Мощность 1 секции биметаллического радиатора: Мощность биметаллических радиаторов отопления таблица
Теплоотдача биметаллических радиаторов отопления: таблица
О том, что биметаллические радиаторы отопления являются наиболее дорогими из всех возможных конструкций водяных обогревателей, в том числе алюминиевых, стальных и чугунных, знают не понаслышке все, кому доводилось заниматься ремонтом и заменой домашних батарей. В качестве подтверждения высокой эффективности биметалла обычно приводят условную таблицу теплоотдачи биметаллических радиаторов отопления со ссылками на теплопроводность металлов, и даже на практические измерения температуры воздуха в комнате. Так ли эффективно устройство биметаллического радиатора?
Что представляет собой биметаллический радиатор
По сути, биметаллический обогреватель представляет собой смешанную конструкцию, воплотившую преимущества стальных и алюминиевых систем отопления. Устройство радиатора основывается на следующих элементах:
- Обогреватель состоит из двух корпусов – внутреннего стального и наружного алюминиевого;
- За счет внутренней оболочки из стали биметаллический корпус не боится агрессивной горячей воды, выдерживает высокое давление и обеспечивает высокую прочность соединения отдельных секций радиатора в одну батарею;
- Алюминиевый корпус лучше всего передает и рассеивает поток тепла в воздухе, не боится коррозии наружной поверхности.
В качестве подтверждения высокой теплоотдачи биметаллического корпуса можно использовать сравнительную таблицу. Среди ближайших конкурентов – радиаторов из чугуна ЧГ, стали ТС, алюминия АА и АЛ, биметаллический радиатор БМ обладает одним из наилучших показателей теплоотдачи, высоким рабочим давлением и коррозионной стойкостью.
В реальности дела обстоят еще хуже, большинство производителей указывает величину теплоотдачи в виде значения тепловой мощности в час для одной секции. То есть, на упаковке может быть указано, что теплоотдача биметаллической секции радиатора составляет 200 Вт.
Делается это вынужденно, данные приводят не к единице площади или перепаду температур в один градус, для того чтобы упростить восприятие покупателем конкретных технических характеристик теплоотдачи радиатора, одновременно сделав маленькую рекламу.
Насколько выгоден биметаллический радиатор
Нередко для подтверждения высокой теплоотдачи биметаллических радиаторов приводят табличные сведения, приведенные ниже.
Такого рода сведения нередко используются магазинами и рекламой в качестве достоверных данных о теплоотдаче различных систем водяного отопления. О том, что теплоотдача биметаллической секции выше стальной или чугунной конструкции, хорошо известно и без справочных данных, остается только проверить, насколько радиатор из биметалла лучше алюминия. Неужели разница может достигать почти 40%?
Ниже в таблице приведены данные о теплоотдаче на основании практических измерений приборов конкретных моделей радиаторов, в том числе биметаллических, алюминиевых и чугунных систем.
Как видно из таблицы, теплоотдача между самыми крайними позициями радиаторов одного производителя, например, алюминиевого Rifar Alum -183 Вт/м∙К и биметаллического Rifar Base — 204 Вт/м∙К, составляет не более 10%, в остальных случаях разница еще меньше.
От чего зависит теплоотдача радиатора
Прежде чем попытаться оценить и сравнить реальную эффективность биметаллических радиаторов, стоит напомнить, от чего зависит тепловая мощность конкретной отопительной системы:
- Тепловой напор радиатора. Чем выше разница между средней температурой поверхности радиатора и температурой воздуха, тем интенсивнее тепловой поток, передающийся в воздух помещения;
- Теплопроводностью материала радиатора. Чем выше теплопроводность, тем меньше разница между температурой теплоносителя и наружной стенкой радиатора;
- Размерами корпуса;
- Температурой и давлением теплоносителя.
Важно! В водяных системах отопления передача тепла от стенки в воздух осуществляется на 98% за счет конвекции, поэтому, кроме размеров, важна и форма радиатора. Но так как на практике учет конфигурации поверхности учесть сложно, обычно ограничиваются только учетом линейных размеров.
Первый критерий – тепловой напор, рассчитывается, как разность между полусуммой (Твх+Твых)/2 и температурой воздуха в помещении, Твх и Твых – температуры воды на входе и выходе из радиатора. Существует даже поправочный коэффициент, уточняющий теплоотдачу радиатора при расчете мощности системы отопления для комнаты.
Таблица поправочного коэффициента говорит, что заявленные в паспорте величины теплоотдачи биметаллического обогревателя, равно как и алюминиевого, будут соответствовать действительности только в течение первого часа работы отопления, К=1 при перепаде температуры в 70оС, что возможно только в холодном помещении. Теплоноситель редко нагревают выше 85оС, значит, максимальную теплоотдачу можно получить только при температуре воздуха в комнате Т=15оС, либо при использовании специальных видов теплоносителя.
Второй критерий — теплопроводность материала радиаторной стенки. Здесь радиатор из биметалла проигрывает алюминиевому варианту. Устройство биметаллической секции отопления, приведенной на схеме, показывает, что стенка обогревателя состоит из двух слоев — стали и алюминия.
Даже при одинаковой толщине стенки биметаллический корпус в одинаковых условиях не может иметь теплоотдачу выше, чем изготовленный из алюминия.
Размеры обоих типов теплообменников примерно одинаковы и рассчитаны на установку в пространстве под подоконником. Стоит отметить, что конструкция корпусов из биметалла и алюминия имеет значительно большую площадь поверхности, чем у чугунной или стальной модели. Поэтому величина теплоотдачи может отличаться сильнее, чем простой расчет на основании теплотехнических свойств металлов – теплопроводности и теплоемкости.
Остается разобраться с температурой и давлением теплоносителя.
Оптимальные условия эксплуатации для обогревателей из биметалла
Устройство и схемы биметаллических и алюминиевых систем во многом похожи. Внутри корпуса секции изготовлен главный канал, по которому движется разогретый теплоноситель. Форма и размеры канала соответствуют сечению подводящей трубы, а значит, жидкость не испытывает дополнительных завихрений и локальных мест перегрева.
Если посмотреть на данные в таблице, то становится ясно, что оба типа радиаторных конструкций проектируются в расчете на высокое давление и, главное, — высокую температуру теплоносителя. В этом случае преимущества теплообменника из биметалла очевидны. Во-первых, увеличивается разность температур, вместо стандартных 70оС значение теплового напора может легко достигать 100оС. Например, давление и температура теплоносителя на входе систему отопления высотного дома составляет 15-18 Бар и 105-110оС, а для паровых систем и 120оС. Соответственно, поправочный коэффициент эффективности теплоотдачи возрастает до 1,1-1,2, а это почти 20%.
Во-вторых, чем выше давление теплоносителя, тем выше коэффициент теплопередачи и теплоотдачи от жидкости к металлу. Значение теплоотдачи за счет повышения давления может возрастать на 5-7%. В итоге, суммируя все условия, может оказаться, что обогреватель из биметалла идеально подходит для отопления высотных зданий.
Несмотря на то, что производители дают примерно одинаковый срок службы для обоих типов теплообменников, на практике при повышенном давлении и температуре отопления способен работать длительное время только биметалл. Горячая вода даже при наличии присадок и защитного покрытия действует на алюминий разрушительно. Другое дело — сталь с легирующими добавками марганца и никеля, ее срок службы может составлять до 15лет.
Заключение
Высокую теплоотдачу на биметаллическом нагревателе можно получить не только при высоком давлении. Для обоих типов радиаторов, даже для чугунных и стальных конструкций, можно увеличить теплоотдачу минимум на 20%, если использовать в домашних котельных в качестве теплоносителя не воду, а специальные типы тосола или антифриза. Давление не изменится, так и останется 3-4 атм., а температура на выходе из котла увеличится почти до 95-97оС, что даст прибавку в теплоотдаче на 15-20%. Кроме того, тосол обеспечит хорошую сохранность алюминиевых, чугунных, стальных труб и теплообменников.
Расчет количества секций биметаллических радиаторов
Меняя чугунные батареи на приборы нового образца, очень важно правильно произвести расчет количества секций биметаллических радиаторов отопления. Замена приборов отопления – это достаточно затратно, поэтому изначально следует все правильно организовать.
Почему важно правильно рассчитать количество секций? Температура в помещении напрямую зависит от количества секций. Прибор с большим количеством лишних секций – это лишняя трата денег, так как он не будет прогреваться, соответственно и неэффективно будет работать. А слишком маленький радиатор отопления будет работать на полную мощность и также неэффективно.
Рис. 1 Конструкция секций радиатораЕсть несколько правил, которые нужно учитывать при расчете размера радиатора отопления. Например:
- Теплоотдача биметаллического прибора отопления намного выше, чем у батареи из чугуна;
- Со временем работа радиатора стает менее эффективной, так как сердечник биметаллического прибора засоряется продуктами отложения;
- Лучше пусть тепла будет больше чем недостаточно.
Часто специалисты рекомендуют устанавливать столько же биметаллических секций, сколько было чугунных (рис. 2). Для гарантии можно добавить 1-2 секции. Учитывая, что теплоотдача биметаллических приборов намного выше, отопление помещения будет эффективным.
Рис. 2 Соотношение чугунных ибиметаллических приборов отопления
Способы расчета количества секций
Рассчитать количество секций биметаллического радиатора можно по 2 способам:
- По площади;
- По объему.
Расчет по площади
Есть нормы СНиП, которые устанавливают минимальное значение мощности радиатора на 1 м2 площади. Эта цифра зависит также от региона страны. Для этого расчета нужно знать площадь помещения, которое будет отапливаться (комната). А именно, нужно ширину множить на длину (А).
Далее нужно учитывать показатель мощности на 1 м2, как правило, этот показатель составляет 100 Вт. Далее площадь комнаты множится на 100 Вт. Полученную цифру следует разделить на мощность одной секции биметаллического радиатора (В). Разные модели радиаторов отопления могут иметь разную мощность, это зависит и от цены.
А именно формула выглядит так: (А*100) / В = количество штук.
Например, площадь комнаты — 16 м2, а мощность одной секции биметаллического радиатора 160 Вт. Расчет: (16*100) / 160=10 штук
Этот расчет секций биметаллических радиаторов будет правильным, только если высота потолков в помещении не превышает 3 м. А также здесь не учитываются теплопотери через окна, степень утепления стен и т.д. Если в комнате больше 1 окна, то следует добавить 2-3 единицы к биметаллическому радиатору отопления.
Рис. 3 Расчет по площадиРасчет, согласно объему помещения
Этот способ расчета заключается в вычислении размера радиатора отопления, с показателем объема помещения. А значит, учет мощности производится на м3. Нормы СНиП устанавливают минимальный показатель мощности 41 Вт.
Чтобы рассчитать объем помещения следует знать ширину, длину и высоту потолка. А именно, площадь помножить на высоту потолка.
Например, площадь становит 16 м2, а высота потолка – 2,7 м:
- 16*2,7=43 м3 (объем комнаты).
Чтобы рассчитать нужную мощность радиатора отопления нужно 43*41=1771 Вт. Далее высчитывается количество секций. Если мощность одной секции становит 160 Вт, то формула такая:
- 1771/160=11,06 (штук).
Но есть и другие показатели, которые рассчитаны на разные особенности расположения помещения, или климатических условий региона. Например, если комната угловая, то полученный результат нужно еще умножить на коэффициент 1.3:
- 11,06*1,3=14.38, следует округлить и получиться 15 штук.
Если зима в регионе очень холодная (например, Крайний Север), то этот коэффициент становит 1,6:
- 11,06*1,6=17,69, нужно округлить, и получится 18 штук.
Если расчет количества секций делается для частного дома, то конечно нужно учитывать теплопотери крыши, стен, пола. В этом случае коэффициент становится 1,5:
- 11,06*1,5=16,59, нужно округлить, и получится 17 штук.
Расчеты при проектировке
Более точный расчет совершают квалифицированные специалисты, при проектировке системы отопления. В этом случае в формулу включаются такие параметры:
- Количество и качество окон, дверей, балконов и т.д.
- Материал, из которого сделаны стены и перегородки.
- Местность, где размещен дом, и расчет соответственно сторонам света.
- Назначение комнаты, например, кухня спальня или кладовка.
- Способ размещения помещения, например, угловая комната или по середине, учет этажа и т.д.
- Объем комнат.
Специалисты рассчитывают все показатели согласно предписаниям СНиП по отоплению. Там расписаны все размеры и коэффициенты. В магазинах, которые специализируются на отопительной технике, есть специальные калькуляторы. Продавцы консультанты вводят все параметры и производят точный расчет. И сразу согласно всем полученным параметрам можно подобрать нужную модель. Если секции большего размера, то есть имеют большую высоту, то их потребуется меньше, а если секции маленькие, то биметаллический радиатор отопления будет достаточно широким.
Рекомендации
Часто для улучшения эстетичного вида устанавливают экраны для радиаторов отопления или вешают на оконные проемы шторы. Это также нужно учитывать и добавить к мощности радиатора 10%.
Выбирая нужный радиатор отопления нужно учитывать мощность установленного котла.
А именно, за основу берется характеристика теплового напора. Тепловой напор зависит от степени нагрева воды в системе отопления и качества отопительного процесса. Как правило, производители указывают в паспорте к биметаллическому радиатору отопления мощность соответственно тепловому напору 600С, исходная температура теплоносителя при этом около 900С.
Статьи по теме:
Как выбрать биметаллический радиатор отопленияБиметаллические радиаторы производства РоссияПравила расчета количества секций биметаллических радиаторов
Чаще всего биметаллические радиаторы владельцы приобретают для замены чугунных батарей, которые по той или иной причине вышли из строя или стали плохо обогревать помещение.
Чтобы эта модель радиаторов хорошо справлялась со своей задачей, необходимо ознакомиться с правилами расчета количества секций на все помещение.Необходимые данные для подсчета
Самим правильным решением станет обращение к опытным специалистам. Профессионалы могут рассчитать количество биметаллических радиаторов отопления довольно точно и эффективно. Такой расчет поможет определить, сколько секций понадобится не только для одной комнаты, но и для всего помещения, а также для любого типа объекта.
Все профессионалы учитывают следующие данные для подсчета количества батарей:
- из какого материала было построено здание;
- какая толщина стен в комнатах;
- тип окон, монтаж которых был произведен в данном помещении;
- в каких климатических условиях находится здание;
- есть ли в комнате, находящейся над помещением, где ставятся радиаторы, какое-нибудь отопление;
- сколько в комнате «холодных» стен;
- какая площадь рассчитываемой комнаты;
- какая высота стен.
Все эти данные позволяют сделать расчет наиболее точным для установки биметаллических батарей.
Коэффициент теплопотерь
Чтобы сделать расчет правильно, необходимо для начала посчитать, какие будут тепловые потери, а затем высчитать их коэффициент. Для точных данных нужно учитывать одно неизвестное, то есть стены. Это касается, прежде всего, угловых комнат. Например, в помещении представлены следующие параметры: высота – два с половиной метра, ширина – три метра, длина – шесть метров.Внешняя сторона здесь будет считаться объектом расчета, который можно произвести по такой формуле: Ф = a*х, где:
- Ф является площадью стены;
- а – ее длиной;
- х – ее высотой.
Также умножить на разницу температур в помещении и на улице, где:
- Р – это площадь теплопотерь;
- F является площадью стены в метрах квадратных;
- К – это коэффициент теплопроводности.
Для правильного расчета нужно учитывать температуру. Если на улице температура составляет примерно двадцать один градус, а в комнате восемнадцать градусов, то для расчета данного помещения нужно добавить еще два градуса. К полученной цифре нужно добавить Р окон и Р двери. Полученный результат нужно поделить на число, обозначающее тепловую мощность одной секции. В результате простых вычислений и получится узнать, сколько же батарей необходимо для обогрева одной комнаты.
Однако все эти расчеты правильны исключительно для комнат, которые имеют средние показатели утепления. Как известно, одинаковых помещений не бывает, поэтому для точного расчета необходимо обязательно учесть коэффициенты поправки. Их нужно умножить на результат, полученный при помощи вычисления по формуле. Поправки коэффициента для угловых комнат составляют 1,3, а для помещений, находящихся в очень холодных местах – 1,6, для чердаков – 1,5.
Мощность батареи
Это делается для того, чтобы сделать помещение теплее и не мерзнуть в холодные дни.
Производители биметаллических радиаторов указывают их мощность для некоторых данных системы отопления. Поэтому покупая любую модель, необходимо учесть тепловой напор, который характеризует, как нагревается теплоноситель, а также как он обогревает систему отопления. В технической документации часто указывают мощность одной секции для напора тепла в шестьдесят градусов. Это соответствует температуре воды в радиаторе в девяносто градусов. В тех домах, где помещения отапливают чугунными батареями, это оправданно, но для новостроек, где сделано все более современно, температура воды в радиаторе вполне может быть ниже. Напор тепла в таких системах отопления может составлять до пятидесяти градусов.
Расчет тут произвести тоже нетрудно. Нужно мощность радиатора поделить на цифру, обозначающую тепловой напор. Число делится на цифру, указанную в документах. При этом эффективная мощность батарей станет немного меньше.
Именно ее необходимо ставить во все формулы.
Популярные методы
Для вычета нужного количества секций в устанавливаемом радиаторе может быть использована не одна формула, а несколько.
Поэтому стоит оценить все варианты и выбрать тот, что подойдет для получения более точных данных. Для этого нужно знать, что по нормам СНиП на 1 м², одна биметаллическая секция может обогреть один метр и восемьдесят сантиметров площади. Чтобы посчитать какое количество секций понадобиться на 16 м², нужно разделить эту цифру на 1,8 квадратного метра. В итоге получается девять секций. Однако этот метод довольно примитивный и для более точного определения необходимо учитывать все вышесказанные данные.Существует еще один простой метод для самостоятельного вычисления.
Можно рассмотреть еще один вариант для квартиры с квадратурой в 20 м². Допустим, что мощность секции купленного радиатора – сто восемьдесят ватт. Тогда, подставляя все имеющиеся значения в формулу, получится такой результат: 20 нужно умножить на 100 и разделить на 180 будет равно 11, а значит, такое количество секций понадобится для отопления данного помещения. Однако такие результаты будут действительно соответствовать тем помещениям, где потолки не выше трех метров, а климатические условия не очень жесткие. А также не были учтены и окна, то есть их количество, поэтому к конечному результату необходимо добавить еще несколько секций, их число будет зависеть от количества окон. То есть в комнате можно установить два радиатора, в которых будет по шесть секций. При этом расчете была добавлена еще одна секция с учетом окон и дверей.
По объему
Чтобы сделать вычисление более точными, нужно провести расчет по объему, то есть учесть три измерения в выбранной отапливаемой комнате. Все расчеты делаются практически одинаково, только в основе находятся данные мощности, рассчитанной на один метр кубический, которые равны сорок одному ватту. Можно попробовать рассчитать количество секций биметаллической батареи для помещения с такой площадью, как в варианте, рассмотренном выше, и сопоставить результаты. В этом случае высота потолков будет равна двум метрам семидесяти сантиметрам, а квадратура помещения будет двенадцать квадратных метров. Тогда нужно умножить три на четыре, а потом на два и семь.
Результат будет таким: тридцать два и четыре метра кубических. Его надо умножить на сорок один и получится тысяча триста двадцать восемь и четыре ватта. Такая мощность радиатора будет идеально подходящей для отопления этой комнаты. Затем этот результат нужно разделить на двести, то есть число ватт. Результат будет равен шести целым шестидесяти четырем сотым, а значит, понадобится радиатор на семь секций. Как видно, результат расчета по объему намного точнее. В итоге не нужно будет даже учитывать число окон и дверей.
