелку выключателя, который срабатывает и разъединяет электрические контакты.

Как правило, в тепловом реле используют 2 биметаллические пластины. Чаще всего это инвар, а также немагнитная или хромоникелевая сталь, имеющие разные коэффициенты расширения. Там, где пластины прилегают друг к другу, они жестко закрепляются путем штамповки, горячей прокатки или сварки. Когда происходит нагревание неподвижной части закрепленной пластины, она изгибается, что и приводит к срабатыванию — взаимодействию с контактным блоком реле.

Однако нагревание может происходить двумя способами. Например, тепло выделяется при прохождении через биметаллическую часть нагрузочного тока. Кроме того, нагрев возможен благодаря специальному нагревателю, также обтекаемому током нагрузки. Наиболее эффективно тепловое реле работает при комбинировании двух способов нагревания.

Разновидности применяемых в промышленности тепловых реле:

  • РТЛ;
  • РТТ;
  • ТРН;
  • РТП и др.

Серия РТЛ — устройства для защиты электродвигателей от длительных перегрузок или выпадения одной из фаз. Они применяются как в комплекте с пускателями типа ПМЛ, так и отдельно.

РТТ — тепловые реле для защиты промышленных асинхронных электромоторов (380 V) с короткозамкнутым ротором от затяжных перегрузок. Они также реагируют на выпадение фазы, иногда встраиваются в пускатели типа ПМА.

Серия ТРН — это двухфазные тепловые реле промышленного назначения. Они применяются в комплекте с магнитными пускателями и выполняют функцию защиты асинхронных электродвигателей от перегрузки.

РТП — тепловые реле с комбинированной системой нагрева биметаллической пластины. Конструкция устройства обеспечивает плавную ручную настройку тока срабатывания. Возврат якоря реле в исходное положение осуществляется двумя способами:

  • вручную, посредством кнопки;
  • автоматически, после остывания биметаллической пластины.

Особенности установки теплового реле

Обычно монтаж производится вместе с магнитным пускателем, который обеспечивает подключение и запуск электродвигателя. Некоторые тепловые реле устанавливаются как самостоятельные приборы на DIN-рейку либо на монтажные панели (ТРН или РТТ). Причем если у реле ТРН есть лишь пара входящих подключений, то фаз все равно 3.

Отключенный фазный провод выводится с пускателя к двигателю в обход устройства. Изменение тока будет происходить пропорционально во всех фазах, в результате чего достаточно контролировать только две из них.

Возможно подключение теплового реле и с помощью токовых трансформаторов, что целесообразно при использовании мощных моторов. Как бы там ни было, важно избегать ошибок при установке, например, нельзя подключать реле с параметрами, не соответствующими характеристикам электродвигателя.

Технические характеристики тепловых реле:
Номинальное напряжение переменного тока, В 660
Частота переменного тока, Гц 50 (60)
Время срабатывания при токе 1,2 Iном, мин 20
Время ручного возврата, мин, не менее 1,5
Время срабатывания при нагрузке 6-кратным Iном, с РТЛ-1000 4,5 . .. 9,0
РТЛ-2000 4,5 … 12,0
Термическая стойкость реле, с, при нагрузке 18-кратным Iном на ток: до 10А 0,5
свыше 10А 1,0
Тип реле Диапазон регулирова-ния номинального тока несрабатывания, А Мощность, потребляемая одним полюсом реле, Вт Тип реле Диапазон регулирова-ния номинального тока несрабатывания, А Мощность, потребляемая одним полюсом реле, Вт
Номинальный ток 25А
РТЛ-1001 0,10 … 0,17 2,05 РТЛ-1008 2,40 … 4,00 1,87
РТЛ-1002 0,16 . .. 0,26 2,03 РТЛ-1010 3,80 … 6,00 1,84
РТЛ-1003 0,24 … 0,40 1,97 РТЛ-1012 5,50 … 8,00 1,68
РТЛ-1004 0,38 … 0,65 1,99 РТЛ-1014 7,00 … 10,0 1,75
РТЛ-1005 0,61 … 1,00 1,8 РТЛ-1016 9,50 … 14,0 2,5
РТЛ-1006 0,95 … 1,6 1,8 РТЛ-1021 13,0 … 19,0 2,75
РТЛ-1007 1,50 … 2,60 1,8 РТЛ-1022 18,0 … 25,0 2,8
Номинальный ток 80А
РТЛ-2053 23 . .. 32 2,43 РТЛ-2059 47 … 64 3,69
РТЛ-2055 30 … 41 3,03 РТЛ-2061 54 … 74 4,38
РТЛ-2057 38 … 52 3,3 РТЛ-2063 63 … 86 5,62

КАК ПРАВИЛЬНО ВЫБРАТЬ НУЖНОЕ ТЕПЛОВОЕ РЕЛЕ

Для правильного выбора модели теплового реле нужно ориентироваться на мощностные параметры защищаемого электродвигателя. Основные характеристики устройства отображаются в условном обозначении. В маркировке теплового реле в обязательном порядке присутствуют следующие данные:

  • диапазон токов установки;
  • климатическое исполнение;
  • режим возврата теплового реле (ручной или автоматический).

При выборе теплового реле рекомендуем учитывать и такие аспекты:

  • некоторые разновидности имеют функцию недогрузки, позволяющую выявить уменьшение тока в цепи;
  • устройства могут иметь опцию компенсации температуры внешней среды — такие считаются самыми удобными и надежными;
  • выпускаются приборы, дополненные световыми индикаторами. Датчики или светодиоды отображают сигналы состояния и включения.

Тепловое реле | Electric-Blogger.ru

2016-07-01 Статьи  

Тепловое реле, или как его еще называют реле перегрузки — это коммутационное устройство, предназначенное для защиты электродвигателей от токовой перегрузки и в случае обрыва фазы. При превышении потребляемого двигателем тока нагрузки тепловое реле разомкнет цепь, отключит магнитный пускатель, тем самым защитив двигатель.

Тепловое реле не предназначено для защиты от короткого замыкания, поэтому в цепь питания перед магнитным пускателем устанавливают автоматический выключатель.

Принцип работы теплового реле

Принцип действия тепловых реле основан на тепловом действии тока, нагревающего биметаллическую пластину, состоящую из двух пластин, которые сварены из металлов с разными коэффициентами теплового расширения. При воздействии высокой температуры биметаллическая пластина изгибается в сторону металла с меньшим коэффициентом расширения. Достигнув определённой температуры, пластина давит на защёлку расцепителя и под действием пружины происходит размыкание подвижных контактов реле и следовательно размыкание всей электрической цепи.

Если реле находится в режиме автоматического включения, то после остывания биметаллического элемента исполнительный механизм и подвижные контакты реле вернутся в исходное положение. При этом электрическая цепь восстановится и контактор будет готов к работе. Если же реле находится в ручном режиме, то после каждого срабатывания перевод реле в исходное положение должен осуществляться ручным воздействием.

Выбирая тепловое реле, надо исходить из номинального тока нагрузки плюс небольшой запас. Рекомендуемое превышение тока срабатывания защиты составляет 5% — 20% от номинального тока. Например, если на шильде электродвигателя указан ток 16А, то выбираем тепловое реле с запасом примерно на 18-20А.

Таблица по выбору тепловых реле РТИ

Устройство и подключение теплового реле

На примере РТИ 1312 покажу устройство теплового реле.

РТИ1312 подключается к контактору непосредственно своими штыревыми контактами.

В зависимости от величины и типа пускателей первый и второй контакты теплового реле могут регулироваться вправо-влево. Сбоку на наклейке указано, какой тип контакторов подходит для данного реле.

В зависимости от величины протекающего тока в реле предусмотрена регулировка уставки срабатывания по току с помощью поворотного регулятора, расположенного на передней панели реле. Необходимый ток уставки выставляется вращением регулятора до совмещения нужного значения тока на шкале с риской на корпусе.

Также на панели управления расположена кнопка «TEST»,имитирующая срабатывание защиты реле и проверки его работоспособности. Выступающая красная кнопка «STOP»предназначена для принудительного размыкания нормально-замкнутого контакта NC. При этом питание на катушке контактора пропадает и нагрузка отключается.

Электротепловое реле может работать в ручном или автоматическом режиме. Режим работы реле задается поворотным переключателем «RESET». При автоматическом режиме переключатель утоплен и при срабатывании теплового реле оно автоматически включится после остывания биметаллической пластины. Для перевода реле в ручной режим необходимо повернуть переключатель против часовой стрелки.

Автоматический режим

Ручной режим

После того, как тепловое реле настроено, его можно закрыть прозрачной защитной крышкой и при необходимости опломбировать. Для этого на передней панели и крышке имеются специальные проушины.

Электрическая схема реле РТИ

Входное напряжение подходит на контакты 1,3,5, а выходное напряжение на нагрузку поступает с контактов 2, 4, 6. Кнопки «TEST» и «RESET» меняют положение подвижных контактов реле, а кнопкой «STOP» меняется положение только нормально-замкнутого контакта (95 — 96).

Нормально-замкнутые контакты применяются в схемах управления электродвигателями через магнитный пускатель, а нормально-разомкнутые контакты — в основном в цепях сигнализации, например для вывода световой индикации на панель оператора.

Схема подключения нереверсивного магнитного пускателя с тепловым реле

Типичная схема подключения нереверсивного пускателя с тепловым реле выглядит так:

Подробнее о работе данной схемы вы можете прочитать в статье Магнитный пускатель, здесь же я хочу остановиться только на подключении теплового реле. Как видно из схемы на силовые контакты теплового реле подключаются только две фазы, а третья идет напрямую на двигатель. В современных тепловых реле задействованы все три фазы. Также используется дополнительный нормально-замкнутый контакт реле. При перегрузки двигателя он разомкнется и разорвет цепь питания катушки контактора.

При срабатывании теплового реле не стоит сразу же пытаться включать его снова, необходимо выждать время пока биметаллические пластины не остынут. Кроме того стоит определить причину срабатывания — проверить всю схему подключения, подтянуть контакты, проверить температуру двигателя, потребление тока по каждой фазе двигателя.

Как подключить тепловое реле к двигателю

17 Дек 2014г | Раздел: Электрика

Здравствуйте, уважаемые читатели сайта sesaga.ru. В предыдущей статье мы с Вами рассмотрели принципиальные схемы включения магнитного пускателя, обеспечивающие реверс вращения электродвигателя.

Продолжаем знакомиться с магнитным пускателем и сегодня рассмотрим типовые схемы подключения электротеплового реле типа РТИ, которое предназначено для защиты от перегрева обмоток электродвигателя при токовых перегрузках.

1. Устройство и работа электротеплового реле.

Электротепловое реле работает в комплекте с магнитным пускателем. Своими медными штыревыми контактами реле подключается к выходным силовым контактам пускателя. Электродвигатель, соответственно, подключают к выходным контактам электротеплового реле.

Внутри теплового реле находятся три биметаллические пластины, каждая из которых сварена из двух металлов, имеющих различный коэффициент теплового расширения. Пластины через общее «коромысло» взаимодействуют с механизмом подвижной системы, которая связана с дополнительными контактами, участвующими в схеме защиты электродвигателя:

1. Нормально-замкнутый NC (95 – 96) используют в схемах управления пускателем;
2. Нормально-разомкнутый NO (97 – 98) применяют в схемах сигнализации.

Принцип действия теплового реле основан на деформации биметаллической пластины при ее нагреве проходящим током.