А также можно сравнить и результаты вычисления в помещении с двадцатью квадратными метрами. Для этого необходимо умножить двадцать на два и семь, получится пятьдесят четыре метра кубических – это объем помещения. Далее, нужно умножить на сорок один и в результате получится две тысячи четыреста четырнадцать ватт. Если батарея будет иметь мощность в двести ватт, то на эту цифру нужно разделить на полученный результат. В итоге выйдет двенадцать и семь, а значит для данной комнаты необходимо такое количество секций, как и в предыдущем расчете, но этот вариант намного точнее.
По площади
Если рассматривать вариант по площади, то он будет не так точен, как по объему. Для этого нужно перемножить ширину и длину, а этот результат умножить на мощность одной секции, то есть на сто ватт. Необходимо разделить на число равное теплоотдачи одной секции, которое может быть разным. Для примеров можно рассмотреть комнату в 18 м². Теплоотдачу секции батареи можно взять в двести ватт. Тогда нужно три умножить на шесть и еще раз на сто, а затем разделить на двести. В итоге получится девять секций. Такой результат подойдет для квартир, находящихся на средней полосе страны, то есть там, где температура зимой не будет превышать нормы температуры.
Можно сказать, что сделать расчет можно любым из рассмотренных способов. Однако самым точным и не таким долгим будет считаться вычисление по объему. Ведь в остальных случаях придется учитывать еще и отдельно другие параметры. Кроме того, результат далеко не всегда получается таким точным, как того хотелось бы. Для того чтобы с комфортом зимовать, важно правильно рассчитать количество секций биметаллических радиаторов так, чтобы даже в сильные холода владельцы квартир совсем не мерзли, а чувствовали себя уютно и комфортно.
Для этого достаточно следовать предложенным выше инструкциям по расчету и быть максимально внимательным во время работы.
О том, как выполнить установку биометаллических радиаторов своими руками, смотрите в видео ниже.
Сколько квт в 1 секции биметаллического радиатора — Дом своими руками
Отдача тепла радиаторов из биметалла отопления: таблица мощности и обозначение количества секций на 1 м2
Даже человеку с опытом бывает тяжело разпознать кто то может подумать металлический и биметаллический отопительные приборы.
Это ясно, так как верх у них полностью одинаков, однако если взять их в руки, то разница сразу почувствуется: вторые несколько сложнее первых, хотя намного легче чугунных.
Но, отличие между ними не только в весе. Вызвана она спецификой сооружения биметаллических батарей.
Характерность биметаллических радиаторов
Подбирая вид обогревательного прибора, потребители ориентируются на несколько показателей, которые указывают даже малоопытным новичкам, насколько устройство подходит или не подойдет для имеющейся системы обогрева. Среди них ключевыми считаются те, что отличаются техническими особенностями конструкции:
- Отдача тепла радиаторов из биметалла больше, чем металлических, за счёт встроенного изнутри стального сердечника. Хотя сталь не назовешь замечательным проводником тепла, так как ее показатель составляет всего 47 Вт/м*К, но обрамление из алюминия, который разогревается почти что очень быстро и имеет показатель отдачи тепла 200-236 Вт/м*К, создало из них хороших «партнеров».
- Долговечность конструкции является одной из очень продолжительных, и составляет 20-25 лет, о которых говорят изготовители. В действительности, аналогичные отопительные приборы могут работать без перебоев до пятидесяти лет и более. Связывают это с тем, что металлический кожух не граничит с тепловым носителем, а это означает, не ржавеет, чем в большинстве случаев «мучаются» батареи, полностью сделанные из этого металла.
- Мощность одной части радиатора из биметалла определяет, сколько потребителю нужно компонентов для любого отдельного помещения с учетом всех допустимых потерь тепла в нем. Если даже сделать самые элементарные расчеты по комнатной площади, установить отопительный прибор, а тепла не хватит, то нарастить еще одну – две части можно практически в любое время. То же самое, если в помещении переизбыток тепла, их можно разобрать.
- Противостояние мощным гидравлическим ударам, которыми «страдает» централизованная нагревательная система, это один из довольно значительных параметров, дающий возможность использовать батареи из биметалла в домах многоквартирных.
Примечательно, но строение отопительных приборов данного типа ликвидирует еще 1 большой минус остальных видов обогревательных приборов: им не страшен состав и качество носителя тепла. Если для алюминия, к примеру, требуется чистейшая вода с некоторым уровнем Ph, которую нереально обеспечить в общегородской системе отопления, то стальные коллекторы изнутри биметаллических батарей готовы «сотрудничать» с любым типом тепловых носителей.
Понятие отдачи тепла
Чтобы разобраться, сколько кВт в 1 части радиатора из биметалла, следует с самого начала понять, что такой параметр значит.
Такие термины, как поток тепла или мощность, являются определением количества тепла, которое выделяет отопительный прибор за определенный срок. Так отдача тепла одной части радиатора из биметалла равна 200 Вт.
Большинство производителей используют в обозначении мощности батареи не Ватты, а кол-во выделяемых калорий в час. Во избежание недоразумений, следует перевести данный показатель, если исходить из соотношения 1 Вт = 859,8 кал/ч.
Если сопоставлять батареи из различных видов металлов, то не только отдача тепла будет у них различная, но и другие основные параметры. Ниже приведена таблица отдачи тепла радиаторов из биметалла по сравнению с чугунными, стальными и металлическими подобиями. И нее видно, что во всем такой вид батарей – это прекрасный «кандидат» для установки в домах с централизованной системой отопления.
В основном, определяясь с обогревательным прибором, необходимо взять во внимание не только то, с какой системой обогрева он будет работать, но и способ подсоединения. Даже точно зная, сколько кВт в одной части радиатора из биметалла и произведя все расчеты, количества компонентов в готовой системы может не хватить для хорошего обогревания помещения. Связывают это с тем, что потребители либо не знают, либо просто забывают предусматривать способ подсоединения батареи к сети.
Так нижнее подключение дает возможность скрыть все трубы в пол или стенку, однако при этом «съедает» до 20% тепла. Если этого не взять во внимание, когда выполняется расчет секций радиаторов из биметалла, то в комнате будет холодно. Это абсолютно не все нюансы, которые нужно брать во внимание перед приобретением отопительных батарей.
Размер и объем одной части
Мощность радиатора из биметалла прямо связана с его размером и емкостью. Потребителям прекрасно известно, что, чем меньше носителя в батарее, тем он экономично и эффектнее не прекращает работу. Связывают это с тем, что небольшое кол-во такой же воды нагревается намного быстрее, чем, когда ее много, а это означает и электрической энергии будет потрачено меньше.
В зависимости от межосевого расстояния, объем отопительных приборов колеблется:
- При 200 мм – 0.1-0.16 л.
- Межосевое расстояние 350 мм имеет от 0.17 до 0.2 л.
- При параметре 500 мм – 0.2-0.3 л.
Зная, к примеру, емкость и мощность части радиатора из биметалла 500 мм, можно высчитать, сколько носителя тепла понадобится для определенного помещения. Если конструкция состоит из 10 секций, то в них уместится от 2 до 3 литров воды.
В точках продажи устройства показаны готовыми моделями радиаторов из биметалла, которые состоят из 8, 10, 12 или 14 секций, но потребители, очень часто, любят приобретать любой компронент в отдельности.
Расчет количества секций по размерам и площади
Чтобы в доме либо квартире было действительно тепло, необходимо заблаговременно высчитать численность секций радиатора из биметалла на 1 м2. Наиболее простой и примерный способ, как это осуществить, сделать вычисления по комнатной площади. Формула выглядит так:
N – это необходимое кол-во части;
S – площадь помещения;
P – кВт в части радиатора из биметалла.
К примеру, для комнатки площадью 3х4 м2 понадобится:
3х4 м2х100/200Вт = 6 (12 м2х100/200Вт).
Подобным образом, для такой небольшой комнатки понадобится 6 секций, но необходимо взять во внимание, что аналогичное вычисление примерное. Если у нее одна или две фасадные стены или в ней имеется балкон или окно, все это снизит параметры мощности отопительного прибора, так как часть тепла просто будет ими «съедаться».
Дабы получить более правильные данные, понадобится взять во внимание потолочную высоту, оконное размещение, способ подсоединения отопительного прибора, наличие стен с внешней стороны и качество их утепления.
Подобным образом, отдача тепла радиаторов из биметалла отопления зависит от нескольких показателей, которые, сведя вместе, дадут полную картину того, сколько секций требуется для помещения конкретной площади.
Как говорит практика применения радиаторов из биметалла в жилых площадях с централизованным обогревом, правильно рассчитанная мощность и установка нужного количества секций дает возможность не только качественно нагреть комнату, но и сильно экономить на оплате услуг ЖКХ.
Когда предстоит замена устаревших батарей из чугуна на конструкции из биметалла, профессионалы рекомендуют применять то же численность секций, что было в старой системе. Это продиктовано тем, то для любого определенного помещения когда-то уже производились расчеты количества секций по их мощности с учетом потерь тепла.
Так как биметалл превосходит мощностью чугун, то такое же кол-во компонентов сделает необходимый климат в помещении без увеличения электро расходов. Этот подход экономит время на выполнение расчетов, так что потребителю остается лишь определиться с размерами устройства и местом, где оно будет монтироваться.
Мощность 1 части радиатора из биметалла
Сегодня предлагаю побеседовать о мощности 1 части радиатора из биметалла. Про алюминий и чугун мы уже рассказывали, наступила очередь биметалла. Биметалл по собственным свойствам очень схож на алюминий и благодаря этому их мощность почти что схожа …
Напомню биметалл — это сравнительно новый материал отопительных батарей, который состоит из 2-ух металлов стального сердечника изнутри и металлического корпуса сверху. Подобное комбинирование призвано первым делом, работать с высоким давлением в отопительных приборах, до 40 атмосфер.
По существу, биметалл это доработанный радиатор из алюминия. Однако использование стального сердечника несколько ухудшает отдачу тепла отопительного прибора. Не гораздо разумеется, но факт остается фактом.
Радиаторы из биметалла как именно и металлические поставляются по большей части в 2-ух форматах. Высотой в 500 мм и высотой в 350 мм.
Отопительный прибор высотой 500 ммТиповый радиатор из биметалла конкретно такой монтируется в сотнях квартир в Российской Федерации. Мощность одной части подобного отопительного прибора, по заверению изготовителя меняется от 170 до 210 Вт энергии тепла. Однако по сути, после разговора с монтажниками, необходимо рассчитывать мощность 1 части в 150 Вт энергии тепла. Ведь изготовители всегда чуть-чуть завышают характеристики (вымеряют при прекрасных условиях, особенно китайские).
Отопительный прибор высотой в 350 ммЭто уменьшенная версия отопительных приборов ставится либо рядом с большими окнами. Либо в местах куда сложно добраться. Мощность такой части, по паспорту меняется от 120 до 150 Вт энергии тепла. На деле стоит ждать даже от отличного изготовителя около 100 — 120 Вт тепла.
Как говорят мне монтажники – всегда необходимо брать батареи чуть – чуть с запасом, а иначе температура в комнате будет не удобной (будет холодно).
Разумеется, всегда необходимо правильно рассчитывать батареи отопления (прочтите в данной заметке там по полкам). Тогда дома будет тепло и удобно.
Какое кол-во квт в отопительном приборе: расчеты, кол-во
Дабы теплоснабжение дома было эффективным, направляться приобрести высококачественные его детали. Перед этим — выполнить верный расчет их мощности.
Вычисления изготавливаются с учетом:
- комнатной площади;
- высоты ее потолка;
- числа окон,
- длины помещения;
- изюминок климата в регионе.
Определить продуктивность устройств возможно самостоятельно. Для этого необходимо знать, сколько кВт в 1 части отопительного прибора из алюминия либо чугунного, стального, биметаллического аналога.
Правильный выбор
- Продуктивность отопительных устройств обязана составлять 10% от комнатной площади, если например высота ее потолка создает менее трех метров.
- Если он больще, то добавляются 30%.
- Для торцевого помещения необходимо добавить еще 30%.
Необходимые расчеты
По завершении определения тепловых утрат нужно выяснить продуктивность прибора (какое кол-во кВт в стальном радиаторе или других устройствах должно быть).
- Например, необходимо отопить помещение, площадью 15 м? и потолочной высотой 3 м.
- Находим его кол-во: 15•3=45 м?.
- Инструкция говорит, что для обогревания 1 м? в условиях Средней полосы России необходимо 41 Вт тепловой продуктивности.
- Значит, кол-во комнаты перемножаем на эту цифру: 45•41=1845 Вт. Такую мощность обязан иметь отопительный отопительный прибор.
Нужно обратить внимание! Если например жилье находится в регионе с жёсткими зимами, необходимо взятую цифру помножить на 1.2 (показатель потери тепла). Итоговая цифра будет составлять 2214 Ватт.
Кол-во ребер
Потом необходимо определить количество секций в батарее. В руководствах к изделиям указывается параметр каждого их ребра.
Из нее вы установите, сколько кВт в одной части радиатора из биметалла и металлического аналога – это 150-200 Вт. Возьмём большой параметр и поделим на него неспециализированную необходимую мощность в нашем примере: 2214:200=11.07. Значит, чтобы обогреть жилую площадь необходима батарея из 11 секций.
Теплопроизводительность
В комнате отопительные устройства устанавливаются у наружной стены под проемом окна. Благодаря этого, излучаемое прибором тепло делится приемлемо. Холодный пространство с воздухом, поступающий от окон, блокируется нагретым потоком, идущим наверх от отопительного прибора.
Чугунные батареи
Чугунные аналоги имеют такие плюсы:
- владеют длительным рабочим ресурсом;
- имеют высокий уровень прочности;
- они стойки к поражению коррозией;
- прекрасно подойдут для использования в коммунальных системах, работающих на низкокачественном теплоносителе.
- сейчас изготовители делают радиаторы из чугуна (цена их больше, чем обычных заменителей), имеющие усовершенствованный внешний вид, благодаря использованию передовых технологий отливки их корпусов.
Минусы изделий: огромная масса и тепловая инерционность.
Нижняя таблица озвучивает, сколько кВт в радиаторе из чугуна, если исходить из его модели.
Нужно обратить внимание! Дабы отопить комнату, площадью 15 м?, мощность, проще говоря кВт радиатора из чугуна, обязано быть как минимум 1.5. Говоря иначе, батарея обязана складываться из 10-12 секций.
Отопительные приборы из алюминия
Изделия из алюминия имеют огромную теплопроизводительность, чем аналоги из чугуна. При вопросе о том, сколько кВт в одной части отопительного прибора из алюминия, специалисты отвечают, что она доходит до 0.185-0.2 кВт. В конце концов для нормативного уровня прогревания пятнадцатиметрового помещения хватит 9-10 секций металлических секций.
Плюсы подобных устройств:
- не тяжелый вес;
- прекрасный дизайн;
- высокий уровень теплопередачи;
- температурой возможно руководить собственными руками с помощью термостатических вентилей.
Но изделия из алюминия не имеют такой прочности, как аналоги чугунные, например масляный отопительный прибор 2 кВт. Если из этого исходить они восприимчивы к скачкам рабочего давления в системе, на гидравлике ударам, излишне высокой температуре носителя тепла.
Нужно обратить внимание! В то время, когда возле воды уровень рН (кислотность) очень высокий, алюминий выделяет приличное количество водорода. Это очень пагубно влияет на наше здоровье. Если из этого исходить, подобного рода устройства необходимо применять в обогревательной системе, тепловой носитель в которой владеет нейтральной кислотностью.
Биметаллические изделия
Прежде чем узнать, сколько кВт в 1 части радиатора из биметалла, направляться взять во внимание, что подобные батареи владеют похожими рабочими параметрами с металлическими подобиями. Однако у них нет минусов, им отличительных.
Это мероприятие обусловила конструкция устройств.
- Они складываются из бронзовых или труб из стали, по которой протекает тепловой носитель.
- Трубки запрятаны в металлическом пластинчатом корпусе. В конце концов вода, циркулирующая изнутри, с алюминием корпуса не взаимодействует.
- Если из этого исходить, кислотные и механичные характеристики носителя тепла на работу и состояние прибора никоим образом не влияют.
Благодаря стали труб устройство имеет высокопрочность. Очень высокую отдачу тепла снабжают наружные алюминиевого ребра. Пробуя определить, сколько кВт в стальном радиаторе, имейте в виду, что биметалл имеет наивысшую отдачу тепла — около 0.2 кВт на одно ребро.
Узнав, сколько кВт в 1 части радиатора сделанного из стали или аналога из иного металла, вы сумеете определить теплопередачу получаемой продукции. Это разрешит вам облагородить эффективную систему отопления в собственном жилье.
Видео в этой публикации продолжает воочию сообщать вас по теме.
Расчет радиаторов отопления Часть 1
Навигация по записям
Биметаллические радиаторы отопления — технические характеристики: размеры, мощность, теплоотдача
Если вы читали нашу статью о характеристиках алюминиевых радиаторов, то, наверное, помните, что при всех своих положительных качествах эти приборы обладают рядом существенных недостатков, которые не позволяют полноценно использовать их в городских квартирах. Сейчас мы поговорим об их биметаллических аналогах, которые помогут преодолеть все технические ограничения при установке в многоэтажных жилых домах, подключенных к коммунальным сетям отопления.
Устройство биметаллических радиаторов
Биметаллический радиатор внешне выглядит так же, как и алюминиевый. Это и понятно: его внешний корпус сделан из того же металла и покрашен такой же краской. Отличить его можно только по весу – тут уже сказывается внутреннее строение прибора, внутри которого находятся стальные вставки, защищающие алюминий от прямого контакта с теплоносителем. Именно благодаря им секции батареи не подвергаются разрушительному действию различных примесей, которые переносятся вместе с теплоносителем в коммунальной сети. Кроме того, сталь гораздо более устойчива к действию кислот и щелочей, которыми также богаты городские системы отопления и не вступает во взаимодействие с медными трубами и теплообменниками.
Устройство биметаллического радиатора на примере изделия компании RifarПрименение стального сердечника для прохождения теплоносителя обеспечивает и другие полезные характеристики биметаллических радиаторов:
- Прочность. Предельное давление, которое может выдержать корпус биметаллического радиатора, – 30-40 атмосфер. Такому прибору не страшны никакие гидроудары;
- Экономичность. Сужение каналов подачи теплоносителя позволяет добиться оптимального сочетания расхода энергоресурсов на обогрев и тепловой инертности радиатора;
- Долговечность. Устойчивость стальных внутренних полостей к коррозии и разрушению позволяет производителям устанавливать длительный срок службы на свои изделия – в среднем до 20 лет.
Если добавить сюда плюсы, перешедшие от алюминиевых моделей, такие как высокая теплоотдача, элегантный внешний вид и компактные размеры, можно определенно сказать, что биметаллические радиаторы являются лучшим выбором для отопления городской квартиры на сегодняшний день.
Размеры
Для выбора биметаллического радиатора большое значение имеют его габаритные размеры. Обычно приборы отопления устанавливаются под окном, для того чтобы создать тепловую завесу холодному воздуху, проходящему через остекление. Радиатор должен поместиться в имеющуюся нишу и обеспечить необходимые характеристики по теплоотдаче.
Размеры радиаторов отопления по высоте имеют стандартные значения. Выпускаются приборы с межосевым расстоянием 200, 350 и 500 мм. Обычно эти цифры содержатся в наименовании модели.
Размеры секции радиатораОднако следует иметь в виду, что межосевое расстояние – это не полная высота корпуса, а только лишь длина отрезка между центрами входного и выходного коллекторов. Реальную высоту устройства можно получить, прибавив к межосевому расстоянию 80 мм.
Так, например, радиатор с маркировкой 350 займет примерно 430 мм, а 500-я модель – примерно 580 мм.
Необходимо иметь в виду, что технические нормы предусматривают расстояние не менее 100 мм от корпуса прибора до подоконника и не менее 60 мм от корпуса до пола.
Ширина батареи зависит от количества секций, которое определяется расчетным путем. Об этом мы поговорим в следующем разделе.
Расчет радиатора
Определение количества секций для всех типов радиаторов проводится одинаково.
Технические требования к отоплению домов в средней полосе России определяют мощность, необходимую для обогрева 1 м2 площади, равной примерно 1 кВт.
Для каждой батареи производитель обычно указывает значение мощности одной секции. Иногда этот параметр называется немного по-другому – теплоотдача секции. Зная мощность, количество секций можно вычислить по формуле:
N=S*100/Q,
где N – искомое количество, S – площадь помещения, Q – мощность одной секции.
Стандартная ширина секции большинства моделей биметаллических радиаторов равна 80 мм, теплоотдача обычной 500-миллиметровой секции – около 180 Вт. Таким образом, если наша комната, например, имеет площадь 20 м2, то для ее отопления понадобится 12 секций, а ширина такого радиатора составит около 1 м.
Конструктивные особенности
Как мы уже говорили, отличие биметаллического радиатора от алюминиевого состоит в том, что по его внутренней поверхности проложены стальные вкладки, защищающие материал корпуса от коррозии.
Стальные вкладки могут устанавливаться в разных частях радиатора:
- Различные типоразмеры радиаторов из биметалла
В простых моделях стальная сердцевина присутствует только в вертикальных каналах. Это так называемые полу- или псевдобиметаллические радиаторы, их характеристики хотя и превосходят алюминиевые аналоги, но степень защиты корпуса и прочность у них все же недостаточна;
- Более дорогие радиаторы представляют собой цельный стальной каркас, который под давлением заливается алюминием. Это настоящий биметалл, и именно такие батареи рекомендуется устанавливать в городских квартирах.
Емкость секции и присоединительные размеры
Благодаря наличию стальных вставок внутри биметаллического радиатора, емкость секции у него еще меньше, чем у алюминиевого. С одной стороны, это хорошо, и мы уже отмечали, чем лучше небольшие размеры секции – это снижение необходимого количества теплоносителя и тепловой инертности, а в результате – комфорт в управлении и экономия энергии. Но не надо забывать, что слишком узкие каналы могут засоряться мусором и шламом, которые неизбежно присутствуют в современных отопительных сетях.
Ширина канала зависит от толщины стенок стальной вкладки. Чем толще стенки, тем лучше характеристики прочности и долговечности радиатора, но тем уже каналы для теплоносителя.
Хороший биметаллический радиатор имеет стальные вставки толщиной со стенку водопроводной трубы. При этом емкость секции зависит от межосевого расстояния:
- Для батареи с расстоянием 200 мм – 0,1-0,16 л;
- Для 350-мм батарей – 0,15-0,2 л;
- Для 500-мм – 0,2-0,3 л.
Как мы видим, объем теплоносителя у таких радиаторов действительно небольшой. Например, популярный 10-секционный нагреватель RIFAR высотой 350 мм вмещает всего 1,6 л. При этом он способен обогреть площадь до 14 м2, а его ширина – 80 см. Правда, весить он будет 14 кг. Это как раз и говорит о том, что радиатор биметаллический – обычно они тяжелее алюминиевых в 1,5-2 раза.
Большинство биметаллических радиаторов продается по одной секции. Это удобно, т. к. можно купить ровно столько секций, сколько нужно, чтобы обеспечить требуемую мощность. Каждая секция имеет два входных и два выходных отверстия внутренним диаметром ¾ или 1 дюйм в зависимости от модели. Для удобства сборки два из них имеют правую резьбу, а два – левую.
Рекомендации по выбору биметаллического радиатора
Устанавливать биметаллический радиатор имеет смысл только в городскую квартиру. Если у вас частный дом и собственный котел отопления, лучше купить алюминиевую батарею.
При выборе биметаллического радиатора с нужной теплоотдачей рекомендуется принимать во внимание следующие характеристики:
- Рабочее давление. Оно обычно не превышает 15 атмосфер. Радиатор должен выдерживать такую нагрузку;
- Мощность. Необходимо рассчитать количество секций по приведенной выше методике;
- Размеры. Ширина радиатора определяется количеством секций, а высота – межосевым расстоянием. Для стандартных подоконников высотой 80 см подойдет 500-я модель, если же она не помещается – нужно брать 350-ю модификацию;
- Толщина стальных вкладок. Убедитесь в том, что она не слишком маленькая. Косвенным показателем толщины вкладок является вес прибора;
- Цена. Обычно биметаллические радиаторы стоят как минимум на 15-20% дороже алюминиевых.
Если вы все сделаете правильно и выберете подходящий радиатор, тепло в вашем доме не будет в дефиците даже в сильные морозы.
Радиаторы отопления RADIKO
28.03.2014, Опубликовано в Статьи
Покупая в квартиру радиаторы отопления, вы руководствуетесь мощностью отопительного прибора, репутацией его производителя, дизайном и личными предпочтениями. Но чтобы правильно выбрать, необходимо много информации, на основании которой требуется сделать соответствующие выводы. В России в среднем на один квадратный метр требуется 50-100 Вт мощности отопительного прибора. Расчет потребности в определенной мощности теплового источника производится с учетом климатических особенностей района, где располагается жилье. После вычисления потребности в мощности отопительного прибора подбирается соответствующий радиатор отопления.
Мощность одной секции радиатора отопления
Мощность одной секции радиатора отопления определяется материалом, из которого изготовлена секция, конструкцией ее, габаритными размерами. Основные характеристики материала, из которого изготовлены радиаторы отопления – тепловая инертность и теплоемкость. Радиаторы могут быть различных размеров. Высота радиатора определяется их межосевым расстоянием. Самое распространенное межосевое расстояние радиатора – 500 мм. Наименее часто встречаются приборы с межосевым расстоянием 350 мм. Чем больше размеры радиатора, тем больше мощность секции.
Если рассматривать теплоотдачу от секции радиатора, то ее можно разделить на три составляющие – теплопроводность, конвекцию, излучение. Эти характеристики отличаются в различных конструкциях секции. Насколько интенсивным будет тепловое излучение от прибора, зависит от температуры его поверхности. Поэтому общая площадь контакта радиатора с теплоносителем должна быть как можно больше. Конвекционная составляющая зависит линейно от температуры. Для ее увеличения необходимо увеличивать поверхность снятия тепла – для этого применяется оребрение, увеличивающее площадь теплоотдачи. Также усилению конвекции способствует увеличение высоты ребер.
Коэффициент теплоотдачи сектора радиатора определен в технической документации, приложенной к отопительному прибору. Данный технический показатель зависит также от качества теплоносителя – температуры, скорости движения, давления, наличия краски.
Чугунные радиаторы
Средняя теплоотдача чугунной секции радиатора отопления около 100 Вт, если температура теплоносителя стандартная. Например, если площадь комнаты 20 квадратных метров, то чугунные секционные батареи в данном случае используются на 20 секций. В зависимости от степени теплопотерь в помещении и количества окон может быть установлено 2 радиатора по 10 секций или 3 радиатора по 7 секций.
Чугунные отопительные приборы в целом компактные, не боятся ржавчины, выдерживают высокое давление в системе. Большая теплоемкость чугунной батареи определяется большим объемом теплоносителя, массивностью самого чугуна. Благодаря высокой тепловой инертности, температура в помещении постепенно медленно снижается и повышается.
Алюминиевые радиаторы
Ранее считалось, что лучшими радиаторами являются чугунные, но современные отопительные приборы из алюминия и биметалла гораздо эффективнее. Эффективность секции алюминиевого радиатора отопления сегодня выше, чем у самых лучших чугунных, хотя они все же уступают чугуну по времени удержанию тепла.
Биметаллические радиаторы
Современные биметаллические радиаторы отопления значительно эффективнее старых чугунных. Если взять батареи одинакового размера чугунные и биметаллические, то мощность секции биметаллического радиатора выше, чем чугунного. Она составляет 150-180 Вт. Теплоотдача биметаллического радиатора может быть отрегулирована при помощи крана, перекрывающего подачу теплоносителя. Теплоотдающие свойства биметаллического радиатора со временем ухудшаются. Обычно при замене чугунных радиаторов на биметаллические в новых батареях ставят количество секций нового радиатора на 1-2 больше.
Чтобы произвести более уточненный расчет биметаллического радиатора для отопления конкретного помещения, требуется учесть такие параметры, как теплоизоляционные свойства окон и дверей, потолка, пола, стен, климатические особенности данной местности, параметры отопления.
Мы рассмотрели, от чего зависит мощность одной секции радиатора. Понятно, что она не будет одинаковой у разных производителей, даже если выполнены из одного материала по схожей технологии. Каждый производитель имеет собственные секреты, особенности конструкции приборов, способные увеличить площадь теплоотдачи или излучающую составляющую теплового потока. Мы рекомендуем при покупке больше ориентироваться на сведения, поданные в технической документации, и на репутацию производителя. А еще лучше – прибегнуть к услугам профессионального консультанта при замене радиатора.
Как рассчитать количество секций радиаторов отопления в квартиру или частный дом
Один из самых важных вопросов при обеспечении комфортных условий проживания в жилом помещении круглый год – это сбалансированная и правильно просчитанная по мощности отопительная система. Стандартная схема: контур центрального отопления или автономное оборудование с радиаторами, в качестве основных приборов отопления. Многие при выполнении ремонта или возведении нового дома поверхностно относятся к организации тепла в доме, выбирая для больших комнат просто более массивные радиаторы. Однако для комфортного микроклимата и защиты от самых серьезных морозов необходимо учитывать массу параметров, включая теплоотдачу радиаторов, площадь помещения, планировку и т. д. Именно потому часто наши клиенты спрашивают, сколько секций алюминиевого или биметаллического радиатора ставить, чтобы в помещениях было по-настоящему тепло и комфортно.
Влияние типов радиатора на отопительную систему
Все технологические расчеты основываются на СНиП и должны выполняться специалистами в виду их сложности. Однако расчет количества секций на площадь отапливаемого помещения можно осуществить самостоятельно, если правильно учесть несколько наиболее важных нюансов. Конечно, начинать расчет секций следует, исходя из типа используемых радиаторов, поскольку их характеристики и теплоотдача существенно отличаются.
Рассчет кол-ва секций алюминиевого радиатора
Легкие, эстетичные, экономичные алюминиевые радиаторы на сегодня являются наиболее востребованными при обустройстве автономных систем отопления. Теплоотдача секции алюминиевого радиатора достигает 190 Вт, при значительно меньшей емкости относительно чугунных аналогов (0,5 л против 1-1,4 л, в зависимости от того, какая высота секционного радиатора).
Стандартный метод расчета на 1 м.кв. 100 Вт. алюминиевого радиатора.
1 секция дает 160-190 Вт.
Пример: на комнату 15 м.кв.*100Вт=1500 Вт./190Вт. (одна секция) = 7,8 секций радиатора необходимо для комнаты 15 м.кв.
На нашем сайте в каждом товар уже существует калькулятор, с выбранным количеством секций и сразу же отображаются размеры конкретного радиатор, теплоотдача и обогреваемая площадь.
Также, вы можете напрямую задать в наших фильтрах нужную площадь помещения, и сайт вам автоматически выдаст необходимые радиаторы с нужным количеством секций.
Расчет кол-ва секций биметаллического радиатора
Такие типы радиаторов сочетают лучшие качества обоих конкурентов. Внутренняя поверхность радиатора выполнена из стали, что делает их невероятно надежными, стойкими к коррозии, перепадам давления и высоким температурам. А алюминиевый наружный слой увеличивает теплоотдачу. Выполняя расчет количества секций биметаллического радиатора, учитывайте, что теплоотдача одной достигает рекордных 200 Вт. Стальная часть радиатора выполнена из антикоррозийного сплава, как и соединительные муфты. Алюминиевые части не соприкасаются с теплоносителем, благодаря чему биметаллические радиаторы – рекордсмены по стойкости к коррозии, долговечности и надежности.
Расчет берется из показателя 80 Вт на 1 м.кв. Если ваше помещение 22 м.кв. то расчет такой:
22 (м.кв.) * 80 (Вт на секцию) =1760 Вт необходимо для обогрева помещения.
В среднем одна секция батареи отдает 180 Вт. 1760/180=9,77 секций для помещения. Рекомендуем округлять в сторону увеличения. Итого вам понадобится 10 секций радиатора.
Расчет кол-ва секций чугунного радиатора
Именно такие тепловые устройства знакомы большинству жителей постсоветских стран. Это массивные и тяжелые устройства, которые в большинстве случаев не отличаются изящным дизайном, но имеют хорошую теплоотдачу и долго удерживают тепло. Выполняя расчет чугунных батарей отопления, учитывайте, что одна секция радиатора старого образца обеспечивает теплоотдачу в 160 Вт. Максимальное количество секций в нем не ограничено, что допускает монтаж в помещении любой площади и конфигурации. Свойства чугуна обеспечивают высокую теплоемкость батареи и длительную отдачу тепла:
- Монтаж такого оборудования требует обустройства надежных и прочных крепежей, а из-за большого объема увеличивается расход энергии.
- Толстые стенки из чугуна устойчивы к коррозийному воздействию, механическим ударам. Потому данные устройства подходят для комплектации как центральных, так и автономных систем, что несколько упрощает подбор и расчет теплоотдачи радиатора.
- Об эстетической стороне вопроса переживать не стоит, современные модификации чугунных батарей выглядят не хуже аналогов.
- Чугунные батареи при правильном монтаже и уплотнении соединений не боятся гидроударов, перепадов температур и контакта с низкокачественным теплоносителем.
Основные способы расчета
Чтобы в квартире или доме было по-настоящему тепло, следует обязательно учитывать другие внешние факторы, включая уровень теплоизоляции в помещении, количество окон и дверей и т. д. Однако наиболее простым способом определить, какая батарея отопления нужна, считается расчет по габаритам помещения.
Метод №1. По площади
По старым сантехническим стандартам минимальная мощность радиаторов для отопления для региона с умеренным климатом составляет 100 Вт на 1 м2 жилой площади. Исходя из этого берут 1 секцию радиатора на 1-1,5 квадрата. Более точный расчет можно получить, если учитывать теплоотдачу секции.
К примеру, для комнаты в 12 м2 при установке алюминиевых радиаторов формула расчета будет следующей:
К=20*100Вт (рекомендуемая мощность на 1 м2)/190Вт (мощность одной секции) = 10,5 (11 секций).
Однако данный стандартный расчет на комнату (квартиру) подходит для помещений с высотой потолков до 3 м и не учитывает количество окон и дверей, степень утепления и другие параметры, а потому мощности может не хватить.
Метод №2. По объему воздуха
Расчет количества секций алюминиевых радиаторов, биметаллических и чугунных батарей данным методом более точен. Алгоритм подсчета такой же, как и в предыдущем варианте, однако в этом случае учитывается еще и высота потолка, а стандарт берется в 1 м3. Норма составляет 41 Вт на 1 м3.
Рассчитать параметры оптимального алюминиевого радиатора для такой же площади, можно в 3 этапа:
- Вычисляем общий объем воздуха: 20м2*2,7м (высота потолка) = 54 м3.
- Определяем полную мощность нужной батареи: 54м3*41м3 (рекомендуемое значение на 1 м3) = 2214 Вт.
- Рассчитываем количество секций: 2214/190 = 11,65 (на одну секцию больше).
По данной формуле выходит, что лучше установить радиатор с 7 секциями, а значит, метод более точен.
Расчет количества секций для частного дома
Для частного дома расчитывается кол-во секций аналогично как и для квартиры. В среднем, если не углублятся в качество утепления, то берутся номинальные значения нормы, 80-100 Вт. на 1 м.кв. Если же утепление сделано не должным образом, согласно принятых стандартов, то и показатель ватности на метр квадратный будет другой.
Расчет количества секций для квартиры
Для квартиры все предельно просто, в условиях сегодняшнего энерго сбережения и качественного утепления фасадов зданий. Расчет берется из показателя 80Вт на 1 м.кв. Тоесть если ваша комната 15 м.кв. то расчет такой:
17*80=1360 Вт необходимо для обогрева помещения.
В среднем одна секция батареи отдает 180 Вт. 1360/180=7,55 секций для помещения. Рекомендуем округлять в сторону увеличения. Итого вам понадобится 8 секций радиатора.
Что учитывать еще?
Стандартные формулы актуальны для просчета теплоотдачи радиаторов в условиях умеренного климата со средним уровнем утепления стен. Для получения более точных результатов стоит брать во внимание следующие параметры:
- Если комната угловая, то полученный результат рекомендуется умножить на 1,3.
- Добавить к полученному значению коэффициент климатической зоны. Украина целиком находится в умеренной климатической зоне, но для северных регионов рекомендуется использовать коэффициент 1,3-1,6.
- Условно за каждое дополнительное окно следует добавлять 100 Вт, а дверь – 200 Вт.
- Для частных домов используют коэффициент 1,5, чтобы компенсировать потери тепла от холодных подвальных помещений и чердака.
Используя наш калькулятор расчета количества секций радиаторов отопления, вы сможете быстро определить нужную конфигурацию. Для подробной консультации и грамотного подбора отопительного оборудования обращайтесь к специалистам.
Расчет мощности и количества секций
Расчет радиаторов (батарей) для отопления
Радиаторы являются наиболее распространенным отопительным прибором, применяемым в жилых, промышленных и общественных зданиях. Они представляют собой полые нагревательные элементы, которые постоянно заполняются водой. Важными техническими характеристиками, на которые следует обратить внимание при покупке радиатора, являются его рабочая мощность и давление. Перед установкой отопительного оборудования нужно тщательно продумать до мелочей: планируемый материал радиатора, его дизайн и бюджет.Дальнейший расчет радиаторов отопления должен заключаться в определении количества радиаторов и их секций и необходимой мощности для обогрева помещения.
Содержание
- Расчет — основа для грамотного выбора
- Расчет мощности батареи
- Коэффициенты коррекции мощности
- Сколько секций необходимо для обогрева
Расчет — основа для грамотного выбора
Огромное количество отопительные батареи с различными техническими характеристиками представлены на современном рынке.
После выбора оборудования, наиболее подходящего под дизайн помещения и собственные требования, можно приступать к расчету отопительных батарей. Для этого вам потребуются:
Кроме того, необходимо ознакомиться со свойствами выбранного источника тепла и узнать мощность одной секции радиатора.
Мощность одной секции биметаллического радиатора составляет 122 Вт
Перед тем, как рассчитать количество секций радиаторов отопления, необходимо рассчитать необходимую мощность для обогрева помещения.
Расчет мощности аккумулятора
Сначала определите площадь помещения. Для этого просто умножьте ширину комнаты на ее длину. Для удобства расчета все измерения ведутся в метрах. После измерения высоты потолка необходимо рассчитать количество дверей и окон, определить материал, из которого они сделаны, узнать расположение квартиры и самую низкую температуру наружного воздуха зимой. К тому же расчет мощности радиаторов отопления требует знания температуры теплоносителя.
Согласно СНиП, для обогрева каждого квадратного метра жилой площади требуется 100 Вт мощности обогревателя. Следовательно, чтобы рассчитать необходимую мощность, необходимо умножить общую площадь помещения на 100 Вт и скорректировать полученное значение с помощью специальных коэффициентов увеличения и уменьшения мощности.