Под действием протекающего тока биметаллическая пластина нагревается и прогибается в сторону металла, имеющего меньший коэффициент теплового расширения. Чем больший ток будет протекать через пластину, тем сильнее она будет греться и прогибаться, тем быстрее сработает защита и отключит нагрузку.

Допустим, что электродвигатель подключен через тепловое реле и работает в нормальном режиме. В первый момент времени работы электродвигателя через пластины течет номинальный ток нагрузки и они нагреваются до рабочей температуры, которая не вызывает их изгиб.

По какой-то причине ток нагрузки электродвигателя стал увеличиваться и через пластины потек ток выше номинального. Пластины начнут сильнее греться и прогибаться, что приведет в движение подвижную систему и она, воздействуя на дополнительные контакты реле (95 – 96), обесточит магнитный пускатель. По мере остывания пластины вернутся в исходное положение и контакты реле (95 – 96) замкнутся. Магнитный пускатель опять будет готов к запуску электродвигателя.

В зависимости от величины протекающего тока в реле предусмотрена уставка срабатывания по току, влияющая на силу изгиба пластины и регулирующаяся поворотным регулятором, расположенным на панели управления реле.

Помимо поворотного регулятора на панели управления расположена кнопка «TEST», предназначенная для имитации срабатывания защиты реле и проверки его работоспособности до включения в схему.

«Индикатор» информирует о текущем состоянии реле.

Кнопкой «STOP» обесточивается магнитный пускатель, но как в случае с кнопкой «TEST», контакты (97 – 98) не замыкаются, а остаются в разомкнутом состоянии. И когда Вы будете задействовать эти контакты в схеме сигнализации, то учитывайте этот момент.

Электротепловое реле может работать в ручном или автоматическом режиме (по умолчанию стоит автоматический режим).

Для перевода в ручной режим необходимо повернуть поворотную кнопку «RESET» против часовой стрелки, при этом кнопка слегка приподнимается.

Предположим, что сработало реле и своими контактами обесточило пускатель.
При работе в автоматическом режиме после остывания биметаллических пластин контакты (95 — 96) и (97 — 98) автоматически перейдут в исходное положение, тогда как в ручном режиме перевод контактов в исходное положение осуществляется нажатием кнопки «RESET».

Кроме защиты эл. двигателя от перегрузок по току, реле обеспечивает защиту и в случае обрыва питающей фазы. Например. При обрыве одной из фаз, электродвигатель, работая на оставшихся двух фазах, станет потреблять больше тока, отчего биметаллические пластины нагреются и реле сработает.

Однако электротепловое реле не способно защитить двигатель от токов короткого замыкания и само нуждается в защите от подобных токов. Поэтому при установке тепловых реле необходимо устанавливать в цепь питания электродвигателя автоматические выключатели, защищающие их от токов короткого замыкания.

При выборе реле обращают внимание на номинальный ток нагрузки электродвигателя, который будет защищать реле. В инструкции по эксплуатации, идущей в коробке, есть таблица, по которой выбирается тепловое реле для конкретной нагрузки:

Например.
Реле РТИ-1302 имеет предел регулировки тока уставки от 0,16 до 0,25 Ампер. Значит, нагрузку для реле следует выбирать с номинальным током около 0,2 А или 200 mA.

2.

Принципиальные схемы включения электротеплового реле.

В схеме с тепловым реле используют нормально-замкнутый контакт реле КК1.1 в цепи управления пускателем, и три силовых контакта КК1, через которые подается питание на электродвигатель.

При включении автоматического выключателя QF1 фаза «А», питающая цепи управления, через кнопку SB1 «Стоп» поступает на контакт №3 кнопки SB2 «Пуск», вспомогательный контакт 13НО пускателя КМ1, и остается дежурить на этих контактах. Схема готова к работе.

При нажатии на кнопку SB2 фаза через нормально-замкнутый контакт КК1.1 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его все нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват. При замыкании силовых контактов КМ1 фазы «А», «В», «С» через контакты теплового реле КК1 поступают на обмотки электродвигателя и двигатель начинает вращение.

При увеличении тока нагрузки через силовые контакты термореле КК1, реле сработает, контакт КК1.1 разомкнется и пускатель КМ1 обесточится.

Если возникнет необходимость в простой остановке двигателя, то достаточно будет нажать на кнопку «Стоп». Контакты кнопки разорвутся, фаза прервется и пускатель обесточится.

На фотографиях ниже показана часть монтажной схемы цепей управления:

Следующая принципиальная схема аналогична первой и отличается лишь тем, что нормально-замкнутый контакт термореле (95 – 96) разрывает ноль пускателя. Именно эта схема получила наибольшее распространение из-за удобства и экономичности монтажа: ноль сразу заводят на контакт термореле, а со второго контакта реле бросают перемычку на катушку пускателя.

При срабатывании термореле контакт КК1.1 размыкается, «ноль» разрывается и пускатель обесточивается.

И в заключении рассмотрим подключение электротеплового реле в реверсивной схеме управления пускателем.

От типовой схемы она, как и схема с одним пускателем, отличается лишь наличием нормально-замкнутого контакта реле КК1.1 в цепи управления, и тремя силовыми контактами КК1, через которые запитывается электродвигатель.

При срабатывании защиты контакты КК1.1 разрываются и отключают «ноль». Работающий пускатель обесточивается и двигатель останавливается. При возникновении необходимости в простой остановке двигателя достаточно нажать на кнопку «Стоп».

Вот и подошел к логическому завершению рассказ о магнитном пускателе.
Понятно, что только одних теоретических знаний мало. Но если Вы будете практиковаться, то сможете собрать любую схему с применением магнитного пускателя.

И уже по сложившейся традиции небольшой видеоролик о применении электротеплового реле.

Реле тепловое устанавливается для недопущения воздействия на электродвигатели от значительных и продолжительных токовых перегрузок, образующихся при обрыве одной из фаз либо перегрузки вала. Также при помощи ТР осуществляется защита обмотки от последующего повреждения после междувиткового замыкания. Читайте также статью ⇒ Реле напряжения.

Что такое тепловое реле?

Реле называется тепловым из-за его принципа действия, во многом подобного на принцип работы выключателя-автомата, в котором биметаллические пластины, нагретые электротоком, выполняют разрыв цепи и давят на механизм спуска.

Так как тепловое реле в схемах требуется подключать за магнитным пускателем, отсутствует необходимость дублирования функции контактора после размыкания цепей в аварийных случаях. Выбор в пользу такой защиты позволяет достичь существенной экономии материала для силовых контактных групп. Ведь гораздо проще коммутировать малые токи единой управляющей цепи, чем разрывать сразу три контакта под высокой токовой нагрузкой.

Совет №1: При подключении прибора следует помнить, что тепловым реле силовые цепи не разрываются напрямую, им подается управляющий сигнал при повышении нагрузок.

Обычно в конструкции тепловых реле предусмотрено наличие двух контактов:

  • нормально замкнутого;
  • разомкнутого в нормальном положении.

После сработки реле оба этих контакта одновременно изменяют сове положение.

Устройство и виды

Реле тепловые выпускаются нескольких типов, для каждого из них характерны свои конструктивные особенности и область использования. Основными типами являются следующие реле:

РТЛ представляют собой 3-х фазные устройства, предназначенные для защиты электродвигателей от перегрузок, заклинивания ротора, продолжительного пуска, фазного перекоса. Устройства ставятся на клеммные контакты пускателя ПМЛ. Могут самостоятельно работать как защитный прибор с клеммами типа КРЛ.

Реле типа РТТ — также трехфазное устройство, обеспечивающее защиту короткозамкнутых двигателей от затяжных пусков, заклинивания, токовых перегрузок, иных, не менее опасных аварийных ситуаций. Благодаря особенностям конструкции реле крепятся к корпусу магнитных пускателей типов ПМА и ПМЕ, а также в качестве отдельного устройства на специальной панели.

Трехфазные реле РТИ используются для защиты электромотора от перегрузок, перекосов фаз, стопорения и других тяжелых режимов функционирования. Крепятся к корпусу пускателей КМТ и КМИ.

ТРН — тепловой 2-х фазное реле, посредством которого осуществляется контроль за пуском и работой приборов. Оснащается механизмом ручного возврата клемм в первоначальное положение, при этом температура среды на эффективность функционирования реле не влияет.

Реле перезагрузки тепловое РТЛ с уровнем защиты IP20 на номинальный ток 100А

Твердотельные реле — 3-х фазные устройства, конструкция которого не предусматривает наличия подвижных частей. Реле также не восприимчивы к воздействию окружающей среды, применяются в местах с риском разрыва.

В реле типа РТК контроль температуры выполняется посредством щупа, размещенного в корпусе прибора.

Термореле типа РТЭ состоит из проводника, изготовленного из специального сплава. При достижении температуры порового значения проводник плавится, тем самым разрывая цепь. Встраивается в конструкцию электромотора. Читайте также статью ⇒Как работает реле контроля напряжения?

Как выбрать реле по характеристикам?

При подборе реле следует изначально разобраться в его основных параметрах:

  • значению номинального тока;
  • диапазона регулирования тока сработки;
  • сетевого напряжения;
  • тип и количество клемм;
  • расчетной мощности подключаемого устройства;
  • минимальной границы сработки;
  • класса устройства;
  • реакции на фазный перекос.

Номинальный ток реле должен быть идентичным указанному на электромоторе, к которому устройство будет подсоединяться. Величину тока двигателя можно увидеть на планке, размещенной на его крышке или корпусе.

Сетевое напряжение для реле должно быть равным значению сети, в которой оно будет располагаться — 220 либо 380/400 В. Также значение имеет тип и число клемм, так как в контакторах различных типов реализованы различные способы подсоединения.

Реле также должно выдерживать мощность электромотора для недопущения ложной сработки. Для двигателей трехфазных следует подбирать реле, обеспечивающее дополнительную защиту от фазного перекоса.

Особенности подключения

Обычно монтаж теплового реле осуществляется вместе с магнитным пускателем, выполняющим соединение и запуск электродвигателя. Выпускаются также и устройства, устанавливающиеся как самостоятельный прибор на DIN-рейке либо на монтажной панели — ТРН или РТТ.

Если у реле ТРН присутствует лишь пара входящих подключений, фаз в нем все равно три. Отключенный фазный провод выходит с пускателя к двигателю, минуя устройство. Изменение тока в электромоторе происходит пропорционально во всех фазах, потому достаточно выполнять контроль только за двумя из них.

Устройства снабжаются двумя группами клемм в нормально открытой и нормально замкнутой группах.

Структурная схема подключения теплового реле согласно требований ГОСТ с обозначениями

Ниже представлена схема управления, отключающая мотор от сети при возникновении нештатной ситуации от обрыва фазы либо перегрузки. Вращение двигателя осуществляется в одну сторону, управление включением выполняется с одного места посредством кнопок ПУСК и СТОП.

Включение реле в 3-х фазную сеть, управление выполняется через кнопки Стоп и Старт

Автомат подключен и к верхним контактом поступает напряжение. После нажима кнопки ПУСК происходит подключение катушки пускателя А1 и А2 к сети L1 и L2. В представленной схеме установлен пускатель, катушка которого рассчитана на 380 В.

При включении пускателя катушкой происходит замыкание дополнительных контактов 13 и 14. Кнопку ПУСК теперь можно отпустить, но контактор останется включенным. Такая схема получила название «Пуск с самоподхватом».

Для отключения электромотора от сети нужно обесточить катушку. Проследив на представленной схеме направление течения тока, можно заметить, что отключение произойдет при нажиме кнопки СТОП либо размыкании клемм теплового реле (на схеме прибор обозначен прямоугольником красного цвета).