Коэффициенты коррекции мощности
Сначала рассмотрим коэффициенты снижения мощности
- Если в помещении установлены пластиковые стеклопакеты, полученное значение следует уменьшить на 20%.
- При высоте потолка менее трех метров мощность уменьшается на коэффициент, который рассчитывается как отношение фактической высоты к установленной по стандартным стандартам (в данном случае 3 метра). То есть, если высота потолка 4 метра, то коэффициент уменьшения будет 4/3 = 1,33
- При температуре отопительного котла выше нормы каждые 10 «лишних» градусов приводят к снижению мощности на 15%. .
Наличие стеклопакетов на окнах позволяет снизить мощность, необходимую для достаточного обогрева, на 20%.
Коэффициенты увеличения мощности
- Для потолков выше трех метров мощность должна быть увеличена в раз, расчет которых проводится аналогично расчету для потолков высотой менее трех метров.
- Если квартира имеет угловое расположение, мощность увеличивается в 1,8 раза.
- Если в комнате более двух окон, мощность также увеличивается в 1,8 раза.
- При нижнем подключении радиаторов вводится коэффициент увеличения 8%.
- На каждые 10 градусов охлаждающей жидкости ниже нормы мощность увеличивается на 17%.
- При очень низких зимних температурах мощность следует увеличить в 2 раза.
Совет: при расчете учитывайте возможность различных случайных факторов, для этого значение необходимой мощности следует увеличить еще на 20%.
Мощность одной секции чугунного радиатора 160 Вт
Сколько секций нужно для отопления
Рассчитать радиатор на комнату можно несколькими способами:
- Расчет секций радиаторов отопления, обычным способом. После расчета необходимой мощности для обогрева полученное значение делится на мощность одной секции (эта величина указывается в технических характеристиках). Например, мощность радиатора составляет 200 Вт, а необходимая мощность для обогрева помещения — 2400 Вт.Затем нужно установить 2400 Вт / 200 Вт = 12 секций.
- Расчет количества радиаторов отопления по объему. Если вы знаете, сколько кубометров может обогреть одна секция вашего обогревателя, то количество радиаторов можно рассчитать следующим образом: объем помещения (напомним, что для определения этого значения нужно умножить длину, ширину и высоту комнату) нужно разделить на количество кубиков, нагретых секцией аккумуляторов.
- Примерная методика расчета.Как правило, все секционные батареи имеют стандартные размеры, небольшая разница практически не играет роли. Опытные люди давно заметили, что при высоте потолка 2,7 метра одной секции хватит на отопление 1,8 кв. номера. То есть, если площадь помещения 25 кв.м, то понадобится (25 / 1,8 = 13,9) 14 аккумуляторных отсеков.
Конечно, используя нашу методику расчета, можно добиться необходимого уровня тепла в своем доме, но не забывайте, что только настоящие профессионалы могут учесть все нюансы.Даже небольшая ошибка в расчетах или пренебрежение хотя бы одним влиятельным фактором может стать причиной того, что жители дома зимой будут страдать от мучительного холода.
Алюминиевый радиатор секционный силовой. Чугунные радиаторы и расчет их мощности для комнаты
Эта техника выглядит современно и недорого. Они способны при правильной установке и длительной эксплуатации выполнять свои функции. Чтобы в полной мере использовать все потенциальные возможности, необходимо точно рассчитать мощность алюминиевого радиатора, которая потребуется для качественного обогрева жилья в самых сложных погодных условиях.
Конструктивно-технические особенности
Качественные изделия из этого металла создаются методом литья. Это дает возможность изготавливать прочные, долговечные нагревательные приборы, в которых отсутствуют отдельные элементы, их соединения. Эта технология достаточно сложная. Чтобы исключить появление дефектов, требуется точное соблюдение многих режимов производства, контроль отсутствия скрытых дефектов, полостей. Стоимость таких радиаторов несколько выше, чем у сборных моделей.Но именно они могут без повреждений выдержать большое повышение давления в магистралях теплоносителя.
Второй распространенный метод — экструзия. Металл под давлением заполняет специальную форму. Заготовку разрезают на части. Отдельные элементы соединяются сваркой. В этом случае используются относительно недорогие производственные процессы. Но следует учитывать, что готовая продукция менее прочна и надежна по сравнению с первым вариантом.
Алюминиевые радиаторы нужных размеров создаются из отдельных блоков, чтобы конечной мощности хватило на конкретное помещение.Ниже представлены диапазоны значений основных характеристик устройств данного типа:
- Допустимое максимальное давление в системе теплоснабжения: от 6 до 24 атм.
- Температура теплоносителя (макс.): До + 110 ° С.
- Срок службы отопительного прибора: от 10 до 20 лет.
Параметры одной секции:
- мощность — от 0,08 до 0,210 кВт;
- объем охлаждающей жидкости — от 0,2 до 0,5 л;
- вес — от 0.От 9 до 1,5 кг.
Сколько секций алюминиевого радиатора необходимо для обогрева одной комнаты
Самый простой и соответственно неточный расчет можно произвести по такой пропорции: на каждый квадратный метр помещения тепловая мощность не менее 0,1 кВт.
Чтобы узнать, сколько разделов вам нужно, выполните следующие действия:
- Для обогрева одного помещения площадью 30 кв. Требуется мощность 3 кВт: 30 * 1 = 3.
- Если мощность одного элемента 0,15 кВт, то нужно 20 секций: 3 / 0,15 = 20.
- Это слишком большое количество для одного радиатора, поэтому необходимо будет изготовить и установить в комнате две батареи. Каждый из них будет состоять из 10 разделов.
Более точный результат можно получить, если учесть следующие факторы:
- климатические условия в районе;
- высота потолков;
- количество оконных и дверных проемов в помещении, наружных стенах;
- наличие теплых полов снизу и сверху;
- общие изоляционные характеристики конструкции.
Поправочные коэффициенты используются для каждого параметра. Их значения можно найти в профессиональных справочниках. Подставив их в общую формулу, не составит труда узнать, какая мощность в кВт требуется секции и устройства в целом для конкретного помещения. Если получилась неточная цифра, то следует округлить в большую сторону. При правильной настройке оборудования легче вносить коррективы, если оно приобретается с определенным запасом возможностей.
Как правильно установить и рентабельнее эксплуатировать алюминиевые радиаторы
Из приведенных данных нетрудно понять основные преимущества этого типа приборов.
Впрочем, перечислим их отдельно:
- Сборная конструкция позволяет достаточно точно подобрать количество элементов, чтобы мощность нагрева была достаточной.
- Малый вес облегчает производственные транспортно-монтажные работы.Он не создает лишних нагрузок на крепеж и конструкцию здания.
- Небольшие внутренние объемы и отличная теплопроводность уменьшают инерцию. Это означает, что допустимо комбинировать такие устройства с индивидуальными регуляторами, а также интегрировать их в современные системы автоматизированного поддержания комфортного температурного режима. Такое оборудование позволит снизить потребление энергоресурсов при эксплуатации.
- Нейтральный внешний вид большинства моделей хорошо сочетается с различными дизайнами.
- Невысокая стоимость устройств позволяет без больших затрат создавать новые или модернизировать старые системы отопления.
Подходят как для самых простых однотрубных, так и для самых сложных коллекторных схем. Они подходят для работы с гравитационным или вынужденным движением теплоносителя.
При установке необходимо учитывать следующие особенности:
- Все устройства должны быть оборудованы клапанами выпуска воздуха.
- Крепление их необходимо производить в строго горизонтальном положении.
- Когда pH охлаждающей жидкости (Ph) выходит за пределы диапазона от 7 до 8 единиц, происходят реакции, разрушающие алюминий.
- Со временем этот металл покрывается защитной оксидной пленкой, которая предотвратит указанные выше процессы. Однако сам он может быть поврежден песком и другими механическими примесями. Такие загрязнения можно удалить с помощью стандартного основного фильтра.
- В городских условиях сложно предотвратить возникновение аварийных ситуаций, связанных с резким повышением давления.Здесь рекомендуется устанавливать нагревательные приборы, рассчитанные на высокое давление.
Чугунные радиаторы — это радиаторы, дошедшие до нашего времени с далеких 70-х годов прошлого тысячелетия. Сегодня они более современные, отличить их от биметаллических или алюминиевых эмалированных радиаторов практически невозможно. Чугунные радиаторы способны работать при температуре охлаждающей жидкости до 110 0 С.
Довольно большие размеры и внушительный вес компенсируются инерцией, позволяющей регулировать температуру.Они идеальны для любого помещения, надежны и долговечны, могут использоваться с любыми котлами и теплоносителями. Многих интересует вопрос — сколько киловатт в одной секции чугунного радиатора? Вы найдете ответ на этот вопрос ниже.
Радиатор отопления чугунный
Радиаторы чугунные М-140
Радиаторы типа М-140 имеют достаточно простую конструкцию и удобны в обслуживании. Материал, используемый при их изготовлении — чугун. Он обладает высокой устойчивостью к коррозионным процессам и может использоваться с любым теплоносителем.Низкий уровень гидравлического давления позволяет использовать радиаторы как для гравитационной, так и для принудительной циркуляции теплоносителя. Высокий порог противодействия гидроударам позволяет использовать их как в двухэтажных, так и в девятиэтажных зданиях. Преимущества М-140 — простота обслуживания, надежность, длительный срок службы и невысокая стоимость.
Радиаторы чугунные МС-140-500
Широко применяются для отопления зданий с t теплоносителя в пределах 130 0 С и давлением до 0.9 МПа. Вместимость одной полости 1,45 литра, объем обогреваемой площади 0,244 квадратных метра … Материал, используемый для изготовления секций — СЧ-10 (серый чугун).
Радиаторы чугунные МС-140-300
Радиаторы отопления предназначены для обогрева помещений с низкими подоконниками и давлением 0,9 МПа. Емкость полости 1,11 л. Вес полости с учетом комплектующих 5700 г. Расчетный тепловой поток 0,120 кВт.
Радиаторы чугунные МС-140М-500-09
Радиаторы данной модели применяются для различных помещений с t теплоносителя до 130 0 С и давлением до 0.9 МПа. Масса одной полости 7100 г. Материал изготовления — серый чугун. S обогрев с одной камерой — 0,244 м 2.
Важно! Выбирая радиатор для жилья, обязательно обращайте внимание на его характеристики и заранее производите всевозможные расчеты, так как обменять купленный товар будет практически невозможно.
Плюсы и минусы использования чугунных радиаторов
Стилизованный чугунный радиатор
Любая существующая сегодня система отопления имеет как плюсы, так и минусы, учтите их.
Номинальная тепловая мощность каждой секции составляет 160 Вт. Примерно 65% выделяемого теплового потока нагревает воздух, накапливающийся в верхней части помещения, а оставшиеся 35% нагревают нижнюю часть помещения.
- Длительный срок эксплуатации от 15 до 50 лет.
- Высокая стойкость к коррозионным процессам.
- Возможность использования в системах отопления с гравитационной циркуляцией теплоносителя.
- Низкая эффективность коррекции коэффициента теплоотдачи;
- Высокая трудоемкость монтажа;
Важно! Чтобы не столкнуться с проблемой при установке, обязательно учтите вышеперечисленные плюсы и минусы чугунных радиаторов.Их установка стоит недешево, но многократные монтажные работы потребуют больших финансовых средств.
Расчет секций (полостей) радиаторов
Так вот, сколько кВт в 1 секции чугунного радиатора? Чтобы рассчитать количество секций и их мощность, нужно определиться с V-комнатой, которая потом появится в расчетах. Далее выбираем значение тепловой энергии. Его значения следующие:
- Отопление 1м 3 дома из панелей — 0.041кВт.
- Отопление 1 м 3 кирпичного дома со стеклопакетами и утепленными стенами — 0,034 кВт.
- отопление 1 м 3 помещения, возведенного по современным строительным нормам — 0,034 кВт.
Тепловой поток одной полости МС 140-500 0,160 кВт.
Затем выполняются следующие математические операции: объем помещения умножается на тепловой поток. Полученное значение делится на количество тепла, выделяемого одной камерой. Результат округлите в большую сторону и получите необходимое количество секций.
Сколько киловатт в чугунной секции? Каждый тип радиатора имеет разное значение, которое производитель рассчитывает при их изготовлении и указывает его в сопроводительной документации.
Сделаем примерный расчет на основе имеющихся данных.
Помещение имеет следующие данные: тип помещения — панельный дом, длина — высота — ширина — 5х6х2,7 м соответственно.
- Рассчитываем объем помещения V:
В = 5 х 6 х 2.7 = 81 м 3
- Требуемый тепловой объем:
Q = 81 * 0,041 = 3,321 кВт
- Исходя из этого, количество секций радиатора составляет:
n = 3,321 / 0,16 = 20,76
, где 0,16 — тепловая мощность одной секции. Уточняется производителем.
- Округляем значение в большую сторону, исходя из чего количество необходимых секций составляет 21 шт.
Чтобы отопление дома было эффективным, следует покупать качественные элементы.Перед этим — провести правильный расчет своей мощности.
Расчеты производятся с учетом:
- площади помещения;
- высота его потолка;
- количество окон
- длина помещения;
- Особенности климата региона.
Правильный выбор
- Производительность отопительных приборов должна составлять 10% площади помещения при высоте его потолка менее 3 м.
- Если больше, то прибавляем 30% .
- Для конечной комнаты добавьте еще 30% .
Необходимые расчеты
После определения теплопотерь нужно определить производительность прибора (сколько кВт должно быть в стальном радиаторе или других устройствах).
- Например, вам нужно отапливать помещение площадью 15 м² и высотой потолков 3 м.
- Находим его объем: 15 ∙ 3 = 45 м³.
- В инструкции сказано, что для обогрева 1 м³ в условиях Средней полосы России необходимо 41 Вт тепловой мощности.
- Это означает, что мы умножаем объем помещения на эту цифру: 45 ∙ 41 = 1845 Вт. Этой мощностью должен обладать радиатор отопления.
Примечание!
Если жилище находится в районе с суровыми зимами, полученное значение необходимо умножить на 1,2 (коэффициент теплопотерь).
Итоговый показатель составит 2214 Вт.
Количество ребер
Из него вы узнаете, сколько кВт в одной секции биметаллического радиатора и алюминиевого аналога составляет 150-200 Вт.Возьмем максимальный параметр и разделим на него общую требуемую мощность в нашем примере: 2214: 200 = 11.07. Это значит, что для обогрева помещения нужна батарея из 11 секций.
Тепловая мощность
На фото примерная теплопередача чугуна.
В помещении отопительные приборы размещаются у внешней стены под оконным проемом. В результате тепло, излучаемое устройством, распределяется оптимально. Холодный воздух, идущий из окон, блокируется нагретым потоком, идущим вверх от радиатора.
Чугунные аккумуляторы
Чугунные аналоги имеют следующие преимущества:
- имеют длительный срок службы;
- обладают высоким уровнем прочности;
- устойчивы к коррозии;
- отлично подходит для использования в коммунальных системах, работающих на некачественном теплоносителе.
- Сейчас производители выпускают чугунные аккумуляторы (их цена выше, чем у обычных аналогов), которые имеют улучшенный внешний вид за счет применения новых технологий литья корпусов.
Недостатки изделий: большая масса и тепловая инерция.
В нижней таблице указано, сколько кВт находится в чугунном радиаторе в зависимости от его модели.
Примечание!
Для обогрева помещения площадью 15 м² мощность, то есть кВт чугунного радиатора, должна быть не менее 1,5. Другими словами, аккумулятор должен состоять из 10-12 секций.
Алюминиевые радиаторы
Алюминиевые изделия имеют более высокую теплоотдачу, чем чугунные аналоги.На вопрос, сколько кВт находится в одной секции алюминиевого радиатора, специалисты отвечают, что достигает 0,185-0,2 кВт. В итоге 9-10 секций алюминиевых профилей будет достаточно для нормативного уровня обогрева пятнадцатиметрового помещения.
Достоинства таких устройств:
- легкий вес;
- эстетичный дизайн;
- высокий уровень теплоотдачи;
- Температуру можно контролировать своими руками с помощью вентилей.
Но изделия из алюминия не обладают такой прочностью, как чугунные аналоги, например, маслоохладитель на 2 кВт.Поэтому они чувствительны к скачкам рабочего давления в системе, гидроударам, излишне высокой температуре теплоносителя.
Примечание!
Когда вода имеет высокий уровень pH (кислотности), алюминий выделяет много водорода.
Это негативно сказывается на нашем здоровье.
Исходя из этого, желательно использовать в системе отопления такие устройства, в которых он имеет нейтральную кислотность.
Биметаллические изделия
Прежде чем выяснять, сколько кВт в 1 секции биметаллического радиатора, следует отметить, что такие батареи имеют схожие рабочие параметры с алюминиевыми аналогами.Однако им не присущи недостатки.
Это обстоятельство определило конструкцию устройств.
- Они состоят из медных или стальных трубок, по которым течет хладагент.
- Трубки скрыты в корпусе из алюминиевой пластины. В результате вода, циркулирующая внутри, не взаимодействует с алюминием корпуса.
- Исходя из этого, кислотные и механические характеристики теплоносителя никак не влияют на работу и состояние прибора.
Благодаря стали труб приспособление имеет высокую прочность. Внешние ребра из алюминия обеспечивают повышенную теплоотдачу. Пытаясь узнать, сколько кВт у стального радиатора, имейте в виду, что биметалл имеет самую высокую теплопередачу — около 0,2 кВт на каждую кромку.
Мощность
Узнав сколько кВт в 1 секционном стальном радиаторе или аналоге из другого металла, можно рассчитать теплопередачу купленного изделия.Это позволит создать эффективную систему отопления в своем доме.
Видео в этой статье продолжает наглядно информировать вас по теме.
Amazon.com: Нагреватель радиатора Mr Radiator Wall Mount для воды, биметаллический литой алюминиевый корпус, Радиатор горячей воды для дома (14 секций): Home Improvement
Mr Radiator Настенные радиаторные обогреватели — лучшее решение для сохранения тепла и уюта в вашем доме.Они обеспечивают быстрое нагревание , а также экономят энергию с их двухпроводным режимом работы, при этом все они удобно повешены на стене. Их можно установить практически в любом месте, даже в местах, где у вас может быть не так много места.
Нагреватели радиатора Mr Radiator для настенного монтажа — это Надежные, Долговечные и Безопасные, сделаны с упором на качество и простоту использования. Каждый настенный обогреватель Mr Radiator проходит строгий контроль качества , чтобы гарантировать полное удовлетворение потребностей клиентов.
Характеристики: —
- Универсальный, Совместимость с системами водяного горячего водоснабжения
- Расширяемый, Дополнительные секции могут быть установлены для будущих потребностей в отоплении Легко с помощью гаечного ключа
- Простота установки Подключается с трубками PEX, медью, полибутиленом и трубами из ХПВХ
- Мощный нагрев, 6006 БТЕ в гидравлических системах
- Энергосбережение, Немедленное эффективное нагревание с двумя отдельными теплопроводами
- Высококачественное покрытие Устойчивое к царапинам порошковое покрытие для длительного срока службы
- Элегантный вид, Эксклюзивный изогнутый дизайн легко сочетается с любым декором
- Технические характеристики: —
- Материал корпуса: алюминий
- Материал сердечника: нержавеющая сталь
- Материал сердечника: Нержавеющая сталь
- Maximu м Рабочее давление: 435 фунтов на квадратный дюйм
- Испытанное рабочее давление: 870 фунтов на квадратный дюйм
- БТЕ на секцию: 429 БТЕ на секцию по гидравлическим системам
Включает: —
Радиатор водонагревателя
Установочный комплект i.e Комплект для прямого радиаторного клапана и втулки
Mr Radiator , ведущий на рынке бренд настенных радиаторов, ориентированный на качество для долговечных и удобных продуктов.