Таким образом, при возникновении нештатной ситуации при сработке реле разрывается цепь, пускатель снимается с самоподхвата, обесточивая при этом электромотор. Перед повторным пуском после сработки необходимо выполнить осмотр механизма для выявления причин внепланового отключения и не включать вновь до их устранения.

Зачастую причиной сработки служит повышенная температура внешнего воздуха — такой момент также следует учесть при настройке механизмов и их эксплуатации.

Совет№2: В домашних хозяйствах область использования тепловых реле не ограничивается лишь станками и иными механизмами собственного производства. Не лишним было бы применять устройства для установки в системах, контролирующих ток в насосах отопительной системы.

Работа циркуляционного агрегата выполняется весьма специфическая. Дело в том, что на улитке и лопастях со временем появляется известковый налет, служащий одной из причин заклинивания и выхода из строя электродвигателя. Применяя приведенные схемы подключения можно собственными силами собрать контролирующий блок и блок защиты. В питающей цепи достаточно выставить номинал теплового реле и подключить контакты.

Помимо этого, не менее интересна схема подсоединения теплового реле посредством токовых трансформаторов, предназначенная для применения при подключении мощных двигателей, например, поливочных систем крупных фермерских хозяйств. При добавлении в питающую цепь трансформатор следует иметь в виду параметр трансформации, равный, например, 60/5. Этот параметр означает, что при поступлении через первичную обмотку тока в 60 А, на вторичной обмотке его величина будет равна 5 А. Использование такой схемы позволит сократить расходы на приобретение комплектующих без снижения эксплуатационных характеристик. Читайте также статью ⇒ Подключение указательное реле.

Схема, при помощи которой осуществляется контроль работы посредством трансформаторов тока

Красным цветом на схеме указаны трансформаторы тока, подключающиеся к амперметру и реле контроля, для визуального представления о проходящих в цепи процессов. Подключение трансформатора выполняется по схеме «звездочка» с одной общей точкой.

Обзор моделей

В таблице приведен краткий сравнительный обзор моделей тепловых реле с указанием основных параметров и примерной стоимости.

Техника, которая оснащается двигателями нуждается в защите. Для этих целей в нее устанавливается система принудительного охлаждения, чтобы обмотки не превышали допустимую температуру. Иногда ее бывает недостаточно, поэтому дополнительно может быть смонтировано тепловое реле. В самоделках его приходится монтировать своими руками. Поэтому важно знать схему подключения теплового реле.

Принцип работы теплового реле


В некоторых случаях тепловое реле может быть встроено в обмотки двигателя. Но чаще всего оно применяется в паре с магнитным пускателем. Это дает возможность продлить срок службы теплового реле. Вся нагрузка по запуску ложится на контактор. В таком случае тепловой модуль имеет медные контакты, которые подключаются непосредственно к силовым входам пускателя. Проводники от двигателя подводятся к тепловому реле. Если говорить просто, то оно является промежуточным звеном, которое анализирует проходящий через него ток от пускателя к двигателю.

В основе теплового модуля лежат биметаллические пластины. Это означает, что они изготавливаются из двух различных металлов. Каждый из них имеет свой коэффициент расширения при воздействии температуры. Пластины через переходник воздействуют на подвижный механизм, который подключен к контактам, уходящим к электродвигателю. При этом контакты могут находиться в двух положениях:

  • нормально замкнутом;
  • нормально разомкнутом.

Первый вид подходит для управления пускателем двигателя, а второй используется для систем сигнализации. Тепловое реле построено на принципе тепловой деформации биметаллических пластин. Как только через них начинает протекать ток, их температура начинает повышаться. Чем с большей силой протекает ток, тем выше поднимается температура пластин теплового модуля. При этом происходит смещение пластин теплового модуля в сторону металла с меньшим коэффициентом теплового расширения. При этом происходит замыкание или размыкание контактов и остановка двигателя.

Важно понимать, что пластины теплового реле рассчитаны на определенный номинальный ток. Это означает, что нагрев до некоторой температуры, не будет вызывать деформации пластин. Если из-за увеличения нагрузки на двигатель произошло срабатывания теплового модуля и отключение, то по истечении определенного промежутка времени, пластины возвращаются в свое естественное положение и контакты снова замыкаются или размыкаются, подавая сигнал на пускатель или другой прибор. В некоторых видах реле доступна регулировка силы тока, которая должна протекать через него. Для этого выносится отдельный рычаг, которым можно выбрать значение по шкале.

Кроме регулятора силы тока, на поверхности может также находиться кнопка с надписью Test . Она позволяет проверить тепловое реле на работоспособность. Ее необходимо нажат при работающем двигателе. Если при этом произошел останов, тогда все подключено и функционирует правильно. Под небольшой пластинкой из оргстекла скрывается индикатор состояния теплового реле. Если это механический вариант, то в нем можно увидеть полоску двух цветов в зависимости от происходящих процессов. На корпусе рядом с регулятором силы тока располагается кнопка Stop . Она в отличие от кнопки Test отключает магнитный пускатель, но контакты 97 и 98 остаются разомкнутыми, а значит сигнализация не срабатывает.

Функционировать тепловое реле может в ручном и автоматическом режиме. С завода установлен второй, что важно учитывать при подключении. Для перевода на ручное управление, необходимо задействовать кнопку Reset . Ее нужно повернуть против часовой стрелки, чтобы она приподнялась над корпусом. Разница между режимами заключается в том, что в автоматическом после срабатывания защиты, реле вернется к нормальному состоянию после полного остывания контактов. В ручном режиме это можно сделать с использованием клавиши Reset . Она практически моментально возвращает контактные площадки в нормальное положение.

Тепловое реле имеет и дополнительный функционал, который оберегает двигатель не только от перегрузок по току, но и при отключении или обрыве питающей сети или фазы. Это особенно актуально для трехфазных двигателей. Бывает, что одна фаза отгорает или с ней происходят другие неполадки. В этом случае металлические пластины реле, к которым поступают другие две фазы начинают пропускать через себя больший ток, что приводит к перегреву и отключению. Это необходимо для защиты двух оставшихся фаз, а также двигателя. При худшем раскладе такой сценарий может привести к выходу из строя двигателя, а также подводящих проводов.

Характеристики реле


При выборе ТР необходимо ориентироваться в его характеристиках. Среди заявленных могут быть:

  • номинальный ток;
  • разброс регулировки тока срабатывания;
  • напряжение сети;
  • вид и количество контактов;
  • расчетная мощность подключаемого прибора;
  • минимальный порог срабатывания;
  • класс прибора;
  • реакция на перекос фаз.

Номинальный ток ТР должен соответствовать тому, который указан на двигателе, к которому будет происходить подключение. Узнать значение для двигателя можно на шильдике, который находится на крышке или на корпусе. Напряжение сети должно строго соответствовать той, где будет применяться. Это может быть 220 или 380/400 вольт. Количество и тип контактов также имеют значение, т. к. различные контакторы имеют различное подключение. ТР должно выдерживать мощность двигателя, чтобы не происходило ложного срабатывания. Для трехфазных двигателей лучше брать ТР, которые обеспечивают дополнительную защиту при перекосе фаз.

Процесс подключения


Ниже приведена схема подключения ТР с обозначениями. На ней можно найти сокращение КК1.1. Оно обозначает контакт, который в нормальном состоянии является замкнутым. Силовые контакты, через которые ток поступает на двигатель обозначены сокращением KK1. Автоматический выключатель, который находится в ТР обозначен как QF1. При его задействовании происходит подача питания по фазам. Фаза 1 управляется отдельной клавишей, которая обозначена маркировкой SB1. Она выполняет аварийную ручную остановку в случае возникновения непредвиденной ситуации. От нее контакту уходит на клавишу, которая обеспечивает пуск и обозначена сокращением SB2. Дополнительный контакт, который отходит от клавиши пуска, находится в дежурном состоянии. Когда выполняется запуск, тогда ток от фазы через контакт поступает на магнитный пускатель через катушку, которая обозначается KM1. Происходит срабатывание пускателя. При этом те контакты, которые в нормальном положении являются разомкнутыми замыкаются и наоборот.

Когда замыкаются контакты, которые на схеме находятся под сокращением KM1, тогда происходит включение трех фаз, которые пускают ток через тепловое реле на обмотки двигателя, который включается в работу. Если сила тока будет расти, тогда из-за воздействия контактных площадок ТР под сокращением KK1 произойдет размыкание трех фаз и пускатель обесточивается, а соответственно останавливается и двигатель. Обычная остановка потребителя в принудительном режиме происходит посредством воздействия на клавишу SB1. Она разрывает первую фазу, которая прекратит подачу напряжения на пускатель и его контакты разомкнутся. Ниже на фото можно увидеть импровизированную схему подключения.

Есть еще одна возможная схема подключения этого ТР. Разница заключается в том, что контакт реле, который в нормальном состоянии является замкнутым при срабатывании разрывает не фазу, а ноль, который уходит на пускатель. Ее применяют чаще всего в силу экономичности при выполнении монтажных работ. В процессе нулевой контакт подводится к ТР, а с другого контакта монтируется перемычка на катушку, которая запускает контактор. При срабатывании защиты происходит размыкание нулевого провода, что приводит к отключению контактора и двигателя.

Реле может быть смонтировано в схему, где предусмотрено реверсивное движение двигателя. От схемы, которая была приведена выше различие заключается в том, что присутствует НЗ контакт, в реле, которое обозначено KK1.1.

Если реле срабатывает, тогда происходит разрыв нулевого провода контактами под обозначением KK1.1. Пускатель обесточивается и прекращает питания двигателя. В экстренной ситуации кнопка SB1 поможет быстро разорвать цепь питания, чтобы остановить двигатель. Видео о подключении ТР можно посмотреть ниже.

Резюме


Схемы, на которых будет изображаться принцип подключения реле к контактору, могут иметь другие буквенные или цифровые обозначения. Чаще всего их расшифровка приводится внизу, но принцип всегда остается одинаковым. Можно немного попрактиковаться, собрав всю схему с потребителем в виде лампочки или небольшого двигателя. С помощью тестовой клавиши можно будет отработать нестандартную ситуацию. Клавиши запуска и остановки позволят проверить работоспособность всей схемы. При этом стоит обязательно учитывать тип пускателя и то, в каком нормальном состоянии находятся его контакты. Если есть определенные сомнения, тогда лучше посоветоваться с электромонтажником, который имеет опыт в сборке таких схем.

Тепловое реле.

Тепловое реле.

Тепловое реле это устройство используемое для защиты двигателя от перегрузки. При увеличении нагрузки на валу двигателя ток в его обмотках увеличивается. При этом растет температура двигателя и возникает его перегрев. В результате перегрева двигателя нарушается изоляция обмоток статора и двигатель выходит из строя. Тепловые реле используются для предотвращения подобных ситуаций.

Тепловое реле включается в цепь питания двигателя последовательно с обмотками статора). Ток протекающий по обмоткам статора также протекает и через тепловое реле. Тепловое реле детектирует увеличение тока проходящего по обмоткам двигателя и формируют аварийный сигнал если повышенный ток протекает через обмотки в течении длительного времени. Управляющие контакты реле отключают двигатель или передают сигнал о неисправности (через световую или звуковую сигнализацию). Тепловое реле не реагирует на кратковременные увеличения тока (например при запуске электродвигателя).

Принцип работы.