Современные и будущие методы управления тепловым режимом космических аппаратов 1. Драйверы дизайна и современные технологии
Современные и будущие методы теплового контроля космических аппаратов 1. Драйверы дизайна и современные технологииСовременные и будущие методы управления тепловым режимом космических аппаратов 1.Драйверы дизайна и современные технологии
М.Н. De Parolis & W. Pinter-Krainer
Контроль температуры и обогрев Отдел отклонения, ESTEC, Нордвейк, Нидерланды
В первой части статьи рассматриваются драйверы дизайна. и технологии, используемые в настоящее время для тепловых контроль. Вторая часть посвящена технологиям будущего. разработки в области терморегулирования появятся в следующих выпусках Вестник.
Зачем нужен терморегулятор?
Потребность для системы терморегулирования (TCS) диктуется технологические / функциональные ограничения и требования к надежности всего оборудования, используемого на борту космического корабля, и, в случае пилотируемых полетов, необходимостью обеспечения экипажа подходящим жилая / рабочая среда.Практически все сложное оборудование имеет определенные температурные диапазоны, в которых он будет работать правильно. Таким образом, роль TCS заключается в поддержании температура и температурная стабильность каждого элемента на борту космический корабль в этих заранее определенных пределах во время всей миссии фазы и тем самым используя минимум ресурсов космического корабля.
общая функция терморегулирования может быть разделена на несколько различные подфункции (рис. 1).
Рисунок 1. Взаимодействие между подфункциями TCS.
Взаимодействие с окружающей средой
Внешнее
поверхности космического корабля могут нуждаться в защите от
локальная среда или улучшенное взаимодействие с ней, включая:
- уменьшение или увеличение поглощенной окружающей среды флюсы
- уменьшение или увеличение тепловых потерь в среда.
Теплоснабжение и хранение
В некоторых случаях
или поддерживать желаемый уровень температуры, тепло должно быть
и / или должна быть обеспечена подходящая способность аккумулирования тепла.
предвиден.
Сбор тепла
Во многих случаях рассеиваемое тепло
удаляться из оборудования, в котором он производится, чтобы
избегать нежелательного увеличения мощности агрегата и / или
температура космического корабля.
Теплопередача
Вообще говоря, это не
можно отводить тепло прямо там, где оно генерируется, и
необходимо использовать соответствующие средства для транспортировки его из
устройство сбора к излучающему устройству.
Отвод тепла
Тепло, собираемое и транспортируемое
должен быть отклонен при соответствующей температуре в радиатор,
которым обычно является окружающая космическая среда. Отказ
температура зависит от количества задействованного тепла,
контролируемая температура и температура
среда, в которую устройство излучает тепло.
Конструкция драйверов
Основные параметры
управляющие дизайном TCS:
- среда, в которой космический корабль должен работать
- общее количество тепла рассеивается на борту космического корабля
- распределение тепловыделение внутри космического корабля
- температура требования различных предметов оборудования
- конфигурация космического корабля и его надежность / проверка требования.
Об окружающей среде
Для всех космических аппаратов,
поступающая энергия от Солнца и тепло, излучаемое глубоко
Пространство обычно является основным взаимодействием с окружающей средой.
Однако в зависимости от орбиты и положения космического корабля другие
параметры могут иметь важное влияние на тепловые
дизайн управления. Например, тип стабилизации отношения
использование может повлиять на дизайн TCS. В целом стабилизация спина
более мягкий, поскольку вращение вызывает усреднение
вход экологического потока.Требуется трехосный стабилизированный космический аппарат
повышенная защита от кратковременных колебаний потребляемой энергии
от Солнца или Земли.
Низкая околоземная орбита (НОО)
Эта орбита часто используется
космическими аппаратами, которые отслеживают или измеряют характеристики
Земля и ее окружающая среда (наблюдение Земли,
геодезия и др.), а также в беспилотных и пилотируемых космических лабораториях.
(Эврика, Международная космическая станция и др.). Орбиты
близость к Земле имеет большое влияние на потребности ТКС,
с инфракрасным излучением Земли и альбедо, играющим очень
важную роль, а также относительно короткий орбитальный период
(менее 2 ч) и большой продолжительности затмения (до трети
время).Небольшие инструменты или придатки космических аппаратов, например солнечные
панели с низкой тепловой инерцией могут серьезно пострадать
в этой постоянно меняющейся среде и может потребовать очень
конкретные решения теплового дизайна.
Подъем и возвращение в атмосферу
Для космических перевозок
системы, подъем на рабочую орбиту и возвращение с нее
(обычно LEO) может вводить дополнительные конструктивные ограничения TCS.
Во время этих двух фаз окружающая среда часто слишком теплая, чтобы
отклоняют тепло излучением, а радиаторы, используемые на орбите,
часто закрытые или охраняемые.Следовательно, альтернативные радиаторы
(например, мгновенные испарители) или специальные конструкции TCS, обеспечивающие высокую
Для управления этими тепловыми нагрузками необходимо предусмотреть тепловую инерцию.
Геостационарная орбита (GEO)
На этой 24-часовой орбите
Влияние Земли практически незначительно, за исключением затенения.
во время затмений, продолжительность которых может меняться от нуля в день солнцестояния
максимум 1,2 часа в день равноденствия. Длительные затмения влияют на
проектирование систем теплоизоляции и обогрева космического корабля.Сезонные колебания направления и интенсивности
солнечная энергия оказывает большое влияние на дизайн, усложняя
перенос тепла из-за необходимости передавать большую часть рассеиваемого тепла
к радиатору в тени и к системам отвода тепла через
требуется увеличенная площадь радиатора. Почти все телекоммуникации и
многие метеорологические спутники находятся на этой орбите.
Высокоэксцентрические орбиты (HEO)
Эти орбиты могут иметь
широкий диапазон высот апогея и перигея в зависимости от
конкретная миссия.Обычно они используются в астрономии.
обсерваторий (Exosat, IRAS, ISO и др.), а также дизайн TCS
требования зависят от орбитального периода КА,
количество и продолжительность затмений, относительное положение
Земля, Солнце и космические корабли, вид приборов на борту и
их индивидуальные температурные требования и т. д.
Специальные орбиты
Миссии, рассчитанные на длительный срок
наблюдение отдельных явлений требует постоянного, стабильного
окружающей среде и поэтому склонны использовать стабильные орбиты
требуется очень мало ресурсов для содержания станции, вдали от любых
небесное тело, e.грамм. вокруг лагранжевой точки. Научный
космических аппаратов типа SOHO и будущей научной миссии COBRAS-
САМБА, типичные для этого класса миссий. Космический корабль
Указывают на солнце и поэтому имеют постоянную подсветку одной стороны
и все другие лица, открытые для открытого космоса. Следовательно, ТКС
дизайн можно довольно легко оптимизировать, если только
особые температурные требования или недостаточно
электрическая мощность для обогревателей.
В частности, для космических аппаратов с криогенной нагрузкой низкотемпературная и стабильная по массе среда (если криостаты) или мощности и сложности (для спутников, использующих криоохладители).
Дальний космос и исследование планет
Этот класс
миссия включает в себя множество различных подсценариев в зависимости от
конкретное небесное тело или целевую зону исследования. В общем,
общие черты — большая продолжительность миссии и необходимость
справиться с экстремальными тепловыми условиями, такими как круизы
близко или далеко от Солнца (от 1 до 4-5 а.е.), низкий
вращение очень холодных или очень горячих небесных тел, спуски
через враждебную атмосферу и выживание в экстремальных условиях (пыльная,
ледяной) среды на поверхностях посещенных тел.В
Задача TCS — обеспечить достаточный отвод тепла
способность во время горячих фаз эксплуатации и при этом выжить
холодные неактивные. Основной проблемой часто является предоставление
мощности / энергии, необходимой для этой фазы выживания.
О тепловыделении и его
распределение
Здесь важны два фактора.
в контексте проектирования TCS, абсолютное значение тепла, которое необходимо
рассеивается и его распределение на борту космического корабля, т. е.
удельная мощность.Первое значение имеет большое влияние на тепло-
функция отбраковки (размеры площади радиатора увеличиваются
при увеличении мощности), а плотность мощности определяет тепло
функции сбора и транспортировки (вызовы с высокой плотностью мощности
для высокоэффективного отвода тепла). Типичные установленные мощности для
Сравнение различных типов космических аппаратов представлено в таблице 1.
Таблица 1
Установленная мощность (Вт) Миссия Орбита Отношение мин.Максимум. Наука: - астрономия HEO, фиксированная точка наведения на Солнце (в основном) - дальний космос Различные переходные орбиты Солнце или наведение планеты 200 1 500 Телекоммуникации GEO Наведение на Землю 500 5 000 Наблюдение за Землей НОО Земля наведение 500 5 000 Метеорология GEO Направление Земли 200 1 500 Перемещение пилотируемых транспортных средств + LEO Разное 1000 10 000 Пилотируемые станции LEO Солнце указывает 3000 30 000
Два противоречащих друг другу требования могут быть обнаружены с точки зрения мощности загрузка:
- прирост установленной мощности на многоцелевые, многодиапазонные спутники связи и следовательно, потребность в более крупном и эффективном отводе тепла системы
- уменьшение габаритов других классов космических аппаратов и оборудования за счет миниатюризации электроника.С одной стороны, это означает снижение общее количество энергии, потребляемой на борту, но с другой стороны существует риск увеличения плотности мощности, тем самым порождает другой класс проблем.
Еще одним очень важным фактором является рабочий цикл. Самый лучший решением было бы рассеивание мощности, которое компенсирует изменение потоков окружающей среды (например, максимальная рассеиваемая мощность во время затмений!), чтобы иметь почти постоянную глобальную жару ввод в космический корабль.Учитывая настоящее, близкое и, вероятно, среднесрочные методы производства электроэнергии, реальность такова напротив: максимальная рассеиваемая мощность происходит вместе с максимальные потоки окружающей среды. Это подталкивает дизайн TCS к завышение размеров теплопередачи и отвода оборудование, чтобы справиться с параллельными пиками. В свою очередь, это пере- определение размеров вызывает увеличение сложности конструкции и потребность в дополнительных ресурсах во время холодных фаз миссия.
Это вводит третье взаимодействие между силовыми подсистемы и TCS, а именно наличие питания во время фазы холодного задания для функции теплоснабжения.Во время тех фаз, питание обычно обеспечивается батареями и поэтому ограничено. Это ограничение может еще больше усложнить TCS. дизайн.
О требованиях к температуре
Это
фактор во многом связан с технологией космического корабля
оборудование. Как уже упоминалось, задача TCS — сохранить все
элементы оборудования, работающие в пределах допустимой температуры
диапазоны, которые, в свою очередь, зависят от внутренней конструкции,
используемые компоненты и, наконец, что не менее важно, необходимые
надежность.Это особенно касается электронных и
электромеханическое оборудование, конструкция которого зачастую слишком
похож на своего «земного» аналога, который должен
работать в гораздо более благоприятных условиях (воздух — дополнительная ценность для
TCS!). Улучшенные тепловые конструкции в сочетании с лучшими
определение допустимых температурных диапазонов, позволяющих сэкономить
проекты и время, и деньги в долгосрочной перспективе.
Можно определить три соответствующих диапазона температур:
- криогенный диапазон: все температуры ниже 120 K
- обычный диапазон: температура от 120 до 420 K
- высокая- температурный диапазон: все температуры выше 420 К.
Здесь мы сконцентрируемся на «обычном ассортименте», статьях относящиеся к двум другим диапазонам, уже опубликованным в прошлых выпусках Бюллетеня ЕКА (например, № 75, август 1993 г. и № 80, ноябрь 1994 г.).
В рамках нашего стандартного диапазона могут быть определены в соответствии с различными требованиями к оборудованию. К классическим примерам относятся:
- батарейки, которые «худшее» подсистемное оборудование, поскольку оно может иметь широкий диапазон рассеиваемой мощности и, в то же время, всегда имеют очень узкий рабочий (и нерабочий!) диапазон температур (обычно от -5 до + 20 ° C)
- движитель подсистемы, обычно ограниченные по соображениям безопасности диапазоном от 5 до 40 ° C, даже если, в зависимости от конкретной системы, более широкий диапазон может быть приемлемым
- стандартная электроника, с средний рабочий диапазон от -20 до + 70 ° C.
Неэлектронные элементы могут иметь широкий диапазон температур требования, большинство из которых носит функциональный характер, например ограничение теплового шума в датчиках. Некоторые крайние примеры: показано в таблице 2.
Таблица 2
Операционная стабильность / стабильность при хранении Позиция Температура (° C) Температура (° C) (° C / м) (° C / мин) Мин. Максимум. Мин. Максимум. Видеокамера CCD -150-100 - - - ± 0.5 Лазерная тепловая I / F 5 10 5 10 ± 0,5 ± 0,1 Образцы физики жидкости 5 90 5 40 ± 0,1 ± 0,01 Образцы биологических наук 4 38-80-80 ± 1,0
Температурная однородность и стабильность могут иметь еще большую влияние на конструкцию ТКС, чем абсолютные значения температуры самих себя. Первое можно выразить как максимальное допустимая разница температур между двумя соседними частями, или как максимальный градиент температуры в сплошных телах.В температурная стабильность относится к максимально допустимому изменению изменения температуры конкретного предмета с течением времени. Способность к справиться с этими требованиями зависит от окружающей среды и драйверы конструкции рабочего цикла мощности и на реальном космическом корабле конфигурация.
Необходимо проявлять особую осторожность, чтобы различать иметь ‘и действительно обязательные требования, а иногда даже несколько градусов (или несколько десятых для устойчивости) могут сделать разница между выполнимой и невыполнимой системой или, по крайней мере, между доступной и очень дорогой системой.
О конфигурации космического корабля, надежности и
требования к проверке
Одна из основных проблем
конструкции ТКС заключается в том, что конфигурация КА обычно
определяется на основе физического размещения различных
полезная нагрузка и базовая подсистема (двигательная установка, солнечные батареи и т. д.)
элементы. Только когда физическая конфигурация виртуальная
заморожен — это дизайнер TCS, чтобы оценить, все ли
требования к температуре могут быть выполнены. Если это не будет
в этом случае нужно потратить много времени (и денег) на
пытаясь переместить оборудование и найти специальные решения,
которые никогда не бывают ресурсоэффективными.Параллельная разработка должна
применять чаще на всех уровнях, от оборудования до
конструкции космического корабля, чтобы попытаться преодолеть эти нередкие
проблемы.
Надежность влияет на TCS напрямую (функция TCS имеет собственное требование) и косвенно через оборудование температурные требования. Наибольшее влияние оказывает тепло- функции предоставления, транспортировки и отказа. Для пилотируемых автомобили, например, надежность, необходимая для охлаждения петли могут привести к огромному увеличению сложности и массы ТКС.
Требования к верификации и, в частности, испытаниям слишком часто были причиной того, что эффективный дизайн TCS отклоненный. Нежелание использовать тепловые трубки из-за усложнения, вносимые в испытания тепловой системы (см. раздел по теплопроводным системам) является классическим примером. В качестве уже продемонстрированный на многих коммерческих космических аппаратах, настоящий сочетание тестирования на уровне компонентов и системы с методы аналитической корреляции могут решить такие проблемы, что приводит к более простому и эффективному регулированию температуры система.
Важность параметров
Различные
драйверы дизайна по-разному влияют на различные TCS
функций и по массе, сложности и стоимости их
соответствующие дизайнерские решения. Таблица 3 дает представление о
отношения между исследованными драйверами дизайна и каждым TCS
функция (‘o’ означает незначительное влияние или его отсутствие, а ‘x’ означает
растущий уровень важности; M = масса; CX = сложность; CT =
Стоимость).
Охрана окружающей среды Тепло Пров. и накопление тепла отвод тепла
Таблица 3
Окружающая среда Тепло Пров.Тепло Тепло Тепло Защита и хранение Сбор отказ от транспортировки Конструкция Драйверы M CX CT M CX CT M CX CT M CX CT M CX CT Окружающая среда xx xx xx x xx x o o o o o o xxx xx xx Рассеивание тепла - абсолютное o o o o o o xx x xx xx x xx xxx xxx xxx - плотность o o o o o o xx xxx xxx xx x xx x x x Температура - уровень x x x xx xx x x x x x x xx xx xxx x xx - стабильность x x x xx xxx xx xx xx xx xx xx xx x x x - однородность x x x xx xxx xx xx xx xx xx xx xx x x x Надежность o o o x xxx xx xx xx xx xx xx xx xx xx xx Конфигурация x x x x x x x xxx x xx xx xx xx xx xx Сборка, x x x xx x x xx x x xx xx xx xx x x Интеграция
Современные методы
Взаимодействие с
внешняя среда
Покрытия
Самые простые
способ изменить поведение поверхности — покрыть ее краской или
слой другого подходящего материала.Все космические корабли используют
много разных видов покрытий, от относительно простых до
наносить краски на более сложные химически или физически
изготовлены конверсионные покрытия. Покрытия характеризуются своим
термооптические свойства: поглощающая способность, излучательная способность, отражательная способность
и прозрачность.
Основным недостатком покрытий является их деградация. окружающей среды и загрязнения, вызванного наземное обслуживание или космические операции с поглощающей способностью параметр больше всего пострадал.И управляемость на земле, и космическая среда, как правило, увеличивает первоначальную поглощающую способность покрытие, приближающееся к значению конца срока службы (EOL). Последнее зависит от времени, проведенного на орбите, соответствующая среда (частица потоки, УФ-поток и т. д.) и ориентацию поверхности по отношению к по движению космического корабля.
Правильная конструкция TCS должна должным образом учитывать все эти факторы и используйте подходящие для начала жизни (BOL) и EOL значения.
Многослойная изоляция (MLI)
При простом покрытии
недостаточно, чтобы избежать больших тепловых потерь или выгод для
поверхность, можно использовать многослойную изоляцию.Он состоит из
определенное количество слоев пластика (обычно майлара или
Каптон), покрытый с одной или двух сторон слоем металлического
материал для уменьшения излучения и разделен листами
прокладочный материал (например, дакроновая сетка), чтобы избежать прямого контакта между
смежные фольги. Внешний вид фольги зависит от
конкретное применение: он может быть окрашен или металлизирован, или может
даже состоят из другого материала (например, армированного стекловолокном
ткань).
Эффективность MLI может быть определена как линейная проводимость через одеяло или через так называемый «эффективный эмиссия ‘.В первом случае тепловой поток можно рассчитать как произведение заданного значения на температуру разница между внешним слоем и покрытым оборудованием одеялом. Во втором случае он рассчитывается как лучистый теплообмен с использованием эффективного эмиттанса (рис. 2). Этот параметр имеет очень простую математическую формулировку, но он может иметь совершенно разные физические значения и выбор определение зависит от используемой техники моделирования.
Фигура 2.Определение эффективного излучения для различных макетов MLI
Факторами, влияющими на эффективность, являются физические состав одеяла (количество слоев, тип покрытий, и т. д.), средняя температура одеяла (обычно арифметическая среднее значение между двумя крайними слоями), возможное присутствие воздух или влажность внутри слоев и давление между ними. Очень важным фактором является то, как одеяло нанесенный на поверхность космического корабля: цельный кусок одеяла покрытие большой поверхности более эффективно, чем несколько небольших одеяла, покрывающие ту же поверхность.Одеяло, подвешенное над поверхность (случай 3 на рис. 2) более эффективна, чем в прямом контакт с поверхностью (случай 1 на рис. 2).
Вообще говоря, эффективность MLI измеряется на относительно небольшие выборки, в то время как реальная эффективность MLI Система известна только во время тепловых испытаний на уровне системы. Следовательно, соответствующие факторы безопасности должны применяться во время этап проектирования.
На рис. 3 показана зависимость теплопроводности от температуры для Образцы MLI, измеренные в ESTEC для некоторых недавних программ ESA.На рисунке 4 показана зависимость теплопроводности от среднего значения. температура для образцов и реальных (с нахлестом, швами, и т. д.) MLI (имеющий идентичный состав), измеренный для Spacelab.
Рисунок 3. Теплопроводность нескольких образцов MLI как
функция средней температуры
Рисунок 4. Влияние перекрытия и наличия пропусков на MLI
теплопроводность
Жалюзи / ставни
Поверхность может потребоваться только
защищен во время определенных фаз миссии, в то время как в другое время
он должен быть свободным, чтобы излучать в глубокий космос.Жалюзи можно использовать
либо для обеспечения радиатора во время фаз с Sun
освещение, или для уменьшения теплопотерь в холод (тень)
фазы.
В решетчатом радиаторе, показанном на рис. 5а, каждая лопасть снабжен сенсорным / исполнительным элементом (например, биметаллическим пружины), который измеряет температуру радиатора опорной плиты и соответственно вращает лезвие. Радиатор можно заблокировать полностью выключается, когда температура ниже (или выше для Солнца жалюзи), чем предварительно определенное значение, и подвергаются разной степени в зависимости от преобладающего уровня температуры.Точность регулирование температуры зависит от физического характеристики механизма жалюзи и обычно ограничены до ± 5 ° C.
Рис. 5. Схема жалюзи (а) и заслонки (б)
Жалюзи для установки на радиаторы были разработаны в Европе. в начале 1970-х годов ERNO и SNIAS (сегодня DASA Aerospace и Aerospatiale соответственно), но они не часто использовались на борту европейского космического корабля.
Затвор (рис. 5 б) состоит из тонкой металлической пластины (или одеяло), которое можно скользить по поверхности (обычно электродвигатель), чтобы изменить открытую площадь радиатора почти непрерывным образом от нуля до максимальной экспозиции.Преимущества по сравнению с жалюзи более эффективный коэффициент излучения, когда заслонка полностью открыта (многоотражение отсутствует или очень ограничено эффекты) и лучшая эффективность изоляции, когда полностью закрыто. Тепловой затвор этого типа использовался на Джотто ЕКА. космический корабль.
Преимущества жалюзи и жалюзи — большая адаптация к условиям окружающей среды и снижению мощности и энергия, необходимая для обогрева во время холодных фаз. Недостатки масса и наличие связанных механизмов, которые могут снизить надежность ТКС.
Теплоснабжение
Электрооборудование
обогреватели
Нагреватели электрические сопротивления самые простые
средства обеспечения теплом оборудования космических аппаратов. Обеспечение
и функции хранения разделены тем, что первый
осуществляется TCS, а последний обеспечивается за счет мощности
подсистема.
Нагреватели могут иметь постоянное питание или, как правило, включаться и выключаться в зависимости от температуры контролируемый элемент. В последнем случае возможно наличие местное управление с помощью термостатов или центральное управление через специальный коммутационный блок (так называемый терморегулятор) или через Система обработки данных космических аппаратов (DHS).Это подразумевает использование датчики температуры и данные и командные строки. В зависимости от особая конфигурация космического корабля и требования к температуре, эта система контроля и управления нагревателем может стать весьма сложный. Поэтому основными недостатками обогревателей являются необходимость для электроэнергии и либо сложности DHS, либо снижение надежности при использовании термостатов.
На всех космических аппаратах используются электронагреватели. В последнее время лет европейские обогреватели были квалифицированы в соответствии с строгие спецификации ESA для одинарной и двойной плотности конструкции (до 200 Ом / см²).
Радиоизотопные нагреватели
Некоторые планетарные и
исследовательские миссии к периферии Солнечной системы не могут
полагаться на Солнце и батареи для производства и хранения электроэнергии
мощность для целей TCS. Радиоизотопные нагревательные установки (РУ) на базе
на плутонии, затем использовались либо для обогрева космического корабля
напрямую или для производства электроэнергии с помощью радиоизотопа
Термоэлектрические генераторы (РИТЭГи) для питания нагревателей. Есть
в настоящее время нет европейских производителей RHU или RTG, но как
США и Россия разработали и использовали эти устройства для своих
миссии в дальний космос.Политические проблемы, а также проблемы с закупками
сделает использование этого типа RHU все менее приемлемым
в будущем.
Накопление тепла
Материалы с фазовым переходом (PCM)
предлагают возможность накапливать тепловую энергию непосредственно как скрытую
тепло плавления или сублимации. Контролируемый элемент
связан с сосудом, заполненным ПКМ. Когда элемент активен,
PCM поглощает тепло и плавится или сублимирует при стабильной
температура; когда оборудование неактивно, PCM может
затвердеть, выпуская соответствующее количество тепла.Обычно
плавильные ПКМ можно легко использовать в обратимых, закрытых системах,
в то время как сублимирующие ПКМ используются в открытых, необратимых
системы (т. е. газ выпускается после фазового перехода, чтобы избежать
избыточное давление).
Наиболее важными параметрами являются температура, при которой происходит фазовый переход, и количество поглощенного тепла или выпущен во время изменения. Диапазон температур обычно составляет интерес представляют околонулевой диапазон (от 5 до + 10 ° C), или конкретные диапазоны для конкретных экспериментов, e.грамм. 80 ° C для медико-биологические эксперименты. Другими важными параметрами являются теплопроводность и плотность двух фаз; в бывший из-за необходимости передачи тепла эффективно внутри PCM, а последний, потому что содержащий конструкции должны выдерживать объемное изменение ПКМ.
Два преимущества устройства PCM — это стабильность контроль температуры и отсутствие движущихся частей. Жара- требования к хранению определяются продолжительностью включения обратимого систем, а также по общему времени работы для нереверсивных (т.е.грамм. системы сублимации, кипячения ПКМ. Так как масса устройства прямо пропорциональна способности аккумулировать тепло, это сложно использовать устройство PCM без серьезного удара на общий массовый бюджет. Более того, проблемы, связанные с ограниченная теплопроводность многих ПКМ делает необходимым использовать оребренные емкости, которые снова увеличивают массу и объем устройств. Еще один повод для беспокойства — дизайн контейнер от утечки, для безопасности (PCM могут быть довольно коррозионные) и функциональные причины.
устройства на базе ПКМ использовались на космических кораблях США, в том числе несколько миссий, запускаемых шаттлами. Различные макеты были разработан в Европе в 1970-х годах, но, помимо приложения на Spacelab нет упоминаний об их использовании на других Европейский космический корабль.
Сбор и транспортировка тепла
выбор наиболее подходящей системы и компонентов зависит
на общий уровень мощности, удельную мощность и температуру
требования.
Механические элементы
Обычный способ сбора
тепло, рассеиваемое любым элементом оборудования, проходит через его опорную плиту
и элементы крепления (монтажные ножки).С увеличением мощности
рассеивания, вся опорная плита должна соприкасаться с
панель космического корабля. Передаваемое тепло зависит от такого
параметры как межфазное давление, чистота поверхности,
типы используемых материалов и т. д., что иногда бывает сложно
для количественной оценки (на уровне проектирования) и контроля (во время производства и
интеграция). Способы увеличения проводимости за счет
интерфейсные поверхности включают использование металлических или синтетических матов,
или нанесение термопасти.Это последнее решение должно
использовать с осторожностью из-за очевидного потенциального загрязнения
проблемы.
В некоторых случаях несколько блоков подключаются вместе к одному промежуточная сплошная панель, называемая дублером, обычно изготовлен из алюминия. Этот удвоитель распределяет тепло по большую площадь, тем самым обеспечивая улучшение равномерность температуры и увеличение эффективного контакта область к теплопередающему или теплоотводящему устройству. это удобно размещать резервные блоки или блоки, работающие с различные рабочие циклы на одном удвоителе, чтобы использовать тепло, рассеиваемое рабочими блоками для поддержания других в установленных пределах без необходимости в дополнительной мощности нагрева.В Недостатком этого простого решения является масса дублера, которые должны быть достаточно толстыми для достижения хорошей эффективности.
Иногда используются оплетки из проводящего материала (например, меди) для подключения теплоотводящего оборудования к «выносному» радиатору. В качестве общая проводимость пропорциональна поперечной сечение и обратно пропорционально его длине, этот метод может очевидно, что его можно использовать только на короткие расстояния и очень низкие тепловые нагрузки. Например, понадобится медный стержень весом около 22 кг. для транспортировки 10 Вт на расстояние 1 м при температуре разница 10 °.Для сравнения простая тепловая трубка (например, тепловая трубка из нержавеющей стали / аммиака диаметром 9,5 мм) обеспечивает лучшую производительность (меньший перепад температур) для масса 0,25 кг / м, т.е. примерно в 100 раз меньше. Одно преимущество коса — это ее гибкость, которая обеспечивает определенную степень изоляция от вибрации и помогает избежать конфигурации проблемы.
Тепловые трубки
Тепловые трубки — это устройство, которое позволяет
эффективный транспорт тепловой энергии. Обычно он состоит из
герметичная металлическая трубка с капиллярной структурой внутри,
заполнен подходящей рабочей жидкостью.Тепло поглощается одним концом
за счет испарения жидкости, а с другой стороны высвобождается
конденсация пара. Жидкость возвращается обратно в
испаритель капиллярными силами.
На космических кораблях чаще всего используются тепловые трубки. тип алюминия / аммиака, обеспечивающий оптимальный контроль температуры в диапазоне 0-40 ° C. Поскольку количество переносимого тепла по трубе определяется ее конструкцией и размерами, эквивалентная теплопроводность фиксирована, что приводит к постоянному Теплопроводная трубка (CCHP на рис.6а).
Рис. 6. Схемы ЦТЭУ (а) и ВЧР (б).
Существует также специальный тип тепловой трубки, известный как переменная Теплопроводная трубка (ВЧП, рис. 6б). Это устройство обеспечивает лучший контроль температуры, когда оборудование может рассеиваются на разных уровнях мощности, или конденсатор подвергается воздействию к изменяющейся среде. Количество передаваемого тепла составляет обычно контролируется путем блокировки части области конденсатора с помощью инертный газ.
Так как капиллярные силы слабее гравитационных, тепловые трубки могут работать только в поле силы тяжести, если испаритель и конденсатора на одном уровне, или если испаритель находится ниже конденсатор (так называемый «режим рефлюкса»).Следовательно, если у космического корабля тепловые трубки расположены в разных плоскостях, это не всегда можно полностью проверить полный тепловой расчет с только тестирование на уровне системы. Однако, как уже было сказано, это ограничение может быть преодолено и поэтому не должно ограничивать использование тепловых трубок, дающих большие преимущества.
Контуры охлаждения
Для большего или большего рассеивания мощности
строгие требования к температуре, другой сбор тепла и
могут использоваться транспортные системы.Различные виды жидких петель
были предложены и применены, чтобы справиться с этими ситуациями.
В однофазных контурах охлаждающая жидкость поглощает тепло от рассеивающих тепло предметов (например, через холодную пластину или теплообменник), увеличивая его температуру, и транспортирует к теплоотводящему устройству (теплообменнику или напрямую через радиатор), где жидкость охлаждается. Механический насос — это необходим для обеспечения гидравлической энергии, необходимой для этой задачи (Рис. 7а).
Рисунок 7.Схема охлаждающих контуров: (а) Однофазный контур. (б)
Двухфазная петля с механическим управлением. (c) Двухфазный капилляр
петля. (d) Двухфазный гибридный контур
Преимущества этих систем заключаются в их гибкости и отсутствие чувствительности к их ориентации и механическим среда. Скорость потока жидкости можно легко регулировать (например, через насос с регулируемой скоростью), что позволяет использовать любой из вариантов мощности рабочие циклы (возможно соотношение от 1 до 10) и / или разные уровни точности, стабильности и однородности температуры.В диапазон температур может быть адаптирован к конкретному применению выбрав подходящую жидкость. Поскольку жидкость циркулирует за счет механического воздействия насоса система работает с одинаковая эффективность на земле, на борту космического корабля или во время спуска на небесное тело. Недостатки — мощность необходим для привода насоса и возможных вибраций, вызванных насос и потоки жидкости.
Однофазные гидравлические контуры широко используются с самого начала дни пилотируемых космических полетов.В России их тоже использовали часто для беспилотных космических аппаратов; например были использованы воздушные петли на Протоне, жидкостные петли на мощных телекоммуникациях космический корабль (в сочетании с развертываемыми радиаторами) и комбинированные жидкостно-воздушные контуры на извлекаемых низкоорбитальных космических аппаратах (например, Foton). В Европе они использовались на Spacelab и Eureca, и в будущем будет использоваться на орбитальной орбите Колумбуса. Помещения, а также мини-логистический модуль под давлением.
Двухфазные контуры с механической накачкой (ПДК, рис.7b) являются аналогичен однофазным петлям, за исключением того, что жидкость меняет состояние (испаряется при поглощении тепла и конденсируется в устройства для отвода тепла) вместо того, чтобы просто изменять температуру. В преимущество по сравнению с однофазным типом заключается в более низкий расход жидкости, необходимый для управления тем же количеством тепла (за счет использования скрытой теплоты испарения) и связанное с этим снижение уровня ресурсов, необходимых для TCS (меньшее потребление электроэнергии насоса, меньшая масса за счет более мелкие трубопроводы и запас жидкости и т. д.).
В контурах с капиллярной накачкой (CPL: рис. 7c) движущая сила обеспечивается капиллярным действием материала фитиля внутри испарители и отдельный механический насос не нужны. Однако существуют определенные операции или этапы миссии для какая помощь капиллярному действию может быть желательной (например, запуск контура, пиковые нагрузки, высокие механические нагрузки или заземление тестирование).
Гибридные петли (рис. 7d), состоящие из CPL с механической насос сейчас предлагаются.При номинальных режимах работы насос обходится, и поток жидкости обеспечивается капилляром действия. Только во время критических фаз насос вставляется в петля для обеспечения дополнительной энергии, необходимой для жидкости. Много экспериментальные CPL летали или летят, чтобы продемонстрировать технология, которая в настоящее время используется в нескольких земных наблюдательные эксперименты, например европейский ATLID и американский EOS-AM.
Тепловые соединения
Используются для передачи тепла от
фиксированный элемент космического корабля к любому развертываемому / подвижному / вращающемуся
элемент (e.грамм. радиатор). В зависимости от характера и степени
допустимое движение (одиночное развертывание, непрерывное вращение,
и т. д.) стык может быть очень простым (упомянутая коса
выше для малых тепловых нагрузок) или значительно более сложный.
Гибкие тепловые трубы были предложены для одиночного развертывания, и вращающиеся термические соединения (на основе сплавов с памятью формы или газа давление) для периодического вращения. Их еще предстоит летать на Европейский космический корабль.
Отвод тепла
Радиаторы
A
радиатор — это просто (очень) проводящая панель, открытая глубоко
пространство и (обычно) покрытые покрытием с высоким коэффициентом излучения.В зависимости от размеров и конфигурации космического корабля возможны
быть центральными радиаторами, к которым отводится все тепло на борту
передается, или несколько радиаторов, каждый из которых предназначен для полезной нагрузки
блок или группа полезных нагрузок и / или подсистем.
Рассеивающее оборудование может быть установлено непосредственно на радиатора или подключенных к нему через тепловые трубки или контуры жидкости. В последнем случае тепловые трубы или жидкостные трубопроводы могут быть крепится к внешним сторонам радиатора или прямо встраивается в его структуру.Второе решение более эффективно из структурная (экономия массы) и тепловая точки зрения, но также может быть менее надежным из-за вероятности микрометеороидов воздействует на радиатор, и более критично в отношении деятельность по интеграции космических аппаратов.
Размер радиатора зависит от рассеиваемой мощности, температура отбраковки (определяется контролируемыми объектами) и температура окружающей среды (рис. 8). В в большинстве случаев радиатор устанавливается на панели космического корабля и поэтому излучает только с одной стороны.В случае высокого и / или переменная мощность или меняющиеся условия окружающей среды, это конфигурация не очень производительная. Лучшее решение — использовать обе стороны радиатора, но это подразумевает необходимость развертывание радиатора.
Рисунок 8. Влияние на радиатор площади окружающей среды (раковина) и
температура радиатора
Одним из способов борьбы с изменяющейся тепловой нагрузкой является использование жалюзи. или жалюзи на радиаторе, как обсуждалось ранее.
Тепловые насосы термоэлектрические
Насосы тепловые
обратимые машины, способные передавать тепловую энергию от нижних
от температуры к телам с более высокой температурой с помощью дополнительного
источник энергии.Использовались только термоэлектрические тепловые насосы.
в космосе до сих пор, основной особенностью которого является Пельтье
элемент, который получается в результате соединения через металлический язычок
полупроводниковых материалов типа n и типа p.
Эффективность элемента Пельтье зависит от его внутренней характеристики (термоэлектрический эффект, тепловой и электрический проводимость), электрический ток, температура контролируется и температура радиатора. Общая производительность термоэлектрического теплового насоса строго связана к эффективности тепловой связи между Пельтье выступы элементов и охлаждаемые или нагреваемые поверхности.
Для низких нагрузок охлаждения / нагрева элементы крепятся болтами между опорной плитой регулируемого элемента и теплом раковина. Термопаста обычно наносится на поверхность раздела с увеличить термический КПД соединения. Однако, как давление на границе раздела не может быть высоким по механическим причинам, это метод не подходит, когда требуются высокие тепловые характеристики (очень строгий контроль температуры и / или сильное охлаждение / нагрев нагрузки). В этом случае предпочтительным решением является пайка элементы к радиатору.
Самыми эффективными радиаторами в настоящее время являются водяные. обменники. Хорошие характеристики также можно получить при воздушном нагреве. обменники, за счет большего объема и большей мощности расход (нужен для привода вентиляторов). Во всех остальных случаях нагрузки охлаждения / нагрева, а также разница температур между холодной и горячей стороной должно быть очень мало, иначе требуемая электрическая мощность становится недопустимой.
Термоэлектрические тепловые насосы обычно используются для герметичных контроль температуры маломощных приборов (преимущества отсутствие вибрации и простота монтажа) и оборудование, используемое для экспериментов в условиях микрогравитации.Многие системы имеют были разработаны и используются как для пилотируемых (например, ESA’s Biorack), так и для беспилотный космический корабль (например, Biobox на борту Foton).
О нас | Поиск | Обратная связь
Бюллетень ESA Nr. 87.
Опубликовано в августе 1996 г.
Разработано ESA-ESRIN ID / D.
Как рассчитать домашние радиаторы отопления. Расчет количества радиаторов.
Помещения со стандартной высотой потолков
Расчет количества секций радиаторов отопления для типового дома производится исходя из площади комнат.Площадь комнаты в типовой постройке рассчитывается путем умножения длины комнаты на ее ширину. Для обогрева 1 квадратного метра требуется 100 Вт мощности нагревателя, а для того, чтобы рассчитать общую мощность, нужно полученную площадь умножить на 100 Вт. Полученное значение означает общую мощность нагревателя. В документации на радиатор обычно указывается тепловая мощность одной секции. Чтобы определить количество секций, вам нужно разделить общую мощность на это значение и округлить результат в большую сторону.