Тепловые реле детектируют тепловой нагрев проводника при протекании по нему электрического тока. Чувствительным элементом теплового реле является биметаллическая пластина.  При нагреве она деформируется из-за того что отдельные части пластины расширяются не равномерно. Когда пластина деформируется происходит отключение (размыкание) управляющих (механических) контактов.
При протекании номинального тока через тепловое реле биметаллическая пластина также нагревается. Но этот нагрев незначителен и пластина практически не изгибается. При увеличении тока изгиб пластины увеличивается и происходит размыкание управляющих контактов.

Когда цепь разомкнута и ток через пластину не течет то она остывает и управляющие контакты возвращаются в исходное рабочее состояние. В некоторых конструкциях реле восстановления исходного состояния после  остывания пластины не происходит и контакты находятся в включенном состоянии. Для перевода сработавшего теплового реле в рабочее состояние необходимо нажать специальную кнопку на его корпусе.

Схема подключения.

Тепловое реле на электрических схемах обозначается следующим образом:

Силовые контакты КК1.1 подключаются последовательно с обмотками двигателя. Сигнальные контакты КК1.2 (Н.О.) и КК1.3 (Н.З.) используются для индикации состояния реле. Силовые контакты реле (KK1.1) никогда не размыкаются. При срабатывании теплового реле переключаются только сигнальные контакты реле. Силовые контакты через которые протекает рабочий ток остаются подключенными. Для отключения нагрузки необходимо использовать внешние цепи. 


Распространенное заблуждение состоит в том что силовые контакты размыкаются при срабатывании реле. И в результате этого управляющие контакты оставляют не подключенными. В результате тепловое реле не отрабатывает (при перегреве).

Схема принципиальная.


 
Описание схемы:

Тепловое реле KK1.1 устанавливается последовательно обмоткам двигателя М. Во время работы двигателя контактор KM1 замкнут и ток протекает через силовые контакты KK1.1. Если ток двигателя превысит номинальный, то произойдет перегрев биметаллических пластин внутри теплового реле. Для срабатывания трехфазного реле достаточно перегрева (длительного превышения тока) по одной фазе. При срабатывании реле размыкается управляющий контакт KK1.2. Катушка контактора  КМ1 обесточивается и контакты KM1.1 размыкаются. Питающее напряжение отключается от двигателя, и он останавливается. Силовые контакты KK1.1 остаются подключенными (не размыкаются) после срабатывания теплового реле. Отключить двигатель можно только используя управляющие контакты, включив их в цепь питания катушки основного контактора.

С помощью контакта KK1.3 можно подключить индикатор, сигнализирующий о перегреве теплового реле. При срабатывании теплового реле контакт KK1.3 замкнется и загорится лампа HL1.

Что такое тепловые реле перегрузки и какие компоненты они защищают?

Тепло является основным фактором, влияющим на производительность и срок службы двигателя, и одним из основных источников нагрева двигателя является ток, протекающий через обмотки двигателя. Поскольку нагрев является неизбежным условием работы двигателя, важно защитить двигатель от перегрева или тепловой перегрузки.

В предыдущем посте мы описали несколько типов датчиков, которые могут напрямую измерять температуру обмоток двигателя.Но в некоторых случаях — особенно для асинхронных двигателей переменного тока — нагрев двигателя можно измерить косвенно с помощью тепловых реле перегрузки, которые определяют температуру двигателя, контролируя величину тока, подаваемого на двигатель.


Тепловые реле перегрузки подключаются последовательно с двигателем, поэтому ток, протекающий к двигателю, также проходит через реле перегрузки. Когда ток достигает или превышает заданный предел в течение определенного времени, реле активирует механизм, который размыкает один или несколько контактов, чтобы прервать прохождение тока к двигателю.Реле тепловой перегрузки классифицируются по классу срабатывания, который определяет время, в течение которого может произойти перегрузка, прежде чем реле сработает или отключится. Обычные классы поездки — 5, 10, 20 и 30 секунд.

Учет времени, а также тока важен для асинхронных двигателей переменного тока, потому что они потребляют значительно больше, чем их полный номинальный ток (часто 600 процентов или более) во время запуска. Таким образом, если реле немедленно сработает при превышении тока перегрузки, двигатель будет испытывать трудности с запуском.


Существует три типа тепловых реле перегрузки — биметаллические, эвтектические и электронные.

Биметаллические тепловые реле перегрузки (иногда называемые нагревательными элементами) изготовлены из двух металлов с разными коэффициентами теплового расширения, которые скреплены или соединены вместе. Обмотка, намотанная на биметаллическую полосу или размещенная рядом с ней, проводит ток.

В биметаллическом тепловом реле перегрузки нагрев из-за протекания тока заставляет биметаллическую полосу изгибаться в одну сторону, активируя механизм отключения.
Изображение предоставлено: Siemens

Поскольку ток, протекающий через реле (и, следовательно, через двигатель), нагревает биметаллическую полосу, два металла расширяются с разной скоростью, заставляя полосу изгибаться в сторону с более низким коэффициентом термическое расширение. Когда полоса изгибается, она приводит в действие нормально замкнутый (NC) контактор, заставляя его размыкаться и прекращая прохождение тока к двигателю. Как только биметаллическое реле остынет и металлические полосы вернутся в свое нормальное состояние, цепь автоматически сбрасывается, и двигатель можно перезапустить.

Эвтектические тепловые реле перегрузки используют эвтектический сплав (комбинация металлов, плавящихся и затвердевающих при определенной температуре), помещенные в трубку и подключенные к обмотке нагревателя. Ток питания двигателя протекает через обмотку нагревателя и нагревает сплав. Когда сплав достигает достаточной температуры, он быстро превращается в жидкость.

В эвтектическом реле тепловой перегрузки нагрев из-за протекания тока вызывает быстрое разжижение эвтектического сплава, активируя механическое устройство, которое размыкает реле.
Изображение предоставлено: Rockwell Automation

В твердом состоянии сплав удерживает на месте механическое устройство, например пружину или трещотку. Но когда сплав плавится, механическое устройство срабатывает, размыкая контакты перегрузки. Подобно биметаллической конструкции, эвтектическое реле тепловой перегрузки не может быть сброшено до тех пор, пока сплав не остынет и не вернется в исходное твердое состояние.

Электронные тепловые реле перегрузки более точны и надежны, чем конструкции нагревателей, и могут предоставлять данные для диагностики и профилактического обслуживания.
Изображение предоставлено: ABB

Электронные тепловые реле перегрузки измеряют ток электронным способом, а не полагаются на механизм нагревателя, и поэтому они нечувствительны к изменениям температуры окружающей среды. Они также менее склонны к «неприятным» или ложным срабатываниям. Электронные реле перегрузки могут предоставлять такие данные, как процент использования тепловой мощности (% TCU), процент ампер полной нагрузки (% FLA), время до отключения, текущий среднеквадратичный ток и ток замыкания на землю — информацию, которая может помочь операторам проводить диагностику. и предсказать, когда реле может сработать.

Электронные устройства также могут защищать двигатели от потери фазы (также называемой обрывом фазы), которая возникает, когда одна фаза тока равна нулю ампер, часто из-за короткого замыкания или перегорания предохранителя. Это заставляет двигатель потреблять чрезмерный ток на оставшихся двух фазах и приводит к значительному нагреву двигателя.


Тепловые реле перегрузки обычно являются частью пускателя двигателя, который включает реле перегрузки с контактами. Важно отметить, что тепловые реле перегрузки предназначены только для защиты двигателя от перегрева и не срабатывают при коротком замыкании, поэтому для защиты цепи необходимы дополнительные предохранители или автоматические выключатели.


Реле перегрузки | Что такое защита от перегрузки?

Введение в двигатели

Электродвигатели являются неотъемлемой частью промышленного оборудования, игрушек, транспортных средств и электронных устройств. Они предназначены для преобразования электрической энергии в механическую. Эти устройства могут питаться от источников переменного или постоянного тока. Воздуходувки, вентиляторы, компрессоры, краны, экструдеры и дробилки — это несколько важных устройств, оснащенных электродвигателями.

Что такое асинхронный двигатель?

Асинхронный двигатель, также называемый синхронным двигателем, является одним из основных типов электродвигателей переменного тока, используемых в коммерческих и промышленных средах. Эти двигатели оснащены обмотками Armortisseur и работают по принципу электромагнитной индукции. Электромагнитное поле в роторе создается вращающимся полем статора. Короче говоря, мощность передается на обмотку ротора от статора через индукцию. Существует два основных типа асинхронных двигателей
— однофазные асинхронные двигатели и трехфазные асинхронные двигатели.

Введение в трехфазные асинхронные двигатели

Это один из наиболее широко используемых типов электродвигателей; и является неотъемлемой частью почти 80% промышленных приложений. Его популярность обусловлена ​​прочной конструкцией, отличными рабочими характеристиками, регулировкой скорости и отсутствием коммутатора. Как и любой обычный асинхронный двигатель, этот двигатель также состоит из статора и ротора.

  • Статор: Это неподвижный элемент асинхронного двигателя.Статор представляет собой небольшую цилиндрическую раму, на которой находится цилиндрический сердечник ротора. Он имеет различные штамповки с прорезями для размещения трехфазных обмоток. Обмотки статора разделены на 120 градусов.
  • Ротор: Это вращающаяся часть двигателя. Ротор имеет многослойные цилиндрические пазы с медными или алюминиевыми проводниками, соединенными концами. Это вал двигателя.

Ротор трехфазного асинхронного двигателя классифицируется как ротор с фазной обмоткой или ротор с контактным кольцом и ротор с короткозамкнутым ротором.Среди этих двух ротор с короткозамкнутым ротором является одним из самых распространенных.

Асинхронные двигатели с короткозамкнутым ротором

Асинхронные двигатели, оснащенные ротором с короткозамкнутым ротором, известны как асинхронные двигатели с короткозамкнутым ротором. Они получили свое название, потому что ротор напоминает вращающуюся цилиндрическую «клетку», которую вы можете найти в клетке для домашней белки или хомяка. Эти двигатели доступны в размерах от долей лошадиных сил (л.с.) менее одного киловатта до 10 000 л.с. (десятки мегаватт).Такие факторы, как простота, прочная конструкция и постоянная скорость при различных размерах нагрузки, способствовали их популярности. Как и другие асинхронные двигатели, двигатель с короткозамкнутым ротором состоит из:

  • Ротор: Это деталь цилиндрической формы, установленная на валу. Он содержит продольно организованные токопроводящие шины. Стержни изготовлены из меди или алюминия и вставлены в канавки, которые соединяются на концах, образуя структуру, подобную клетке. Ротор имеет многослойный сердечник, который помогает избежать потерь мощности из-за гистерезиса и вихревых токов.Провода ротора перекошены, что помогает предотвратить зазубрины при запуске оборудования. Кроме того, этот перекос обеспечивает улучшенный коэффициент трансформации между ротором и статором.
  • Статор: Состоит из трехфазной обмотки вдоль сердечника. Статор помещен в металлический корпус. Обмотки статора организованы таким образом, что они расположены на расстоянии 120 градусов друг от друга в пространстве, и установлены на многослойном железном сердечнике. Этот железный сердечник обеспечивает путь сопротивления для потока, создаваемого токами переменного тока.

Что такое защита от перегрузки?