Пример расчета:
Помещение шириной 3,5 метра и длиной 4 метра с обычной высотой потолков. Мощность одной секции радиатора — 160 Вт. Необходимо найти количество разделов.
- Определяем площадь комнаты, умножив ее длину на ширину: 3,5 · 4 = 14 м 2.
- Находим суммарную мощность ТЭНов 14 · 100 = 1400 Вт.
- Находим количество секций: 1400/160 = 8.75. Округлите до большего значения и получите 9 секций.
Для помещений, расположенных в конце здания, расчетное количество радиаторов необходимо увеличить на 20%.
Помещения с высотой потолка более 3 метров
Расчет количества секций отопительных приборов для помещений с высотой потолка более трех метров осуществляется от объема помещения. Объем — это площадь, умноженная на высоту потолков. Для обогрева 1 кубометра помещения требуется 40 Вт тепловой мощности отопительного прибора, а его общая мощность рассчитывается умножением объема помещения на 40 Вт.Для определения количества секций это значение необходимо разделить на мощность одной секции по паспорту.
Пример расчета:
Помещение шириной 3,5 метра и длиной 4 метра с высотой потолков 3,5 метра. Мощность одной секции радиатора — 160 Вт. Необходимо найти количество секций радиаторов.
Также можно воспользоваться таблицей:
Как и в предыдущем случае, для угловой комнаты эту цифру нужно умножить на 1.2. Также необходимо увеличить количество секций, если в помещении имеется один из следующих факторов:
- Находится в панельном или плохо изолированном доме;
- Расположен на первом или последнем этаже;
- Имеет более одного окна;
- Расположен рядом с неотапливаемыми комнатами.
В этом случае полученное значение необходимо умножить на коэффициент 1,1 для каждого из коэффициентов.
Пример расчета:
Угловая комната шириной 3.5 метров и длиной 4 метра, при высоте потолков 3,5 м. Находится в панельном доме на первом этаже, имеет два окна. Мощность одной секции радиатора — 160 Вт. Необходимо найти количество секций радиаторов отопления.
- Находим площадь комнаты, умножив ее длину на ширину: 3,5 · 4 = 14 м 2.
- Объем комнаты находим, умножив площадь на высоту потолков: 14 · 3,5 = 49 м 3.
- Находим полную мощность радиатора отопления: 49 · 40 = 1960 Вт.
- Находим количество секций: 1960/160 = 12,25. Округляем и получаем 13 секций.
- Умножьте полученную сумму на коэффициенты:
Угловая комната — коэффициент 1,2;
Панельный дом — коэффициент 1,1;
Два окна — коэффициент 1,1;
Цокольный этаж — коэффициент 1,1.
Таким образом, получаем: 13 · 1,2 · 1,1 · 1,1 · 1,1 = 20.76 разделов. Округляем их до большего целого числа — 21 секция радиаторов отопления.
При расчетах следует учитывать, что разные типы радиаторов отопления имеют разную теплоемкость. При выборе количества секций радиатора отопления необходимо использовать именно те значения, которым соответствуют.
Для того, чтобы теплоотдача от радиаторов была максимальной, необходимо устанавливать их в соответствии с рекомендациями производителя, соблюдая все расстояния, указанные в паспорте.Это способствует лучшему распределению конвективных потоков и снижает теплопотери.
Чтобы система отопления работала эффективно, недостаточно просто расположить батареи в комнатах. Рассчитывать их количество необходимо с учетом площади и объема помещения и мощности топки или котла. Важно учитывать тип аккумулятора.
На сегодняшний день промышленность выпускает несколько типов радиаторов, которые изготавливаются из разных материалов, имеют разную форму и, конечно же, характеристики.Для эффективности отопления дома, покупая их, нужно учитывать все недостатки и преимущества моделей, представленных на рынке.
Каждый собственник недвижимости хотел бы, не обращаясь к специалистам, узнать, как рассчитать количество радиаторов отопления самостоятельно, для конкретного дома.
Калькулятор расчета количества секций радиатора отопления
Введите запрашиваемые значения по одному или отметьте необходимые опции в предложенных списках
Установите ползунок на значение площади помещения, м²
100 Вт на квадратный метр м
Сколько внешних стен в комнате?
Один, два, три, четыре
С какой стороны света выглядят внешние стены
Север, Северо-Восток, Восток Юг, Юго-Запад, Запад
Укажите степень изоляции наружных стен
Наружные стены не утеплены Средняя степень утепления Наружные стены качественно утеплены
Укажите среднюю температуру воздуха в регионе в самую холодную декаду года
35 ° С и ниже от –25 ° С до –35 ° С до –20 ° С до –15 ° С не ниже –10 ° С
Укажите высоту потолка в комнате
До 2.7 м 2,8 ÷ 3,0 м 3,1 ÷ 3,5 м 3,6 ÷ 4,0 м более 4,1 м
Что находится над комнатой?
Холодный чердак или неотапливаемое и неизолированное помещение Чердак или другое отапливаемое помещение
Укажите тип установленных окон
Обычные деревянные рамы с двойным остеклением Окна с однокамерным (2 стекла) стеклопакетами Окна с двухкамерным (3 стекла) стеклопакетом или с аргоновым заполнением
Укажите количество окон в комнате
Укажите высоту окна, м
Уточняйте ширину окна, м
Выбрать схему подключения аккумулятора
Укажите особенности установки радиаторов
Радиатор открыт на стене или не прикрыт подоконником.Радиатор полностью прикрывается подоконником или полкой. Радиатор устанавливается в стенной нише. Радиатор частично прикрыт лицевой декоративной перегородкой.
Ниже будет предложено ввести паспортную мощность одной секции выбранной модели радиатора.
Если целью расчетов является определение необходимой общей тепловой мощности для обогрева помещения (например, для выбора неразборных радиаторов), то оставьте поле пустым
Введите паспортную табличку тепловой мощности одной секции выбранной модели радиатора
Типы радиаторовВ продаже есть уже знакомые чугунные типы аккумуляторов, но существенно улучшенные, а также современные образцы из алюминия, стали и, так называемых, биметаллических радиаторов.
Современные варианты аккумуляторов выполнены в самых разных дизайнерских решениях, имеют множество оттенков и расцветок, поэтому вы легко сможете выбрать те модели, которые больше подходят для конкретного интерьера. Однако нельзя забывать о технических характеристиках устройств.
Но у них есть и недостаток — они приемлемы только для систем отопления с достаточно высоким давлением, то есть для зданий, подключенных к центральному отоплению. Для построек с автономным теплоснабжением они не подходят и от них лучше отказаться.
- Стоит поговорить о чугунных радиаторах. Несмотря на большой «исторический опыт», они не теряют своей актуальности. Более того, сегодня вы можете приобрести чугунные варианты, выполненные в различных исполнениях, и их легко подобрать под любой дизайн. Более того, выпускаются такие радиаторы, которые вполне могут стать дополнением или даже украшением помещения.
Эти батареи подходят как для автономного, так и для центрального отопления, а также для любого теплоносителя.Они дольше нагреваются, чем биметаллические, но и дольше охлаждаются, что способствует большей теплоотдаче и сохранению тепла в помещении. Единственное условие их длительной эксплуатации — качественный монтаж.
- Стальные радиаторы делятся на два типа: трубчатые и панельные.
Трубчатые варианты дороже, они медленнее нагреваются, чем панельные, и соответственно дольше держат температуру.
Панель — батареи быстрого нагрева.Они намного дешевле трубчатых по цене, тоже хорошо обогревают помещения, но в процессе их быстрого остывания помещение остывает. Поэтому такие батареи в автономном отоплении не экономичны, так как требуют практически постоянного притока тепловой энергии.
Эти характеристики стальных батарей обоих типов напрямую повлияют на количество точек их размещения.
Стальные радиаторыимеют респектабельный внешний вид, поэтому хорошо вписываются в любой стиль оформления помещения.Они не пылятся на своей поверхности и легко приводятся в порядок.
- Алюминиевые радиаторы обладают хорошей теплопроводностью, поэтому считаются достаточно экономичными. Благодаря такому качеству и современному дизайну алюминиевые аккумуляторы стали бестселлером.
Но, приобретая их, необходимо учитывать один из их недостатков — это требовательность алюминия к качеству теплоносителя, поэтому они больше подходят только для автономного отопления.
Чтобы рассчитать, сколько радиаторов нужно для каждой из комнат, придется учесть множество нюансов, как связанных с характеристиками аккумуляторов, так и других, влияющих на сохранение тепла в помещениях.
Расчет количества секцийДля того, чтобы теплоотдача и эффективность отопления были на должном уровне, при расчете размеров радиаторов необходимо учитывать нормы их установки, а не полагаться на размеры оконных проемов, под которыми они установлены.
На теплопередачу влияет не его размер, а мощность каждой отдельной секции, которые собраны в один радиатор. поэтому лучшим вариантом будет разместить несколько маленьких батареек, распределив их по комнате, а не одну большую. Это можно объяснить тем, что тепло будет поступать в комнату с разных точек и равномерно ее согревать.
Каждая отдельная комната имеет свою площадь и объем, от этих параметров будет зависеть расчет количества установленных в ней секций.
Расчет на основе площади
Требуемую мощность для обогрева помещения можно узнать, умножив на 100 Вт размер его площади (в квадратных метрах).
- Мощность радиатора увеличивается на 20%, если две стены комнаты выходят на улицу, а в ней есть одно окно — это может быть крайняя комната.
- Вам придется увеличить мощность на 30%, если комната имеет те же характеристики, что и в предыдущем случае, но имеет два окна.
- Если окно или окна комнаты выходят на северо-восток или север, а это значит, что в нем минимальное количество солнечного света, мощность необходимо увеличить еще на 10%.
- Установленный радиатор в нише под окном имеет пониженную теплоотдачу, в этом случае придется увеличить мощность еще на 5%.
- Если радиатор закрыт экраном из эстетических соображений, то теплоотдача снижается на 15%, и его тоже нужно восполнить за счет увеличения мощности на эту величину.
Экраны радиаторов красивы, но до 15% мощности займут
Удельная мощность секции радиатора должна быть указана в паспорте, который производитель прилагает к изделию.
Зная эти требования, можно рассчитать необходимое количество секций, разделив полученное общее значение требуемой тепловой мощности с учетом всех указанных компенсационных поправок на удельную теплоотдачу одной секции батареи.
Полученный результат вычисления округляется до ближайшего целого числа, но только в большую сторону. Допустим, получается восемь секций. И здесь, возвращаясь к вышесказанному, следует отметить, что для лучшего обогрева и распределения тепла радиатор можно разделить на две части по четыре секции в каждой, которые устанавливаются в разных местах комнаты.
Следует отметить, что такие расчеты подходят для определения количества секций для помещений, оборудованных центральным отоплением, в которых теплоноситель имеет температуру не более 70 градусов.
Этот расчет считается достаточно точным, но можно произвести расчет и другим способом.
Расчет радиаторов исходя из объема помещения
- Стандартным является соотношение тепловой мощности 41 Вт на 1 куб.метр помещения при условии наличия одной двери, окна и внешней стены.
Чтобы результат был виден, например, можно рассчитать необходимое количество аккумуляторов для комнаты площадью 16 квадратных метров. м. и потолок высотой 2,5 метра:
16 × 2,5 = 40 куб.м.
41 × 40 = 1640 Вт.
Зная теплоотдачу одной секции (она указана в паспорте), можно легко определить количество аккумуляторов.Например, теплопередача равна 170 Вт, и выполняется следующий расчет:
1640/170 = 9,6.
После округления получается цифра 10 — это и будет желаемое количество секций ТЭНов на комнату.
- Если комната соединяется с соседней комнатой через проем, не имеющий двери, то необходимо учитывать общую площадь двух комнат, только тогда будет выявлено точное количество батарей для эффективности отопления.
- Если охлаждающая жидкость имеет температуру ниже 70 градусов, количество секций в АКБ придется пропорционально увеличить.
- При установленных в помещении стеклопакетах значительно снижаются тепловые потери, следовательно, количество секций в каждом радиаторе может быть меньше.
- Если в помещении установлены старые чугунные батареи, которые могли бы справиться с созданием необходимого микроклимата, но есть планы по их замене на какие-то современные, то рассчитать, сколько их потребуется, очень несложно.Одна чугунная секция имеет постоянную теплоотдачу 150 Вт. Поэтому количество установленных чугунных секций нужно умножить на 150, а полученное число поделить на теплоотдачу, указанную на секциях новых батарей.
Видео советы специалиста — как выбрать и рассчитать радиаторы отопления
Если вы не полагаетесь на свои силы, вы можете обратиться к специалистам, которые сделают точный расчет и проведут анализ с учетом всех параметров:
- погодные условия района, в котором находится дом;
- температурно-климатических показателей в начале и конце отопительного сезона;
- материал, из которого построена конструкция и наличие качественного утеплителя;
- количество окон и материал, из которого изготовлены рамы;
- высота отапливаемых помещений;
- КПД установленной системы отопления.
Зная все вышеперечисленные параметры, специалисты по отоплению могут легко рассчитать необходимое количество батарей с помощью своей программы расчета. Такой просчет с учетом всех нюансов вашего жилища гарантированно сделает его уютным и теплым.
Расчет радиаторов необходимо проводить правильно, иначе их небольшое количество не сможет достаточно обогреть комнату, а большое наоборот создаст некомфортные условия проживания, и вам придется постоянно открывать окна.Известны различные методы расчета. На их выбор влияет материал батарей, климатические условия, благоустройство дома.
Расчет количества батарей на 1 м2
Площадь каждого помещения, где будут установлены радиаторы, можно посмотреть в документах на недвижимость или измерить самостоятельно. Потребность в тепле для каждой комнаты можно найти в строительных нормах и правилах, где указано, что для обогрева 1м2 на определенной территории проживания вам потребуется:- для тяжелых климатических условий (температура опускается ниже -60 0С) — 150-200 W;
- для средней полосы — 60-100 Вт.
16? 100 = 1600 Вт
Было взято максимальное значение потребляемой мощности, так как погода переменчивая, и лучше предусмотреть небольшой запас мощности, чтобы зимой не замерзла.
Затем рассчитывается количество секций батареи (N) — полученное значение делится на тепло, выделяемое одной секцией.Предполагается, что одна секция выделяет 170 ватт, исходя из этого и ведется расчет:
Лучше округлить — 10 штук. Но для некоторых помещений целесообразнее округлить в меньшую сторону, например, для кухни, в которой есть дополнительные источники тепла. Дальше будет 9 разделов.
Расчеты можно проводить по другой формуле, которая аналогична приведенным выше расчетам:
N = S / P * 100, где:
- N — количество секций;
- S — площадь помещения;
- П — теплообмен одной секции.
Выбор точного количества секций биметаллического аккумулятора
Они бывают нескольких типов, каждая из них имеет свою мощность. Минимальное тепловыделение достигает — 120 Вт, максимальное — 190 Вт. При расчете количества секций необходимо учитывать необходимый расход тепла в зависимости от расположения дома, а также с учетом тепловых потерь:- Сквозняки, возникающие из-за плохо сделанных оконных проемов и профиля окон, трещины в стенах.
- Отвод тепла по теплоносителю от одной батареи к другой.
- Угловое расположение комнаты.
- Количество окон в комнате: чем их больше, тем больше потери тепла.
- Регулярное проветривание помещений зимой также накладывает свой отпечаток на количество секций.
Расчет количества радиаторов в частном доме
Если для квартир можно брать средние параметры потребляемого тепла, так как они рассчитаны на стандартные габариты помещения, то в частном строительстве это неверно. Ведь многие собственники строят свои дома с высотой потолков более 2,8 метра, к тому же почти все частные помещения оказываются угловыми, поэтому для их обогрева потребуется больше мощности.В этом случае расчеты, основанные на учете площади помещения, не подходят: нужно применить формулу с учетом объема помещения и произвести корректировку с использованием коэффициентов уменьшения или увеличения теплоотдачи. .
Значения коэффициентов следующие:
- 0,2 — полученное итоговое число мощности умножается на этот показатель, если в доме установлены многокамерные пластиковые стеклопакеты.
- 1,15 — если установленный в доме котел работает на пределе своей мощности. В этом случае каждые 10 градусов нагретой охлаждающей жидкости снижает мощность радиаторов на 15%.
- 1,8 — коэффициент увеличения, применяемый, если комната угловая и в ней больше одного окна.
- В — объем помещения;
- 41 — средняя мощность, необходимая для обогрева 1 м2 частного дома.
Если есть комната площадью 20 м2 (4 × 5 м — длина стены) с высотой потолка 3 метра, то ее объем можно легко вычислить:
Полученное значение умножается на принятую мощность по нормам:
60? 41 = 2460 Вт — столько тепла нужно, чтобы обогреть рассматриваемый участок.
Расчет количества радиаторов сводится к следующему (учитывая, что одна секция радиатора в среднем излучает 160 Вт, а их точные данные зависят от материала, из которого изготовлены батареи):
2460/160 \ u003d 15.4 штуки
Предположим, что вам нужно всего 16 секций, то есть вам нужно приобрести 4 радиатора, по 4 секции на стену или от 2 до 8 секций. При этом не следует забывать о поправочных коэффициентах.
Расчет теплоотдачи одного алюминиевого радиатора (видео)
Из видео вы узнаете, как рассчитать теплоотдачу одной секции алюминиевой батареи при разных параметрах входящего и выходящего теплоносителя.Одна секция алюминиевого радиатора имеет мощность 199 Вт, но это при условии соблюдения заявленной разницы температур в 70 0С. Это значит, что на входе температура охлаждающей жидкости 110 0С, а на выходе 70 градусов. Помещение с таким перепадом должно прогреться до 20 градусов. Указывается эта разница температур DT.
Некоторые производители радиаторов прилагают к своей продукции таблицу преобразования и коэффициент теплопередачи. Его значение плавающее: чем выше температура теплоносителя, тем больше скорость теплопередачи.
В качестве примера этот параметр можно рассчитать с помощью следующих данных:
- Температура охлаждающей жидкости на входе в радиатор составляет 85 0C;
- Охлаждение водяное на выходе из радиатора — 63 0С;
- Отопление помещений — 23 0С.
(85 + 63) / 2 — 23 = 52
Полученное число равным DT, по предложенной таблице можно установить, что при ней коэффициент равен 0.68. Учитывая это, можно определить теплопередачу одной секции:
199? 0,68 = 135 Вт
Затем, зная теплопотери в каждом помещении, можно посчитать, сколько всего секций радиаторов необходимо установить в конкретном помещении. Даже если рассчитывалась одна секция, необходимо установить не менее 3-х, иначе вся система отопления будет выглядеть нелепо и не будет достаточно обогревать площадь.
Расчет количества радиаторов всегда актуален.Для тех, кто строит частный дом, это особенно важно. Владельцы квартир, желающие поменять радиаторы, также должны знать, насколько просто рассчитать количество секций на новых моделях радиаторов.
При замене батарей или переходе на индивидуальное отопление в квартире возникает вопрос, как рассчитать количество радиаторов и количество секций прибора. Если заряда аккумулятора будет недостаточно, в холодное время года в квартире будет прохладно.Чрезмерное количество секций не только приводит к ненужным переплатам — при системе отопления с однотрубной разводкой жители нижних этажей останутся без тепла. Оптимальную мощность и количество радиаторов можно рассчитать исходя из площади или объема помещения, принимая во внимание характеристики помещения и особенности разных из них.
Самая распространенная и простая методика — это методика расчета мощности устройств, необходимых для обогрева, по площади отапливаемого помещения.По средней норме, на отопление 1 кв. квадратный метр требует 100 ватт тепловой мощности. В качестве примера рассмотрим комнату площадью 15 квадратных метров. метров. По этому способу для его нагрева потребуется 1500 Вт тепловой энергии.
При использовании этой техники необходимо учитывать несколько важных моментов:
- из расчета 100 Вт на 1 кв. метр квадратный относится к средней климатической зоне, в южных регионах под отопление 1 кв.на метр помещения требуется меньше мощности — от 60 до 90 Вт;
- для районов с суровым климатом и очень холодной зимой для обогрева 1 кв. Км. метров требуется от 150 до 200 Вт;
- метод подходит для помещений со стандартной высотой потолка не более 3 метров; Метод
- не учитывает теплопотери, которые будут зависеть от расположения квартиры, количества окон, качества утеплителя, материала стен.
Методика расчета объема помещения
Методика расчета с учетом объема потолка будет более точной: в ней учитывается высота потолков в квартире и материал, из которого выполнены внешние стены.Последовательность расчетов будет следующая:
- Определяется объем помещения, для этого его умножают на высоту потолка. Для комнаты 15 кв. м. а высота потолков 2,7 м будет равна 40,5 кубометра.
- В зависимости от материала стен на нагрев одного кубометра воздуха уходит разное количество энергии. По нормам СНиП для квартиры в кирпичном доме этот показатель составляет 34 Вт, для панельного дома — 41 Вт.Итак, получившуюся громкость нужно умножить на 34 или 41 Вт. Тогда для кирпичного дома для обогрева помещения площадью 15 квадратов потребуется 1377 Вт (40,5 * 34), для панельного дома — 1660,5 Вт (40,5 * 41).
Корректировка результатов
Любой из выбранных методов покажет только приблизительный результат, если не приняты во внимание все факторы, влияющие на уменьшение или увеличение теплопотерь. Для точного расчета необходимо полученное значение мощности радиаторов умножить на указанные ниже коэффициенты, среди которых нужно выбрать подходящие.
Окно
В зависимости от размера окон и качества изоляции через них, помещение может терять 15–35% тепла. Поэтому для расчетов мы будем использовать два коэффициента, относящихся к окнам.
Соотношение площади окон и пола в комнате:
- 10% — коэффициент 0,8;
- 20% — 0,9;
- 30% — 1,0;
- 40% — 1,1;
- 50% — 1,2.
Тип остекления:
- для окна с трехкамерным стеклопакетом или двухкамерного с аргоном — 0.85;
- для окна с обычным двухкамерным стеклопакетом — 1,0;
- для рам с обычным стеклопакетом — 1,27.
Стены и потолок
Теплопотери зависят от количества внешних стен, качества теплоизоляции и от того, какое помещение находится над квартирой. Чтобы учесть эти факторы, будут использоваться еще 3 фактора.
Количество наружных стен:
- без наружных стен, без теплопотерь — коэффициент 1.0;
- одна наружная стена — 1,1;
- два — 1,2;
- три — 1,3.
Коэффициент изоляции:
- нормальная теплоизоляция (стена толщиной 2 кирпича или слой утеплителя) — 1,0;
- высокая степень теплоизоляции — 0,8;
- низкий — 1,27.
Учет типа верхней комнаты:
- отапливаемая квартира — 0,8;
- чердак отапливаемый — 0,9;
- холодный чердак — 1.0.
Высота потолка
Если вы использовали методику расчета площади для комнаты с нестандартной высотой стен, то вам придется учесть ее для уточнения результата. Коэффициент можно узнать так: разделите имеющуюся высоту потолка на стандартную высоту, которая составляет 2,7 метра. Таким образом получаем следующие числа:
- 2,5 метра — коэффициент 0,9;
- 3,0 метра — 1,1;
- 3,5 метра — 1.3;
- 4,0 метра — 1,5;
- 4,5 метра — 1,7.
Климатические условия
Последний коэффициент учитывает температуру наружного воздуха зимой. Будем отталкиваться от средней температуры в самую холодную неделю года.
- -10 ° С — 0,7;
- -15 ° С — 0,9;
- -20 ° С — 1,1;
- -25 ° С — 1,3;
- -35 ° С — 1,5.
Расчет количества секций радиаторов
После того, как мы узнаем мощность, необходимую для обогрева помещения, мы можем рассчитать нагревательные батареи.
Для того, чтобы рассчитать количество секций радиатора, нужно рассчитанную общую мощность разделить на мощность одной секции устройства. Для расчетов можно использовать среднюю статистику для разных типов радиаторов со стандартным осевым расстоянием 50 см:
- для чугунных аккумуляторов, примерная мощность одной секции 160 Вт;
- для — 180 Вт;
- для алюминия — 200 Вт.
Справка: осевое расстояние радиатора — это высота между центрами отверстий, через которые охлаждающая жидкость подается и удаляется.
Например, определяем необходимое количество секций биметаллического радиатора для комнаты площадью 15 кв. м. Предположим, вы считали энергоснабжение самым простым с точки зрения занимаемой площади. Необходимую мощность для его нагрева 1500 Вт делим на 180 Вт. Округляем полученное число 8,3 — необходимое количество секций биметаллического радиатора 8.
Важно! Если вы решили выбрать аккумуляторы нестандартного размера, узнайте мощность одной секции из паспорта устройства.
Температурная зависимость системы отопления
Мощность радиаторов указана для системы с высокотемпературным тепловым режимом. Если система отопления вашего дома работает в среднетемпературном или низкотемпературном тепловом режиме, придется провести дополнительные расчеты для выбора батарей с необходимым количеством секций.
Во-первых, мы определяем тепловое давление в системе, которое представляет собой разницу между средней температурой воздуха и батареек.За температуру отопительных приборов принимается среднее арифметическое значений температуры подачи и отвода теплоносителя.
- Высокая температура: 90/70/20 (температура подачи — 90 ° C, обратка -70 ° C, средняя комнатная температура установлена на 20 ° C). Тепловой напор рассчитывается следующим образом: (90 + 70) / 2-20 = 60 ° С;
- Температура среды: 75/65/20, термическое давление — 50 ° С.
- Низкая температура: 55/45/20, тепловое давление — 30 ° С.
С выбором радиаторов отопления сегодня проблем нет. Здесь и чугун, и алюминий, и биметаллический — выбирайте, что хотите. Однако факт покупки дорогих радиаторов особой конструкции не является гарантией того, что в вашем доме будет тепло. В этом случае роль играют и качество, и количество. Разберемся, как правильно рассчитать радиаторы отопления.
1 Расчет всего напора — от площади
Неправильный расчет количества радиаторов может привести не только к нехватке тепла в помещении, но и к слишком большим счетам за отопление и слишком высокой температуре в комнатах .Расчет следует производить как при самой первой установке радиаторов, так и при замене старой системы, где, казалось бы, давно все было ясно, так как теплопередача радиаторов может существенно отличаться.
Разные комнаты — разные расчеты. Например, для квартиры в многоэтажном доме можно обойтись простейшими формулами или спросить соседей об их опыте отопления. В большом частном доме простые формулы не помогут — нужно будет учесть множество факторов, которые просто отсутствуют в городских квартирах, например, степень утепления дома.
Самое главное — не доверяйте цифрам, озвученным наугад всевозможными «консультантами», которые на глаз (даже не видя помещения!) Называют вам количество секций для отопления. Как правило, она значительно завышена, из-за чего вы постоянно будете переплачивать за лишнее тепло, которое буквально уйдет в открытое окно. Рекомендуем использовать несколько методов расчета количества радиаторов.
2 Простые формулы — для квартиры
Жители многоэтажных домов могут использовать достаточно простые способы оплаты, которые совершенно не подходят для частного дома.Самый простой расчет не блещет высокой точностью, но подходит для квартир со стандартными потолками не выше 2,6 м. Учтите, что для каждой комнаты ведется отдельный расчет количества секций.
Принято утверждение, что для обогрева квадратного метра помещения необходимо 100 Вт тепловой мощности радиатора. Соответственно, чтобы рассчитать количество тепла, необходимое для комнаты, умножаем ее площадь на 100 Вт. Итак, для комнаты 25 м2 необходимо приобретать секции общей мощностью 2500 Вт или 2.5 кВт. Производители всегда указывают на упаковке теплоотдачу секций, например, 150 Вт. Наверняка вы уже поняли, что делать дальше: 2500/150 = 16.6 разделов
Округляем результат в большую сторону, однако для кухни можно округлить до меньшего — помимо батареек, плита и чайник также нагревают воздух.
Также следует учитывать возможные тепловые потери в зависимости от расположения комнаты. Например, если это комната, расположенная на углу здания, то тепловую мощность аккумуляторов можно смело увеличивать на 20% (17 * 1.2 = 20,4 секции) такое же количество секций понадобится для комнаты с балконом. Обратите внимание, если вы намерены спрятать радиаторы в нише или спрятать их за красивым экраном, то автоматически теряете до 20% тепловой мощности, которую придется компенсировать количеством секций.
3 Расчеты по объему — что говорит СНиП?
Более точное количество секций можно рассчитать с учетом высоты потолков — этот метод особенно актуален для квартир с нестандартной высотой комнат, а также для частного дома в качестве предварительного расчета.В этом случае мы определяем тепловую мощность исходя из объема помещения. Согласно нормам СНиП, для обогрева одного кубометра жилой площади в типовой многоэтажной застройке требуется 41 Вт тепловой энергии. Это нормативное значение нужно умножить на общий объем, который можно получить, высоту комнаты умножить на ее площадь.
Например, объем помещения площадью 25 м 2 с потолками 2,8 м равен 70 м 3. Умножаем этот показатель на нормативный 41 Вт и получаем 2870 Вт.Далее действуем, как в предыдущем примере — общее количество ватт делим на теплоотдачу одной секции. Так, если теплоотдача 150 Вт, то количество секций примерно 19 (2870/150 = 19,1). Кстати, ориентируйтесь на минимальные показатели теплоотдачи радиаторов, потому что температура носителя в трубах редко когда в наших реалиях соответствует требованиям СНиП. То есть если в паспорте радиатора указаны рамки от 150 до 250 Вт, то по умолчанию берем меньшую цифру.Если вы сами отвечаете за отопление частного дома, то возьмите среднее значение.
4 Точные цифры для частных домов — учитываем все нюансы
Частные дома и большие современные квартиры не попадают в стандартные расчеты — слишком много нюансов, чтобы учесть их. В этих случаях можно применить максимально точный метод расчета, в котором учтены эти нюансы. Собственно, сама формула очень проста — школьник с этим тоже справится, главное подобрать все коэффициенты, учитывающие особенности дома или квартиры, влияющие на способность экономить или терять тепловую энергию.Вот наша точная формула:
- CT = N * S * K 1 * K 2 * K 3 * K 4 * K 5 * K 6 * K 7
- CT — количество тепловой мощности в ваттах, необходимое для обогрева определенного помещения;
- N — 100 Вт / кв.м, нормативное количество тепла на квадратный метр, к которому мы применим понижающие или повышающие коэффициенты;
- S — площадь помещения, для которой мы рассчитаем количество секций.
Следующие факторы обладают свойством увеличивать и уменьшать количество тепловой энергии в зависимости от условий в помещении.
- К 1 — учитывают характер остекления окон. Если это окна с обычным стеклопакетом, то коэффициент 1,27. Окна с двойным остеклением — 1,0, с тройным — 0,85.
- К 2 — учитываем качество теплоизоляции стен. Для холодных неизолированных стен по умолчанию этот коэффициент равен 1,27, для нормальной теплоизоляции (кладка в два кирпича) — 1,0, для хорошо утепленных стен — 0,85.
- К 3 — с учетом средней температуры воздуха в разгар зимних холода.Таким образом, для -10 ° C коэффициент равен 0,7. За каждые -5 ° С добавляем коэффициент 0,2. Таким образом, для -25 ° C коэффициент будет 1,3.
- К 4 — учитывать соотношение площади пола и площади окна. Начиная с 10% (коэффициент 0,8), на каждые следующие 10% мы добавляем 0,1 к коэффициенту. Таким образом, для коэффициента 40% коэффициент будет 1,1 (0,8 (10%) + 0,1 (20%) + 0,1 (30%) + 0,1 (40%)).
- K 5 — понижающий коэффициент, который корректирует количество тепловой энергии с учетом типа помещения, расположенного выше.За единицу берем холодный чердак, если отапливаемый чердак 0,9, если отапливаемая жилая над помещением 0,8.
- К 6 — корректируем результат в сторону увеличения с учетом количества стен, контактирующих с окружающей атмосферой. Если 1 стена — коэффициент 1,1, если две — 1,2 и так далее до 1,4.
- К 7 — и последний коэффициент, корректирующий расчеты относительно высоты потолков. Высота принята за единицу 2,5, а на каждые полметра высоты 0.05 добавляется к коэффициенту. Таким образом, для 3 метров коэффициент равен 1,05, для 4 — 1,15.
Благодаря такому расчету вы получите то количество тепловой энергии, которое необходимо для поддержания комфортной жилой среды в частном доме или нестандартной квартире. Осталось только поделить готовый результат на величину теплоотдачи выбранных вами радиаторов, чтобы определить количество секций.
«Легкий высокотемпературный радиатор для космической атомной электростанции P» Брианы Н.Томбулиан
Пользователи университета штата Массачусетс в Амхерсте за пределами кампуса: чтобы загрузить диссертации о доступе к кампусу, используйте следующую ссылку, чтобы войти на наш прокси-сервер со своим Имя пользователя и пароль UMass Amherst.
Пользователи, не являющиеся гражданами Университета Массачусетса в Амхерсте: поговорите со своим библиотекарем о запросе этой диссертации через межбиблиотечный абонемент.
Диссертации, на которые наложено эмбарго, не будут доступны никому до истечения срока действия эмбарго.
Идентификатор ORCID автора
НЕТ
AccessType
Диссертация об открытом доступе
Название степени
доктор философии (PhD)
ПрограммаСтепень
Машиностроение
Месячная степень присуждена
Февраль
Первый советник
Роберт Хайерс
Второй советник
Дэвид Шмидт
Третий советник
Санджай Арваде
Предметные категории
Теплообмен, сжигание | Силовая установка и мощность | Системная инженерия и оптимизация междисциплинарного проектирования
Аннотация
Желание исследовать далекие космические направления с помощью мощных и высокоскоростных космических аппаратов вдохновило на эту работу.Ядерно-электрическая силовая установка (ЯЭП), которая, как было показано, обеспечивает на порядки более высокие удельный импульс и эффективность движения по сравнению с традиционными химическими ракетами, была определена как технология, позволяющая достичь этой цели. Одним из больших препятствий для запуска машины НЭПа является общая масса. Увеличение удельной мощности (кВт / кг) компонента теплового радиатора необходимо для достижения массовых целей НАСА.
В этой работе оценивался новый легкий высокотемпературный радиатор из углеродного волокна, разработанный для удовлетворения массовых требований будущих миссий NEP.Исследование разделено на три основных раздела: 1) исследование излучения в микромасштабе, 2) лабораторные экспериментальные и аналитические исследования и 3) моделирование крупномасштабных радиаторных систем.
В первом разделе модель трассировки лучей по методу Монте-Карло, построенная для прогнозирования эффективной излучательной способности ребра из углеродного волокна путем моделирования рассеяния излучения между волокнами, показала, что дополнительная площадь поверхности волокон над плоской поверхностью ребра увеличивает эффективную излучательную способность ребра. площадь радиатора до 20%.Эффективная излучательная способность увеличивается при уменьшении объемной доли волокна с 1 до примерно 0,16 из-за увеличения рассеяния между волокнами. Для объемной доли волокна ниже 0,10 эффективная излучательная способность быстро снижается, поскольку влияние передачи излучения становится значительным.
Во втором разделе термический анализ ребра радиатора из углеродного волокна предсказал, что эти радиаторы могут соответствовать целевым показателям НАСА за счет снижения поверхностной плотности до 2,2 кг / м 2 или ниже.Эти модели были проверены путем экспериментальных испытаний, проведенных на образцах для испытаний радиаторов меньшего размера. Эта работа повысила уровень технологической готовности (TRL) ребра радиатора из углеродного волокна со 2 до 4.
В последнем разделе была построена модель радиаторной системы автомобиля НЭП для анализа зависимости массы радиатора от выбранных параметров системы. Модель использовалась для минимизации массы радиатора для тестовых случаев. Результаты показали, что ребра из углеродного волокна, работающие при температуре около 600 ° C, уменьшили массу радиатора в 7 раз по сравнению с традиционными радиаторами, работающими при температуре около 100 ° C.Это значительное снижение массы может позволить будущие системы NEP.
DOI
https://doi.org/10.7275/grwr-gc82
Рекомендуемое цитирование
Томбулиан, Бриана Н., «Легкий высокотемпературный радиатор для космической ядерной энергетики и силовых установок» (2014). Докторские диссертации . 247.
https://doi.org/10.7275/grwr-gc82
https://scholarworks.umass.edu/dissertations_2/247
СКАЧАТЬ
С 13 ноября 2014 г.
МОНЕТЫ% PDF-1.5 % 35 0 объект > endobj xref 35 106 0000000016 00000 н. 0000002795 00000 н. 0000002906 00000 н. 0000003539 00000 н. 0000003574 00000 н. 0000003685 00000 н. 0000003798 00000 н. 0000010115 00000 п. 0000017228 00000 п. 0000017678 00000 п. 0000018029 00000 п. 0000018674 00000 п. 0000019236 00000 п. 0000019362 00000 п. 0000019543 00000 п. 0000020161 00000 п. 0000020683 00000 п. 0000021105 00000 п. 0000027328 00000 н. 0000030598 00000 п. 0000035499 00000 п. 0000035663 00000 п. 0000038838 00000 п. 0000039392 00000 п. 0000039837 00000 п. 0000040242 00000 п. 0000040744 00000 п. 0000046926 00000 п. 0000053482 00000 п. 0000056130 00000 п. 0000061837 00000 п. 0000063993 00000 п. 0000067742 00000 п. 0000067815 00000 п. 0000067891 00000 п. 0000067969 00000 п. 0000068082 00000 п. 0000068229 00000 п. 0000068535 00000 п. 0000068588 00000 п. 0000068702 00000 п. 0000068775 00000 п. 0000069084 00000 п. 0000069137 00000 п. 0000069251 00000 п. 0000069324 00000 п. 0000069402 00000 п. 0000069517 00000 п. 0000069664 00000 п. 0000069974 00000 н. 0000070027 00000 н. 0000070141 00000 п. 0000070214 00000 п. 0000070329 00000 п. 0000070476 00000 п. 0000070787 00000 п. 0000070840 00000 п. 0000070954 00000 п. 0000073422 00000 п. 0000073777 00000 п. 0000074209 00000 п. 0000074292 00000 п. 0000077503 00000 п. 0000077949 00000 п. 0000078476 00000 п. 0000078549 00000 п. 0000078662 00000 п. 0000078976 00000 п. 0000079050 00000 п. 0000079364 00000 п. 0000079438 00000 п. 0000079469 00000 п. 0000079543 00000 п. 0000083814 00000 п. 0000085221 00000 п. 0000085550 00000 п. 0000085616 00000 п. 0000085733 00000 п. 00000
00000 п. 0000094275 00000 п. 0000095682 00000 п. 0000101855 00000 н. 0000102239 00000 н. 0000102313 00000 н. 0000102344 00000 п. 0000102418 00000 н. 0000106643 00000 п. 0000108681 00000 п. 0000109012 00000 н. 0000109078 00000 н. 0000109195 00000 п. 0000113420 00000 н. 0000117645 00000 н. 0000119683 00000 н. 0000126652 00000 н. 0000127036 00000 н. 0000137514 00000 н.