Когда двигатель потребляет избыточный ток, это называется перегрузкой. Это может вызвать перегрев двигателя и повредить обмотки двигателя. В связи с этим важно защитить двигатель, параллельную цепь двигателя и компоненты параллельной цепи двигателя от условий перегрузки. Реле перегрузки защищают двигатель, параллельную цепь двигателя и компоненты параллельной цепи двигателя от чрезмерного нагрева в условиях перегрузки.Реле перегрузки являются частью пускателя двигателя (блок контактора плюс реле перегрузки). Они защищают двигатель, контролируя ток, протекающий в цепи. Если ток поднимается выше определенного предела в течение определенного периода времени
, то реле перегрузки срабатывает, приводя в действие вспомогательный контакт, который прерывает цепь управления двигателем, обесточивая контактор. Это приводит к отключению питания двигателя. Без питания двигатель и его компоненты цепи не перегреваются и не выходят из строя.Реле перегрузки можно сбросить вручную, а некоторые реле перегрузки автоматически сбрасываются через определенный период времени. После этого мотор можно перезапустить.

Как работает реле перегрузки

Реле перегрузки подключается последовательно с двигателем, поэтому ток, который течет к двигателю во время работы двигателя, также проходит через реле перегрузки. Он сработает на определенном уровне, когда через него протекает избыточный ток. Это приводит к размыканию цепи между двигателем и источником питания.Реле перегрузки можно сбросить вручную или автоматически по истечении заданного времени. Двигатель можно перезапустить после выявления и устранения причины перегрузки.

Типы реле перегрузки

Биметаллическое реле перегрузки

Многие реле перегрузки содержат биметаллические элементы или биметаллические полосы, также называемые нагревательными элементами. Биметаллические ленты изготовлены из двух типов металлов: один с низким коэффициентом расширения, а другой с высоким коэффициентом расширения.Эти биметаллические полосы нагреваются за счет намотки на биметаллическую полосу, по которой проходит ток. Обе металлические полоски расширятся из-за тепла. Однако металл с высоким коэффициентом расширения будет расширяться больше по сравнению с металлом с низким коэффициентом расширения. Такое разное расширение биметаллических полос приводит к изгибу биметалла по направлению к металлу с низким коэффициентом расширения. Когда полоса изгибается, он приводит в действие механизм вспомогательных контактов и вызывает размыкание нормально замкнутого контакта реле перегрузки.В результате цепь катушки контактора прерывается. Количество выделяемого тепла можно рассчитать по закону нагрева Джоуля. Он выражается как H ∝ I2Rt.

  • I — ток перегрузки, протекающий через обмотку вокруг биметаллической ленты реле перегрузки.
  • R — электрическое сопротивление обмотки биметаллической ленты.
  • t — это период времени, в течение которого ток I протекает через обмотку вокруг биметаллической ленты.

Приведенное выше уравнение определяет, что тепло, выделяемое обмоткой, будет прямо пропорционально периоду времени прохождения максимального тока через обмотку. Другими словами, чем ниже ток, тем больше времени потребуется реле перегрузки для срабатывания, и чем выше ток, тем быстрее сработает реле перегрузки, фактически оно сработает намного быстрее, потому что работа реле является функцией текущий квадрат.

Биметаллические реле перегрузки часто используются, когда требуется автоматический сброс цепи, и происходит потому, что биметалл остыл и вернулся в исходное состояние (форму).Как только это произойдет, двигатель можно будет перезапустить. Если причина перегрузки не устранена, реле снова сработает и сбрасывается с заданными интервалами. При выборе реле перегрузки важно соблюдать осторожность, поскольку повторное отключение и сброс могут сократить механический срок службы реле и вызвать повреждение двигателя.

Во многих случаях электродвигатель устанавливается в месте с постоянной температурой окружающей среды, а реле перегрузки и пускатель электродвигателя могут быть установлены в другом месте, которое подвержено различным температурам окружающей среды.В таких приложениях точка срабатывания реле перегрузки может варьироваться в зависимости от нескольких факторов. Ток, протекающий через двигатель, и температура окружающего воздуха являются двумя факторами, которые могут вызвать преждевременное отключение. В таких случаях используются биметаллические реле перегрузки с компенсацией внешней среды. Реле этого типа имеют два типа биметаллических полос: компенсированная биметаллическая полоса и первичная нескомпенсированная биметаллическая полоса. При температуре окружающей среды обе эти полоски изгибаются одинаково, предотвращая ложное срабатывание реле перегрузки.Однако первичная биметаллическая полоса — единственная полоса, на которую влияет ток, протекающий через нагревательный элемент и двигатель. В случае перегрузки расцепитель будет задействован основной биметаллической полосой.

Эвтектическое реле перегрузки

Реле перегрузки этого типа состоит из обмотки нагревателя, механического механизма для активации отключающего механизма и эвтектического сплава. Эвтектический сплав — это комбинация двух или более материалов, которые затвердевают или плавятся при определенной известной температуре.

В реле перегрузки эвтектический сплав содержится в трубке, которая часто используется вместе с подпружиненным храповым колесом для активации отключающего механизма во время операций по перегрузке. Ток двигателя проходит через небольшую обмотку нагревателя. Во время перегрузки трубка из эвтектического сплава нагревается обмоткой нагревателя. Сплав плавится под действием тепла, освобождая храповое колесо и позволяя ему вращаться. Это действие инициирует размыкание замкнутых вспомогательных контактов в реле перегрузки.

Реле перегрузки Eutectic можно сбросить вручную только после срабатывания. Этот сброс обычно выполняется с помощью кнопки сброса, которая расположена на крышке реле. Нагреватель, установленный на реле, выбирается исходя из тока полной нагрузки двигателя.

Твердотельное реле перегрузки

Эти реле обычно называют электронными реле перегрузки. В отличие от биметаллических и эвтектических реле перегрузки, эти электронные реле перегрузки измеряют ток электронным способом.Хотя они доступны в различных исполнениях, они имеют общие особенности и преимущества. Безнагревная конструкция — одно из главных преимуществ этих реле. Такая конструкция помогает снизить затраты и трудозатраты на установку. Кроме того, конструкция без обогревателя нечувствительна к изменению температуры окружающей среды, что помогает свести к минимуму ложные срабатывания. Эти реле также обеспечивают защиту от потери фазы — более эффективно, чем реле перегрузки из биметаллических или эвтектических сплавов. Эти реле могут легко обнаружить обрыв фазы и задействовать вспомогательный контакт для размыкания цепи управления двигателем.Твердотельные реле перегрузки позволяют легко регулировать время срабатывания и уставки.

Срабатывание реле перегрузки

Время срабатывания реле перегрузки будет уменьшаться при увеличении тока. Эта функция нанесена на график обратной зависимости времени ниже и называется классом отключения. Класс отключения также указывает время, необходимое реле для размыкания в состоянии перегрузки.

Классы отключения 5, 10, 20 и 30 являются общими. Эти классы предполагают, что реле перегрузки сработает через 5, 10, 20 и 30 секунд.Это отключение обычно происходит, когда двигатель работает на 720% от своей полной нагрузки. Класс отключения 5 подходит для двигателей, требующих быстрого отключения, тогда как класс 10 обычно предпочтительнее для двигателей с низкой тепловой мощностью, таких как погружные насосы. Классы 10 и 20 используются для приложений общего назначения, тогда как класс 30 используется для нагрузок с высокой инерцией. Реле класса 30 помогают избежать ложных срабатываний.

Мы надеемся, что эта короткая статья дала вам хорошее базовое представление о реле перегрузки.Поищите другие информационные документы от c3controls на c3controls.com/blog.

Отказ от ответственности:
Содержимое, представленное в этом техническом документе, предназначено исключительно для общих информационных целей и предоставляется при том понимании, что авторы и издатели не участвуют в предоставлении технических или других профессиональных консультаций или услуг. Инженерная практика определяется обстоятельствами конкретного объекта, уникальными для каждого проекта. Следовательно, любое использование этой информации должно осуществляться только после консультации с квалифицированным и лицензированным специалистом, который может принять во внимание все соответствующие факторы и желаемые результаты.Информация в этом техническом документе была размещена с разумной тщательностью и вниманием. Однако возможно, что некоторая информация в этих официальных документах является неполной, неверной или неприменимой к определенным обстоятельствам или условиям. Мы не несем ответственности за прямые или косвенные убытки, возникшие в результате использования информации, содержащейся в этом техническом документе, или действий на ее основе.

Принцип работы теплового реле защиты двигателя

Принцип действия

Тепловое реле защиты двигателя содержит три биметаллических полосы вместе с механизмом отключения в корпусе из изоляционного материала.Биметаллические полосы нагреваются током двигателя, заставляя их изгибаться и приводя в действие механизм отключения после определенного хода, который зависит от настройки тока реле.

Принцип работы теплового реле защиты двигателя (фото: andrem.pl)

Механизм расцепления включает вспомогательный выключатель, который размыкает цепь катушки контактора двигателя ( Рисунок 1 ). Индикатор положения переключения сигнализирует о состоянии « сработал ».

Рисунок 1 — Принцип действия трехполюсного биметаллического реле защиты двигателя с термической задержкой и температурной компенсацией

A = Биметаллические ленты с косвенным нагревом
B = отключающий ползун
C = отключающий рычаг
D = контактный рычаг
E = Компенсационная биметаллическая полоса

Биметаллическая полоса может нагреваться напрямую или косвенно .В первом случае ток протекает непосредственно через биметалл , во втором — через изолированную нагревательную обмотку вокруг ленты. Изоляция вызывает некоторую задержку теплового потока, так что инерция тепловых реле с косвенным нагревом больше при более высоких токах, чем у их аналогов с прямым нагревом. Часто оба принципа сочетаются.

Для номинальных токов двигателя более прибл. 100 A , ток двигателя проходит через трансформаторы тока .Затем тепловое реле перегрузки нагревается вторичным током трансформатора тока.

Это означает, с одной стороны, что рассеиваемая мощность снижается, а с другой — повышается стойкость к короткому замыканию.

Ток срабатывания биметаллических реле может быть установлен по шкале токов — путем смещения механизма срабатывания относительно биметаллических лент — так, чтобы характеристики защиты могли быть согласованы с защищаемым объектом в ключевой области непрерывного режима.

Простая и экономичная конструкция может только приблизительно соответствовать переходной тепловой характеристике двигателя .

Для пуска с последующим продолжительным режимом тепловое реле защиты двигателя обеспечивает идеальную защиту двигателя. При частых запусках в прерывистом режиме значительно более низкая постоянная времени нагрева биметаллических лент по сравнению с двигателем приводит к раннему отключению, при котором тепловая мощность двигателя не используется.

Постоянная времени охлаждения тепловых реле короче, чем у обычных двигателей. Это также способствует увеличению разницы между фактической температурой двигателя и температурой, моделируемой тепловым реле при прерывистой работе.

По этим причинам защита двигателей в прерывистом режиме недостаточна .


Температурная компенсация

Принцип действия реле тепловой защиты двигателя основан на повышении температуры .Следовательно, температура окружающей среды устройства влияет на характеристики отключения.

Поскольку место установки и, следовательно, температура окружающей среды защищаемого двигателя обычно отличается от температуры защитного устройства, промышленным стандартом является то, что характеристика срабатывания биметаллического реле является температурной компенсацией, т. Е. В значительной степени не зависит от окружающей среды. температура (см. рисунок 2 ниже).

Рисунок 2 — Допуски срабатывания реле перегрузки с температурной компенсацией для защиты двигателя согласно IEC 60947-4-1

I = Перегрузка, кратная установленному току
δ = Температура окружающей среды

— Предельные значения согласно IEC 60947-4-1

Это достигается с помощью компенсационной биметаллической полосы , которая делает относительное положение механизма отключения независимым от температуры.


Чувствительность к обрыву фазы

Характеристика срабатывания трехполюсных реле защиты двигателя применяется при условии, что все три биметаллические ленты одновременно нагружены одинаковым током.

Если при обрыве одного полюсного проводника нагреваются только две биметаллические полосы, то только эти две полосы должны создавать усилие, необходимое для приведения в действие механизма отключения. Это требует более высокого тока или приводит к более длительному времени отключения (характеристическая кривая c на рисунке ниже ).

Типичные характеристики отключения реле защиты двигателя

I e = Номинальный ток, установленный на шкале
t = Время отключения

Из холодного состояния:
a = 3-полюсная нагрузка, симметричная
b = 2-полюсная нагрузка с дифференциальным расцепителем
c = 2-полюсная нагрузка без дифференциального расцепителя

Из горячего состояния:
d = 3-полюсная нагрузка, симметричная

Если больше двигатели (≥10 кВт) подвергаются этим более высоким токам в течение более длительного времени, следует ожидать повреждения.

Чтобы обеспечить защиту двигателя от тепловой перегрузки в случаях асимметрии питания и обрыва фазы, высококачественные реле защиты двигателя имеют механизмы с чувствительностью к обрыву фазы (дифференциальный расцепитель).

Resource // Распределительное устройство низкого напряжения — Rockwell

Реле перегрузки — базовое управление двигателем

Пускатели и контакторы двигателей

Нажмите кнопку воспроизведения на следующем аудиоплеере, чтобы слушать, как вы читаете этот раздел.

Реле перегрузки состоит из двух основных частей:

  1. Нагревательный элемент, который соединен в серии с линией питания к двигателю. Весь ток, потребляемый двигателем, должен проходить через нагревательный элемент.
  2. Набор нормально замкнутых контактов , которые подключены последовательно либо к линиям питания двигателя (ручные пускатели), либо к катушке магнитного контактора (магнитные пускатели). Наиболее часто встречающиеся типы реле — это биметаллическая полоса и сборка плавильного припоя.

Биметаллическая полоса состоит из двух разнородных металлов с разными коэффициентами нагрева. При нагревании они расширяются с разной скоростью, что заставляет их изгибаться или деформироваться при заданной температуре. Это действие изгиба может открывать или закрывать набор из контактов .

При использовании в устройстве защиты от перегрузки биметаллическая полоса механически связана с набором нормально замкнутых электрических контактов. Когда происходит перегрузка, изгибающее действие размыкает набор нормально замкнутых контактов, прерывая ток в цепи.

Биметаллический контакт в нормально замкнутом положении

Здесь нормально замкнутые контакты позволяют току проходить через них, в то время как источник тепла начинает деформировать металл.

Биметаллическая полоса в разомкнутом положении

Источник тепла заставил металл с серым оттенком (деталь внизу) расшириться быстрее, чем металл с синей заливкой (деталь вверху), и таким образом открыл набор нормально замкнутых контактов, таким образом прерывая ток к двигателю.

Закрытые контакты ванны для припоя

Ванна для плавления состоит из нагревательного элемента, узла припоя, храпового колеса и набора нормально закрытых контактов.

Пружина удерживается под напряжением храповым колесом. Если колесо вращается, то пружина толкает вверх и размыкает набор нормально замкнутых контактов. Колесо удерживается припоем внутри узла припоя. Различные уровни олова и цинка в припое изменяют температуру плавления, что позволяет использовать его при различных номинальных токах и настройках температуры окружающей среды.

Если ток перегрузки ощущается нагревательными элементами в течение слишком долгого времени, сплав становится жидким, позволяя пружине размыкать нормально замкнутые контакты.Это приводит к размыканию линейных контактов и прекращению подачи тока к двигателю.

Открытые контакты ванны для припоя

И биметаллическая полоса, и плавильная ванна для припоя срабатывают за счет тепловой энергии. Таким образом, перед сбросом контактов требуется период охлаждения. Как только реле остынет, биметаллическая полоса вернется в свое нормальное положение, или расплавленный припой затвердеет, и храповое колесо можно будет сбросить, чтобы снова замкнуть линейные контакты.

Некоторые современные системы управления двигателями включают приложения для мониторинга трансформаторов тока в реальном времени, которые используют встроенные компьютерные схемы управления для защиты от перегрузок двигателя.Эти системы могут быть связаны с сетевыми ПЛК и другим оборудованием безопасности.

Управление промышленными двигателями: реле перегрузки



ЦЕЛИ:

— Обсудите различия между предохранителями и перегрузками.

— Перечислите различные типы реле перегрузки.

— Опишите, как работают тепловые реле перегрузки.

— Опишите, как работают магнитные реле перегрузки.

— Опишите, как работают реле перегрузки приборной панели.

Перегрузки

Не следует путать перегрузки с предохранителями или автоматическими выключателями. Предохранители и автоматические выключатели предназначены для защиты цепи от прямого состояние заземления или короткого замыкания. Перегрузки предназначены для защиты мотор от состояния перегрузки.

Предположим, например, что номинальный ток двигателя при полной нагрузке составляет 10 ампер. Также предположим, что двигатель подключен к цепи, защищен автоматическим выключателем на 20 ампер, РИС.1. Теперь предположим, что двигатель перегружается и потребляет 15 ампер. В двигатель потребляет 150% тока полной нагрузки. Это большая перегрузка перегреет двигатель и повредит обмотки.

Но, поскольку сила тока всего 15 ампер, автоматический выключатель на 20 ампер не размыкает цепь для защиты двигателя. Реле перегрузки разработаны для размыкания цепи, когда ток становится от 115% до 125% двигателя ток полной нагрузки.Настройка перегрузки зависит от свойств двигателя, который необходимо защитить.

Свойства перегрузки

Все реле перегрузки должны обладать определенными свойствами. приказ на защиту мотора:

1. У них должны быть средства измерения тока двигателя. Некоторая перегрузка реле делают это путем преобразования тока двигателя в пропорциональную величину. тепла, а другие воспринимают ток двигателя по силе магнитного поле.

2. У них должна быть временная задержка.

Двигатели обычно потребляют ток от 300% до 800% от полной нагрузки двигателя. ток при запуске. Пусковой ток двигателя называется заблокированным. ток ротора. Поскольку реле перегрузки обычно настраиваются на срабатывание при 115% до 125% от тока двигателя полной нагрузки, двигатель никогда не запустится, если реле перегрузки сработало мгновенно.

3. Они разделены на две отдельные секции: измерение тока раздел и раздел контактов.Секция измерения тока подключена последовательно с двигателем и определяет величину тока двигателя. Этот секция обычно подключается к напряжению в диапазоне от 120 вольт. до 600 вольт. Контактная часть является частью цепи управления и работает при напряжении цепи управления. Напряжения цепи управления в целом диапазон от 24 до 120 вольт, хотя некоторые элементы управления работают от сети напряжения 240 или 480 вольт.

Двухэлементные предохранители

Есть предохранители, которые предназначены для защиты от короткого замыкания. защита и защита от перегрузки.Эти предохранители называются двухэлементными. предохранители с выдержкой времени. Они состоят из двух частей (фиг. 2). Первый содержит плавкая вставка, которая предназначена для быстрого размыкания при большом количестве чрезмерный ток. Это защищает цепь от прямого заземления и короткие замыкания. Вторая секция действует медленнее; он содержит припой ссылка, которая связана с пружиной. Припой — это строго контролируемый сплав, предназначенный для плавления при определенной температуре. Если ток двигателя становится чрезмерным, припой плавится и пружина разрывает звено.

Требуемая выдержка времени достигается за счет времени, необходимого для припой плавится даже при большом токе. Если ток двигателя возвращается в нормальное состояние после запуска, припой недостаточно нагревается таять.


РИС. 1 Автоматический выключатель не защищает двигатель от перегрузки.


РИС. 2 Двухэлементный предохранитель с выдержкой времени.


РИС. 3 Конструкция типичной перегрузки припоя.


РИС. 4 Реле тепловой перегрузки плавящегося сплава. Пружина толкает контакты открыть, если тепло расплавляет припой и позволяет зубчатому колесу вращаться свободно. Обратите внимание на электрические символы для нормально замкнутой перегрузки. контакт и нагревательный элемент.

Реле тепловой перегрузки

Существует два основных типа реле перегрузки: тепловые и магнитные. Тепловые перегрузки возникают при последовательном подключении нагревателя к двигателю.Количество выделяемого тепла зависит от тока двигателя. Тепловые перегрузки можно разделить на два типа: тип плавления припоя или горшок для припоя и биметаллический ленточный тип.

Поскольку тепловые реле перегрузки работают по принципу нагрева, они чувствительны к температуре окружающей среды (окружающего воздуха). Они едут быстрее если они расположены в теплом месте, чем в прохладном.


РИС. 5A Подогреватель плавящегося припоя.


РИС. 5B Нагреватель плавления припоя для защиты от перегрузки Аллена-Брэдли реле.


РИС. 6 Однофазное реле перегрузки, типичное для плавления сплава.

Тип плавления припоя

Перегрузки из-за плавления припоя часто называют перегрузками в ванне с припоем. Чтобы создать этот тип перегрузки, латунный вал помещают внутрь латунного трубка. Зубчатое колесо соединено с одним концом латунного вала.А припой из специального сплава, плавящийся при очень определенной температуре, сохраняет латунный вал механически соединен с латунной трубкой (фиг. 3). В зубчатое колесо удерживает набор подпружиненных контактов в замкнутом состоянии (РИС. 4). Вокруг латунной трубки или рядом с ней размещается электрический нагреватель. Обогреватель подключен последовательно с двигателем. Ток двигателя заставляет нагреватель производить тепло. Если сила тока достаточно велика в течение достаточно длительного периода со временем припой плавится и позволяет латунному валу вращаться внутри трубка, вызывая размыкание контакта.Тот факт, что некоторое время должно пройти до того, как припой станет достаточно горячим, чтобы расплавиться. время задержки для этого реле перегрузки. Большая перегрузка вызывает припой. чтобы быстрее расплавились и контакты открылись быстрее, чем при меньшем количестве тока перегрузки.

Нагреватели с плавлением припоя имеют другую конструкцию: разных производителей, но все работают по одному принципу. Два разных типы узлов нагревателя плавящегося сплава показаны на фиг.5, части А и В. Типичное реле перегрузки из плавящегося сплава показано на фиг. 6. После срабатывания реле перегрузки необходимо подождать, пока реле остыть в течение двух или трех минут, прежде чем его можно будет сбросить.

Это время охлаждения необходимо, чтобы припой стал твердым. снова после того, как он растает.

Уставку тока отключения можно изменить, заменив нагреватель. Производители предоставьте таблицы, которые показывают, какой размер нагревателя должен быть установлен для различные величины тока двигателя.Необходимо использовать диаграмму что соответствует конкретному типу реле перегрузки. Не все диаграммы представить информацию таким же образом. Обязательно прочтите инструкцию содержится в таблице при выборе размеров нагревателя. Типичный диаграмма загрузки нагревателя показана на фиг. 7.


РИС. 7 Типовая диаграмма перегрузки нагревателя.


РИС. 8 Биметаллическая полоса изготавливается путем склеивания двух разных типов металла вместе.

Биметаллическое реле защиты от перегрузки

Второй тип теплового реле перегрузки — это перегрузка с биметаллической лентой. Как и плавильный сплав, он работает по принципу преобразования ток двигателя в пропорциональное количество тепла. Разница в том что тепло используется для изгиба или деформации биметаллической ленты. Биметалл полоса изготавливается путем соединения двух разных типов металла, которые расширяются с разными скоростями (ФИГ.8). Поскольку металлы расширяются с разной скоростью, полоса изгибается или коробится при изменении температуры (фиг. 9). Количество основы определяется по

1. Тип металла, из которого изготовлена ​​биметаллическая лента.

2. Разница температур между двумя концами полосы.

3. Длина полосы.

Нагреватель перегрузки нагревает биметаллическую ленту при протекании тока двигателя. через это. Под воздействием тепла биметаллическая полоса деформируется.Если биметалл полоса становится достаточно горячей, это вызывает размыкание набора контактов (РИС. 10). После размыкания контакта перегрузки время охлаждения составляет около 2 минут. необходим для того, чтобы биметаллическая полоса вернулась в положение, позволяющее контакты должны быть повторно замкнуты. Фактор выдержки времени для этой перегрузки реле — время, необходимое для того, чтобы биметаллическая полоса искривилась в достаточной степени. количество, чтобы открыть нормально замкнутый контакт. Большой объем перегрузки ток заставляет биметаллическую полосу быстрее деформироваться и открывает связаться раньше.

Большинство биметаллических ленточных реле перегрузки имеют несколько особенностей: не доступны с реле перегрузки плавящегося припоя. Как генерал Как правило, диапазон срабатывания можно регулировать поворотом ручки, как показано на фиг. 10. Эта ручка регулирует расстояние, на которое биметаллическая полоса должна деформироваться, прежде чем открытие контактов. Эта регулировка позволяет изменять чувствительность. из-за изменения температуры окружающего воздуха. Если ручка установлена ​​в 100% положение (ФИГ.11) перегрузка срабатывает при токе полной нагрузки номинал, определяемый размером установленного нагревателя перегрузки. В холоде в зимние месяцы эта настройка может быть слишком высокой для защиты двигателя. В ручку можно отрегулировать в холодных условиях для работы в любой точке от От 100% до 85% тока полной нагрузки двигателя. В жаркие летние месяцы двигатель может «неприятно сработать» из-за высоких температур окружающей среды. В жарких условиях ручка регулировки позволяет реле перегрузки срабатывать. можно отрегулировать в пределах от 100% до 115% от тока полной нагрузки двигателя.


РИС. 9 Биметаллическая полоса коробится при изменении температуры.


РИС. 10 Биметаллическое ленточное реле перегрузки.

Еще одно отличие от припоя плавящегося типа состоит в том, что многие биметаллические ленточные реле перегрузки могут быть настроены на ручной или автоматический сброс настроек. Пружина, расположенная сбоку реле перегрузки, позволяет это настройки (РИС. 12). При установке в ручное положение контакты должны сбросить вручную, нажав рычаг сброса.Это наверное самый обычная настройка реле перегрузки. Если реле перегрузки было настроен на автоматический сброс, контакты снова замыкаются после биметаллическая полоса достаточно остыла. Это может быть угрозой безопасности если это могло вызвать внезапный перезапуск машины.

Реле перегрузки следует устанавливать в положение автоматического сброса только при нет опасности травмирования или повреждения оборудования при контакты перегрузки внезапно снова замыкаются.


РИС. 11 Ручка регулировки позволяет регулировать текущую настройку. от 85% до 115% от номинальной мощности нагревателя.


РИС. 12 Многие биметаллические ленточные реле перегрузки можно настроить на ручной или автоматический сброс.


РИС. 13 Реле одиночной перегрузки используется для защиты однофазного двигателя.

Трехфазные перегрузки

Реле перегрузки, рассмотренные до сих пор, предназначены для определения тока. одиночного проводника, по которому подается питание на двигатель (фиг.13). Приложение для этого типа реле перегрузки предназначено для защиты однофазного или постоянного тока мотор. NEC требуется только одно устройство датчика перегрузки для защиты прямого текущий двигатель или однофазный двигатель, независимо от того, работает ли он от 120 или 240 вольт. Однако трехфазные двигатели должны иметь датчик перегрузки. (нагреватели или магнитные катушки) в каждой из трехфазных линий.

В некоторых пускателях двигателей это достигается за счет использования трех реле для независимого определения тока в каждой из трехфазных линии (фиг.14). Когда это будет сделано, нормально замкнутый контакт каждого реле перегрузки подключено последовательно, как показано на фиг. 15. Если кто-нибудь реле должны размыкать нормально замкнутый контакт, питание на стартер катушка прерывается, и двигатель отключается от сети.

Также изготавливаются реле перегрузки

, содержащие три нагревателя перегрузки и один набор нормально замкнутых контактов, фиг. 16. Эти реле обычно используется для защиты трехфазных двигателей.Хотя есть только один набор нормально замкнутые контакты, если возникает перегрузка на любом из трех нагревателей, это приводит к размыканию контактов и отключению катушки стартер двигателя (РИС. 17).


РИС. 14 Три однофазных реле перегрузки используются для измерения тока. в каждой линии трехфазного двигателя.


РИС. 15 Когда используются три однофазных реле перегрузки для защиты трехфазный двигатель, нормально замкнутые контакты каждого реле перегрузки соединены последовательно.


РИС. 16 Трехфазное тепловое реле перегрузки.

Магнитные реле перегрузки

Реле перегрузки магнитного типа работают, определяя силу магнитное поле, создаваемое током, протекающим в двигателе. Величайший разница между реле перегрузки магнитного и теплового типа составляет что магнитные типы нечувствительны к температуре окружающей среды. Магнитного типа реле перегрузки обычно используются в областях, которые демонстрируют экстремальные изменения по температуре окружающей среды.Магнитные реле перегрузки можно разделить на два основных типа: электронные и дашпоты.

Электронные реле перегрузки

В электронных реле перегрузки

используется трансформатор тока для определения ток двигателя. Проводник, подающий питание на двигатель, проходит через сердечник тороидального трансформатора (фиг. 18). Как течет ток через проводник переменное магнитное поле вокруг проводника индуцирует напряжение в тороидальном трансформаторе.Количество наведенных напряжение пропорционально количеству тока, протекающего через дирижер. Это тот же основной принцип работы, что и большинство амперметров клещевого типа. Напряжение, наведенное в тороидальном трансформаторе передается через подключенный электронный интерфейс, который обеспечивает время задержки, необходимое для запуска двигателя. Многие электронные реле перегрузки программируются и могут быть настроены на величину полной нагрузки ток двигателя, максимальный и минимальный уровни напряжения, процент перегрузки, и другие факторы.Трехфазное электронное реле перегрузки показано на ИНЖИР. 19.


РИС. 17 Трехфазное реле перегрузки содержит три нагревателя перегрузки. но один комплект нормально замкнутых контактов.


РИС. 18 электронных устройств защиты от перегрузки определяют ток двигателя путем измерения напряженность магнитного поля.


РИС. 19 Трехфазное электронное реле перегрузки.


РИС. 20 Таймер дашпота состоит в основном из поршня, вала и емкости.


РИС. 21 Базовая конструкция таймера дашпота.


РИС. 22 Настройка открытия отверстий влияет на время задержки таймер дашпота.


РИС. 23 Реле перегрузки Dashpot содержат катушки, серия с мотором.

Реле перегрузки приборной панели

Реле перегрузки

Dashpot получили свое название от устройства, которое используется для выполнения время задержки, позволяющее запустить двигатель.Таймер дашпота в основном контейнер, поршень и вал (фиг. 20). Поршень помещен внутрь емкость, а емкость заполнена специальным маслом называется дашпот-маслом (фиг. 21). Масло Dashpot поддерживает постоянную вязкость в широком диапазоне температур. Тип и вязкость используемого масла является одним из факторов, определяющих время задержки для таймер. Другой фактор — это настройка открытия отверстия. отверстия в поршне (РИС.22). Отверстия с отверстиями позволяют маслу проходить через поршень, когда он поднимается через масло. Открытие отверстий под диафрагмы можно настроить, регулируя скользящий клапан на поршне.

Реле перегрузки приборной панели содержит катушку, включенную последовательно. с двигателем (РИС. 23).

По мере прохождения тока через катушку вокруг нее создается магнитное поле. катушка. Сила магнитного поля пропорциональна двигателю. Текущий.Это магнитное поле втягивает вал таймера дашпота в катушка. Движение вала замедляется из-за того, что поршень необходимо вытеснить масло в емкости. Если двигатель работает нормально, ток двигателя упадет до безопасного уровня до того, как вал будет вытянут достаточно глубоко в катушку, чтобы размыкать нормально замкнутый контакт (РИС. 24). Однако, если двигатель перегружен, магнитное поле будет сильным. достаточно, чтобы продолжать втягивать вал в катушку, пока он не откроет контакт перегрузки.Когда питание отключено от двигателя, магнитный поле схлопывается, и поршень возвращается на дно контейнера.

Обратные клапаны позволяют поршню вернуться на дно контейнера почти сразу после пропадания тока двигателя.

Перегрузки Dashpot обычно предоставляют некоторый метод, который разрешает реле для настройки на различные значения тока полной нагрузки. Чтобы сделать эту настройку, вал соединен со стержнем с резьбой (РИС.25). Это позволяет вал, который нужно удлинить или укоротить внутри катушки. Чем больше длины вала, тем меньше тока требуется для втягивания вала в катушка достаточно далеко, чтобы размыкать контакты. Паспортная табличка в списках катушек различные настройки тока для конкретного реле перегрузки (РИС. 26). Регулировка осуществляется перемещением вала до тех пор, пока линия на вал, представляющий желаемый ток, находится заподлицо с верхней частью приборной панели контейнер (ФИГ.27). Реле защиты от перегрузки показано на фиг. 28.


РИС. 24 Нормально замкнутые контакты реле перегрузки щитка приборов.


РИС. 25 Длину вала можно регулировать для разных значений тока.


РИС. 26 На паспортной табличке указаны различные значения тока.


РИС. 27 Линия на валу, которая представляет желаемое количество current устанавливается заподлицо с верхней частью контейнера dashpot.


РИС. 28 Реле перегрузки Dashpot.


РИС. 29 Реле перегрузки, содержащее как нормально замкнутый, так и нормально открытый контакт. Нормально закрытый контакт обозначается OL, а нормально закрытый. открытый контакт помечен как ALAR. (Общий контакт обозначен как COM.)


РИС. 30 Реле перегрузки содержит однополюсный двухходовой комплект. контактов. Нормально закрытая секция (NC) защищает двигатель в событие состояния перегрузки и нормально разомкнутая секция (NO) поворачивается на индикаторной лампе, чтобы предупредить оператора о том, что двигатель отключился при перегрузке.

Контакты перегрузки

Хотя все реле перегрузки содержат набор нормально замкнутых контактов, некоторые производители также добавляют набор нормально разомкнутых контактов. Эти два набора контактов имеют форму однополюсного, двухконтактного переключатель или два отдельных контакта.

Однополюсный двухпозиционный переключатель имеет общую клемму (C), нормально закрытый контакт (NC) и нормально открытый контакт (NO) (РИСУНОК.29). Есть несколько причин для добавления нормально открытого набора контактов. Стартер, показанный на фиг. 30 использует нормально закрытую секцию для отключения пускателя двигателя в случае перегрузки и использует нормально открытый раздел, чтобы включить световой индикатор, чтобы сообщить оператора, что сработала перегрузка.

Реле перегрузки, показанное на РИС. 31 содержит два отдельных набора контактов, один нормально открытый, а другой нормально закрытый.Другое распространенное использование для нормально разомкнутый набор контактов реле перегрузки должен обеспечивать входной сигнал к программируемому логическому контроллеру (ПЛК). Если более нагрузка отключается, нормально замкнутый набор контактов размыкается и отключается катушка стартера от линии. Нормально разомкнутый набор контактов замыкается и подает сигнал на вход ПЛК (фиг. 32). Заметь два промежуточных реле CR1 и CR2 используются для разделения ПЛК и стартер двигателя.

Это часто делается из соображений безопасности. Реле управления предотвращают больше чем один источник питания от пускателя или ПЛК. Обратите внимание, что пускатель и ПЛК имеют отдельный источник питания. Если бы власть была отключение от стартера во время обслуживания или ремонта, это может привести к травмы, если питание от ПЛК было подключено к какой-либо части стартер.


РИС. 31 Реле перегрузки с нормально замкнутым и нормально замкнутым открытый контакт.


РИС. 32 Нормально разомкнутые контакты подают сигнал на вход программируемый логический контроллер.

Защита двигателей большой мощности Двигатели большой мощности часто имеют потребляемый ток в несколько сотен ампер, поэтому расчет перегрузки обогреватели сложные. В этом случае обычной практикой является использование трансформаторы тока для уменьшения силы тока до перегрузки нагреватели (РИС. 33). Трансформаторы тока, показанные на фиг.33 имеют передаточные числа из 150: 5. Это означает, что при протекании тока 150 ампер через первичный, который является линией, подключенной к двигателю, вторичный трансформатор вырабатывает ток 5 ампер, если вторичные клеммы закорочены все вместе. Вторичные обмотки трансформаторов тока подключены к нагреватели от перегрузки для защиты двигателя (РИС. 34).


РИС. 33 Трансформаторы тока используются для уменьшения тока перегрузки.


РИС. 34 Трансформаторы тока уменьшают ток до перегрузочных нагревателей.

Предположим, что двигатель, подключенный к трансформаторам тока на фиг. 34 имеет ток полной нагрузки 136 ампер. Простой расчет показывает что трансформаторы тока с соотношением 150: 5 будут производить вторичную ток 4,533 ампера при 136 амперах, протекающих через первичную обмотку.

150/5 = 136 / X

150X = 680

Х = 680/150

Х = 4.533

Нагреватели перегрузки фактически рассчитаны на двигатель с полной нагрузкой. ток 4.533 ампера.

ВИКТОРИНА

1. Каковы два основных типа реле перегрузки?

2. В чем основное отличие тепловизионных характеристик и реле перегрузки магнитного типа?

3. Какие два основных типа реле защиты от перегрева?

4. Какой тип теплового реле перегрузки обычно настраивается вручную? или автоматический режим?

5.Почему необходимо допускать перегрузку типа плавления припоя реле остыть в течение 2–3 минут после срабатывания?

6. Все реле перегрузки разделены на две части. Что это два раздела?

7. Какое устройство используется для измерения силы тока двигателя в электронном реле перегрузки?

8. Какие два фактора определяют установку времени для таймера контрольной точки?

9. Сколько датчиков перегрузки требуется NEC для защиты постоянного тока? мотор?

10.Большой двигатель имеет номинальный ток полной нагрузки 425 ампер. Текущий трансформаторы с соотношением 600: 5 используются для снижения тока до нагреватели перегрузки. Каким должен быть номинальный ток полной нагрузки нагреватели перегрузки?

(PDF) Реле тепловой перегрузки с ферромагнитным приводом

Реле тепловой перегрузки с ферромагнитным приводом 65

Сила инерции обеспечивается действием силы тяжести

при потере магнитных свойств. Внезапное увеличение веса на

заставляет опорную плиту опускаться вниз —

под действием силы тяжести.В этом состоянии вес опорной плиты

больше, чем сдерживающая сила пружины

(рабочая сила> сдерживающая сила). Следовательно, пластина основания

толкает подвижный контакт вниз, чтобы замкнуть неподвижный контакт

, после чего срабатывает цепь отключения.

Цепь отключения в конечном итоге отключает двигатель от источника питания

путем размыкания нормально замкнутых (NC) переключателей.

Действие этого реле

можно ясно понять из рисунка 4, который показывает его полную работу.Цепь отключения

срабатывает только во время состояния неисправности путем замыкания контактов

. После устранения неисправности на реле подается питание

, а генератор магнитного поля

используется для возврата феррожидкости в исходное положение.

Переводит подвижный контакт в нерабочее положение

.

В этом реле используется полуавтоматический механизм сброса

, так что как только феррожидкость опущена, она может быть перемещена в исходное положение

с помощью шагового двигателя

, управляемого генератором магнитного поля.Автоматический сброс реле нагрузки

обычно не рекомендуется из-за возможной опасности для персонала

. Неожиданный повторный запуск

машины может привести к возникновению опасной ситуации для оператора или электрика, поскольку предпринимаются попытки выяснить, почему машина остановилась.

5. Преимущества

· Реле повышают безопасность, обеспечивая полную электрическую изоляцию

от сильных токов и напряжений во время сбоя в системе

.Он поставляется во всех формах и размерах

для различных приложений и имеет различные конфигурации контактов переключателя

. В результате его можно использовать для переключения нескольких контактов

одновременно.

· Тепловые реле перегрузки обеспечивают гибкую защиту двигателя

от перегрева, и эти реле имеют

Рисунок 4. Работа феррожидкостного реле.

способность противостоять ударам и вибрации нормального применения.

plication. Он также обеспечивает такие функции, как компенсация температуры окружающей среды

(компенсация температуры окружающей среды

является важным фактором, поскольку при температуре

кожух перегрузки подвергается сильным колебаниям, когда предполагается, что кожух будет работать либо в

более высокая или более низкая температура окружающей среды).

· Это реле может также использоваться для защиты трансформатора

[7]. Необходимо защитить трансформатор от перегрева

. Перегрев трансформатора приведет к повреждению обмотки трансформатора, и, как правило, температура бывшего трансформатора

должна быть ограничена ниже 110 ° C для нормальной работы

. Реле также может быть использовано в защите

генератора. В некоторых случаях обмотка возбуждения

может перегреться из-за протекания через нее большого тока

.Следовательно, очень важно защитить

обмотку возбуждения генератора от перегрева.

· Это реле имеет повышенную точность, поскольку оно отключает цепь

при определенной температуре. Остальные типы реле перегрузки

являются чисто механическими и зависят от

температурных характеристик используемого металла

. Здесь феррожидкостное реле имеет очень резкую рабочую характеристику

, поскольку оно размыкает контакт

, когда температура достигает температуры Кюри.

· Он может выдерживать повторяющиеся циклы отключения и сброса без необходимости замены

, поскольку свойство феррожидкости

полностью обратимо. Таким образом, это более выгодно, чем использование предохранителя, который требует частой замены

после срабатывания.

· Это ферромагнитное реле также находит применение в ядерном реакторе

. Очень важно ограничить ядерный реактор

определенной температурой, выше которой он может стать нестабильным.Следовательно, в этом случае это реле может быть использовано для замедления или остановки работы

, когда температура превышает безопасный предел.

6. Выводы

В этой статье повторно рекомендован новый тип теплового реле перегрузки

, которое обеспечивает точное отключение цепи

, предотвращая перегрев двигателя. Это реле

основано на свойстве феррожидкости, которая ведет себя как ферромагнитный материал

в присутствии магнитного поля

, но теряет это свойство (ведет себя как парамагнитный материал

риал) в отсутствие магнитного поля.Другое свойство

феррожидкости, используемой в работе реле, заключается в том, что жидкость

теряет свои магнитные свойства, когда температура

пересекает критическую температуру, известную как температура Кюри —

.

Когда ток, протекающий через двигатель, является нормальным,

температура нагревательного элемента остается ниже температуры

кюри феррожидкости, тем самым не влияя на феррожидкость

. По мере того как величина входящего тока

увеличивается и увеличивается в течение заданного периода времени, нагревательный элемент

достигает значения температуры, равного Кюри

Copyright © 2012 SciRes.SGRE

О реле защиты от перегрузки — Tsubaki

Электродвигатели находят широкое применение в машинах с вращающимися компонентами. Двигатели часто довольно дороги, поэтому важно предотвратить их выход из строя, вызванный пропусканием электрического тока, превышающего их номинальную силу тока. Электрическая перегрузка иногда может развиваться из-за замыканий на землю (короткое замыкание в обмотках двигателя или периферийных кабелях), но чаще возникает из-за заклинивания или неправильной работы.

Реле защиты от перегрузки предотвращают повреждение двигателя, контролируя ток в цепи двигателя и размыкая цепь при обнаружении электрической перегрузки или обрыва фазы. Поскольку реле намного дешевле двигателей, они обеспечивают доступный способ защиты двигателей.

Преимущества и особенности реле защиты от перегрузки

Существуют различные типы реле защиты от перегрузки. Примерами являются предохранители, тепловые реле, электромеханические реле и электронные реле.Предохранители широко используются для защиты слаботочных устройств, например, бытовой техники. Тепловые, электромеханические и электронные реле используются для защиты сильноточных машин, таких как промышленные двигатели. Основные преимущества использования реле:

Надежная защита

Реле перегрузки отключают ток двигателя, когда возникает сильноточная ситуация из-за замыкания на землю, короткого замыкания, обрыва фазы или механического заклинивания. Это недорогой способ избежать простоев на ремонт или замену вышедших из строя двигателей из-за чрезмерного тока.

Надлежащее согласование с подрядчиками

Подрядчики несут большие рабочие токи главной цепи. В них встроены механизмы для подавления дугового разряда, вызванного прерыванием сильных токов двигателя. Когда контакторы правильно согласованы с тепловыми реле, комбинация обеспечивает хорошую схему запуска двигателя.

Пускатели просты в эксплуатации

Ручные пускатели двигателей используются для включения и выключения двигателей. Эти электромеханические устройства легко установить и сбросить после отключения.

Монтажные комплекты

Для различных типов реле защиты от перегрузки доступны специальные монтажные комплекты.

Реле защиты от перегрузки

имеют регулируемые диапазоны уставок тока для контроля порога срабатывания. Помимо предотвращения электрической перегрузки, они также могут обнаруживать обрывы фаз и защищаться от них. Поскольку эти реле часто работают в жарких условиях, они обеспечивают допустимые отклонения температуры окружающей среды до 60 ° C.

Реле

также поставляются с автоматическим или ручным сбросом, которые можно опломбировать, чтобы защитить их от опасных сред, в которых они работают.Реле также имеют функции останова и тестирования для проверки их работоспособности при отсутствии электрического тока.

Посмотреть наш каталог устройств защиты от перегрузки

Реле защиты от перегрузки Рекомендации по продукту

Реле защиты от перегрузки защищают от следующих аварийных ситуаций:

Перегрузка по току

Катушки двигателя изнашиваются, когда они пропускают ток, превышающий расчетный предел, и сгорают после длительного воздействия.Когда токи превышают установленные пределы, реле защиты от перегрузки срабатывает, чтобы избежать повреждений.

Обрыв фазы

Это важная категория неисправности, поскольку она является основной причиной отказов двигателя. Это происходит при выходе из строя одной из фаз электропитания двигателя.

прочие

Эта дополнительная категория охватывает различные ситуации, такие как замыкания на землю, остановку или заклинивание двигателей, дисбаланс нагрузки (в том числе под нагрузкой) и колебания напряжения.

Реле защиты от перегрузки

от US Tsubaki

U.S. Tsubaki предлагает следующие устройства для защиты от скачков электрического тока или крутящего момента:

  • Электронные шоковые реле: Эти реле защищают от скачков электрического тока как при нагрузках, так и при перегрузках. Их использование предотвратит простои из-за непредвиденных поломок и дорогостоящего ремонта.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *