Адрес: 105678, г. Москва, Шоссе Энтузиастов, д. 55 (Карта проезда)
Время работы: ПН-ПТ: с 9.00 до 18.00, СБ: с 9.00 до 14.00

Схема радиатора: Схемы подключения радиаторов, однотрубная и двухтрубная система

Содержание

Схемы подключения радиаторов отопления — Авалон

В процессе монтажа батарей сотрудники компании «Авалон» используют разные схемы подключения радиаторов отопления в зависимости от количества секций в них и особенностей системы обогрева (однотрубная, двухтрубная). Слесари-сантехники по доступной цене подключают алюминиевые, стальные, чугунные, биметаллические батареи в квартирах, коттеджах, офисах. Мастера оперативно выполняют работы «под ключ» в любое время года.

Наиболее распространенные схемы

Схемы подключения радиаторов отопления

Боковое одностороннее подключение

При использовании этой схемы верхний и нижний патрубки радиатора присоединяются к трубе с одной стороны. Этот способ можно применять как при однотрубной, так и при двухтрубной системе обогрева. Такая схема подключения радиаторов отопления с успехом используется в многоэтажных зданиях с вертикальной подачей теплоносителя.

Существенная особенность этого вида – монтаж так называемого байпаса (перемычки) и двух кранов нужных для того, чтобы можно было снять батарею для ремонта или замены, не прерывая циркуляцию горячей воды по трубам в стояке. У одностороннего бокового подключения есть, тем не менее, небольшой минус – оно не рекомендуется для присоединения радиаторов с большим количеством секций, так как они будут плохо прогреваться.

Боковое одностороннее подключение

Боковое подключение с закольцовкой

По сути, этот метод ничем не отличается от упомянутого выше способа.  Радиатор таким же образом подключается к стояку с одной стороны. Однако в этом случае теплоноситель, пройдя по батарее, не поднимается выше, а отправляется вниз. Боковое подключение с закольцовкой – это оптимальный вариант для квартир или офисов, располагающихся на последних этажах здания. Упомянутая схема подключения радиаторов отопления также предполагает использование байпаса и двух кранов, чтобы оставалась возможность отключения и демонтажа батареи осенью или зимой без перекрытия подачи теплоносителя.

Боковое подключение с закольцовкой

Двухтрубное подключение

Такая схема используется в зданиях, в которых имеются два стояка: один для циркуляции нагретой воды, второй для ее оттока. Верхний патрубок подключается к «подаче», нижний присоединяется к «обратке». В этом случае байпас не используется, соответственно, работы по покраске, ремонту или замене радиаторов желательно проводить в теплое время года, когда в трубах отсутствует теплоноситель.

Двухтрубное подключение

Диагональное подключение с двух сторон

Эта схема применяется в том случае, когда устанавливаются батареи с большим количеством секций (12 и выше). Подающий контур присоединяется к верхнему патрубку радиатора, а отводящий – к нижнему, находящемуся с противоположной стороны. Такая система подключения дает возможность равномерно прогревать все секции, так как обеспечивает хорошую циркуляцию носителя тепла по всем секциям батареи.

Диагональное подключение с двух сторон

Нижнее подключение

Сразу оговоримся, что такие схемы редко используются в квартирах и офисах. Они больше подходят для коттеджей с автономными системами обогрева с принудительной циркуляцией жидкости. Радиаторы в таком случае подключаются к трубам снизу, а не с боков. Нижнее подключение также можно использовать как при одно-, так и при двухтрубных системах отопления. К этому же типу относится так называемое седельное подсоединение радиаторов (с нижних боков), однако оно используется достаточно редко, так как менее эффективно. Подходит тогда, когда работает система водяного обогрева пола и батареи подключаются к ней.

Нижнее подключение

Преимущества подключения радиаторов отопления от нашей компании

Сразу отметим тот факт, что без наличия навыков, опыта, инструмента, лучше не пытаться самостоятельно установить батареи, изучив лишь краткое изложение основных схем подключения радиаторов отопления. Доверьте все работы профессионалам, чтобы получить положительный результат и быть уверенными в качестве выполненных работ.

Стоимость того или иного варианта подключения Вы можете просмотреть здесь

Мы рекомендуем воспользоваться нашими услугами в силу следующих причин:

  • опытные сотрудники, обладающие необходимой квалификацией;
  • быстрое выполнение заказов в любое время года;
  • привлекательная стоимость без необоснованных наценок;
  • решение всех вопросов по согласованию с ЖЭУ;
  • бесплатная доставка материалов, инструментов и радиаторов до объекта заказчика;
  • гарантия на выполненные работы – 5 лет;
  • гибкая система скидок;
  • профессиональные консультации, предоставляемые специалистами;
  • постоянное наличие комплектующих и батарей для систем отопления коттеджей и квартир;
  • бесплатный выезд сантехника на объект в день обращения;
  • составление сметы для прозрачности расходов;
  • предоставление услуг по официальному договору.

Позвоните или напишите нам, чтобы получить больше информации и оставить заявку. Наши контактные данные: г. Екатеринбург, Чкалова 124; Бахчиванджи 2а-406; +7 (343) 328-08-68; WhatsApp\Viber: (922) 174-00-00; [email protected].

Возможные схемы подключения радиаторов Ogint, необходимые комплектующие для однотрубной и двухтрубной системы подключения

Эффективность системы отопления определяется правильностью подбора необходимого оборудования и схемы его подключения.

ТМ Ogint предлагает большой выбор радиаторов, трубопроводной арматуры и комплектующих. Широкий ассортимент оснащения позволяет подобрать все необходимые детали и элементы для прокладки и подключения различных систем отопления. Наши менеджеры помогут вам с оформлением заказа и подбором необходимых комплектующих, какую бы схему подключения вы ни выбрали. Для оптовых покупателей — существенные скидки и акции.

Нюансы и преимущества двухтрубной системы

Один из востребованных вариантов — двухтрубная схема. В этом случае радиаторы присоединяются к сети отопления с помощью двух магистралей: одна служит для транспортировки горячего теплоносителя, а вторая — для оттока остывшей воды. Популярность двухтрубной схемы подключения батарей обусловлена следующими факторами:

  • возможностью использования отопительного оборудования для разного вида топлива;
  • одинаковой температурой радиаторов, независимо от их удаления от источника тепла;
  • вероятностью корректировки степени нагрева отдельных батарей и установки комфортной температуры в помещении.

В зависимости от способа монтажа двухтрубная система отопления бывает вертикальной и горизонтальной, а присоединение радиаторов осуществляется снизу, сбоку или по диагонали. Самым распространенным является боковое подключение, при котором к верхнему патрубку подводится труба с горячим теплоносителем, а к нижнему — с остывшей рабочей средой. Такой способ предусматривает расположение труб по одну сторону от батареи и предполагает минимальную потерю тепла, составляющую не более 5%.

Подключение к вертикальной двухтрубной системе

Вертикальная схема подключения радиаторов чаще используется при прокладке сети отопления в многоэтажных домах. Она предусматривает присоединение всех элементов и приборов системы обогрева к вертикальному стояку и не склонна к образованию воздушных пробок.

Монтаж с помощью ручного и запорного клапанов

Для подключения такой системы помимо труб и радиаторов потребуются ручной и запорный клапан, а также соединительные элементы. Полный перечень необходимых комплектующих деталей представлен в таблице.

Наименование комплектующих элементов Количество, шт.
1 Ручной клапан ДУ 15 — 1/2″ 1
2 Муфта МПЛ (20х2) xG ½”НР 4
3 Клапан запорный ДУ 15 — ½” 1
4 Тройник стальной ¾” ВР x½” ВР х ¾” ВР 2
5 Муфта стальная 1” ВР x1” ВР 2
6 Сгон стальной 1” НР x1” НР 2
7 Труба МПЛ 20x 2 зависит от протяженности сети
8 Контргайка 1&rdquo 2

Подсоединение радиатора к стояку сети отопления осуществляется с помощью муфт, тройников и сгонов. Прочность фиксации трубопроводной арматуры обеспечивается за счет контргайки. Используя стальные муфты, устанавливают ручной и запорный клапаны.

Первый элемент трубопроводной арматуры подсоединяется к верхней трубе разводки сети обогрева и служит для плавной регулировки расхода теплоносителя при его прохождении через отопительный прибор. Запорный клапан подключается на выходе рабочей среды из радиатора и предназначен для балансировки системы. С его помощью осуществляют настройку расхода теплоносителя и ограничивают его доступ. Оба вида клапанов могут выполнять функции запорной арматуры, которая позволяет отключить радиатор от общей сети отопления для проведения ремонтных и профилактических работ.

Монтаж с использованием термостатического клапана

Подключение батарей отопления с применением термостатического клапана позволяет регулировать температуру в помещении и обеспечивает экономный расход тепловой энергии, что позволяет снизить затраты на обогрев. Спецификация необходимого оборудования приведена в таблице.

Для подсоединения радиаторов к стоякам отопительной сети используют стальные тройники, сгоны и муфты. Фиксация трубопроводной арматуры осуществляется с помощью контргайки.

Непосредственно к батареям подключают:

  • Терморегулятор. Он состоит из термостатического клапана и термостатической головки, которые позволяют регулировать температуру воздуха в помещениях и поддерживают ее на заданном уровне с точностью до 1 °C. Монтаж элементов терморегулятора выполняют с помощью муфты, устанавливая клапан и головку на верхней трубе разводки отопительной сети.
  • Запорный клапан. Устанавливается на нижней трубе, по которой перемещается охлажденный теплоноситель. Запорный клапан используют при первичной балансировке отопительной системы. Он служит для монтажной настройки расхода рабочей среды и позволяет перекрывать поток теплоносителя и отключать батареи при проведении профилактических работ или ремонта.

Термостатические клапаны Ogint для вертикальной двухтрубной системы обогрева рассчитаны на функционирование при возможных перепадах давления. Они отличаются повышенным гидравлическим сопротивлением и имеют проходное сечение оптимального размера. Нормативный срок службы изделий составляет до 30 лет при максимальной температуре теплоносителя до +110 °C.

Для эффективного функционирования термостатического клапана его следует устанавливать перпендикулярно панели радиатора. При этом прибор располагают таким образом, чтобы совпадали направления стрелки на корпусе и потока рабочей среды в сети. Во время отключения отопления терморегуляторы для защиты от загрязнений и деформации полностью открывают.

Подключение горизонтальной отопительной магистрали

Сеть отопления с горизонтальным подключением батарей обычно востребована в одноэтажных домах большой площади. Иногда она может использоваться и для обогрева двухэтажных зданий. При монтаже горизонтальной системы стояки располагают в коридорах или на лестничной клетке, а подача теплоносителя осуществляется сверху или снизу.

Первый вариант обеспечивает естественную циркуляцию рабочей среды и не требует дополнительного оснащения. Нижняя подача теплоносителя позволяет скрыть трубы, но нуждается в установке циркуляционного насоса. Систему с естественной циркуляцией можно использовать лишь при заглублении отопительного котла таким образом, чтобы он находился ниже уровня батарей. Радиаторы подключают к сети обогрева с помощью нижней, боковой или диагональной разводки. Для стравливания излишков воздуха при монтаже элементов горизонтальной магистрали на батареях устанавливают краны Маевского.

Другие виды подключения

Подсоединение радиаторов Ogint может также осуществляться путем нижнего подключения. Такой способ целесообразен в малоэтажных частных домах и загородных коттеджах при скрытой прокладке труб отопительной сети под полом. В этом случае потери тепла будут составлять до 10%.

Для нижнего подключения радиаторов Ogint помимо деталей, выпускаемых ТМ, можно использовать узлы Giacomini. Они представлены следующими комплектами оснащения:

  • микрометрической группой с отсечным клапаном с регулируемым байпасом и угловым осевым клапаном;
  • микрометрическим клапаном со встроенным компактным отсечным клапаном.

Оба узла нижнего подключения позволяют регулировать температуру батарей и могут применяться как в однотрубных, так и в двухтрубных сетях отопления.

Радиаторы и комплектующие детали для подключения системы обогрева, выпускаемые ТМ Ogint, производятся в соответствии с требованиями европейских стандартов и отличаются безупречным качеством. Оборудование для сети отопления адаптировано к российским условиям, сохраняя потребительские свойства и технические параметры в течение длительного времени. Для каждого типа радиаторов ТМ предлагает монтажные комплекты, кронштейны и другие аксессуары, упрощающие установку батарей и управление системой.

Варианты подключения радиаторов отопления и их различия

С каждым годом благосостояние многих россиян улучшается. На фоне этого заметно увеличение строительства частных домов для постоянного проживания, что в обязательном порядке требует устройства системы отопления. Людям, далеким от вопросов строительства практически невозможно самостоятельно выбрать схему подключения радиаторов и сделать последовательное подключение.

При неправильном подходе к решению этой задачи, система отопления будет работать на 30−50% слабее от запланированной мощности. Если нет возможности осуществить подсоединение радиаторов самостоятельно, но ознакомившись с информацией, какие схемы подключения отопительных приборов существуют, зная их плюсы и минусы, можно проконтролировать рабочий процесс, осуществляемый специалистами.

Прежде чем говорить о подключении радиаторов, следует определиться, по какой схеме была произведена разводка трубопровода в вашем загородном доме или городской квартире. Именно от расположения и типа разводки напрямую зависит подключение приборов отопления. При монтаже трубопровода в жилых помещениях применяют два основных вида разводки:

  1. Однотрубный. По такой схеме, к радиаторам подключенным последовательно, теплоноситель переносится по подающей трубе, при этом постепенно остывая. Применяется в основном для создания системы отопления многоквартирных домов. Получила название — «ленинградка» и может осуществляться как в горизонтальном, так и в вертикальном положении. Единственное условие, все радиаторы должны быть расположены строго друг под другом, независимо от этажа. Подробное описание однотрубной системы отопления.
  2. Двухтрубный. По такой схеме, подающая и отводящая теплоноситель трубы независимы друг от друга и замыкаются они на источнике подачи тепла, в качестве которого может быть использован газовый, электрический или твердотопливный котел. Именно такая схема разводки и применяется в жилых помещениях, так как происходит постоянная циркуляция теплоносителя по радиаторам системы отопления. Особенности двухтрубной системы.

В подавляющем большинстве на рынке отопительных приборов представлены унифицированные радиаторы, которые имеют четыре точки подключения: две сверху и две снизу. В комплекте обязательно поставляются заглушки и воздухоотводный клапан. В настоящее время существует несколько основных схем подключения радиаторов отопления:

  • одностороннее;
  • перекрестное;
  • нижнее.

Одностороннее подключение

Такое подключение радиаторов характерно для многоквартирных домов и считается самой распространенной. По этой схеме радиаторы к трубам отопления подключаются только с одной стороны. Преимущества — номинальная мощность отопительного прибора при относительно небольших материальных затратах.

Именно поэтому она выбрана в качестве основной схемы при строительстве многоэтажных домов, когда удается достичь максимального результата, сократив при этом расход материалов. К минусам можно отнести тот факт, что если например, на первом этаже самостоятельно увеличить количество секций, то резко снизиться прогрев помещений верхних этажей. Для увеличения эффективности работы радиаторов отопления, предусмотрена установка перемычек — байпаса, за счет чего удается понизить скорость остывания отопительного прибора. Демонтаж такой перемычки самостоятельно, также приведет к нарушению работы отопления всего многоквартирного дома.

Перекрестное подключение

Такая схема подключения радиаторов рекомендуется только в том случае, если количество секции в отопительном приборе 15 штук. При таком подключение радиатора, теплоноситель перемещается по нему сверху вниз с противоположных сторон, тем самым обеспечивая равномерный прогрев всей поверхности прибора. Максимальный результат достигается только при двухтрубной системе отопления. Очень важна правильность подключения подводящей и отводящей трубы теплоносителя. Подводящая должна располагаться сверху, а отводящая снизу. Если нарушить правильность подключения отопительного прибора, то потеря мощности может составлять до 50%.

Нижнее подключение

Такая схема подключения радиаторов больше всего подходит для загородных домов с автономной или индивидуальной системой отопления. По такой схеме, подводящая и отводящая труба теплоносителя подключается снизу с разных сторон. При выборе такой схемы подключения отопительных приборов может теряться до 14% мощности радиатора. Немного исправить ситуацию помогает установка воздушных клапанов, с помощью которых удаляется воздух из системы и за счет этого увеличивается мощность прибора.

Существует еще одна схема нижнего подключения радиаторов, когда подводящая и отводящая трубы подсоединяются к батарее не с противоположных нижних сторон, а к его нижней грани. При таком подключение мощность радиатора используется по максимумам. Как боковое нижнее, так и полностью нижнее подключение применяется при скрытой плинтусной разводке, что позволяет не нарушать общую картину создаваемого интерьера.

Занимаясь подключением радиаторов, не стоит забывать, что как бы качественно не был изготовлен, и какой бы современный материал для этого не применялся. Всегда существует вероятность его преждевременного выхода из строя. Поэтому в обязательном порядке рекомендуется установка специальных кранов на отводящую и подводящую трубы для возможности прикрытия доступа теплоносителя. Такая предусмотрительность поможет заменить прибор отопления, не отключая всю систему. Кроме этого, на отводящую трубу можно установить запорную арматуру, а на подводящую — терморегулирующий кран, что позволит самостоятельно регулировать мощность отопительного прибора.

Правильная установка приборов отопления

Насколько эффективно будет прогреваться помещение, зависит не только от схемы подключения, но и от правильной установки радиаторов. На это существуют свои нормы и правила, которых следует придерживаться при проведении монтажных работ.

  1. Устанавливать радиаторы следует только под оконными проемами. Это позволит создать тепловой барьер для холодного воздуха, поступающего от окна;
  2. Располагаться радиатор должен в 10−12 см от пола;
  3. Расстояние от радиатора до стены должно быть в пределах от 2 до 5 см;
  4. Промежуток между подоконником и радиатором должен быть не менее 10 см.

Сегодня очень многие большое внимание уделяют созданию интерьера помещения и поэтому используют различные приемы декорирования отопительных приборов. Выступ подоконника над радиатором может привести к потере мощности до 4−5%. Устанавливая его в специально созданную нишу, можно недополучить тепла порядка 7%. Наибольшая потеря мощности происходит при установке полного или частичного экрана. В первом случае она может составлять 20%, во втором — 10%.

Видео инструкция по выбору схемы подключения

Автор довольно доходчиво рассказывает и иллюстрирует возможные варианты подключения радиаторов, рассказывае о плюсах и минусах каждой схемы.

Оцените статью: Поделитесь с друзьями!

как устроена и нужно ли ее промывать? — журнал За рулем

Выясняем, какие могут быть характерные неисправности у системы охлаждения двигателя и как их избежать.

Воздушка или водянка

Система охлаждения двигателя внутреннего сгорания предназначена для отвода излишнего тепла от деталей и узлов двигателя. На самом деле эта система вредна для вашего кармана. Приблизительно треть теплоты, полученной от сгорания драгоценного топлива, приходится рассеивать в окружающей среде. Но таково устройство современного ДВС. Идеальным был бы двигатель, который может работать без отвода теплоты в окружающую среду, а всю ее превращать в полезную работу. Но материалы, используемые в современном двигателестроении, таких температур не выдержат. Поэтому по крайней мере две основные, базовые детали двигателя — блок цилиндров и головку блока — приходится дополнительно охлаждать. На заре автомобилестроения появились и долго конкурировали две системы охлаждения: жидкостная и воздушная. Но воздушная система охлаждения постепенно сдавала свои позиции и сейчас применяется, в основном, на очень небольших двигателях мототранспорта и генераторных установках малой мощности. Поэтому рассмотрим подробнее систему жидкостного охлаждения.

Устройство системы охлаждения

Система охлаждения современного автомобильного двигателя включает в себя рубашку охлаждения двигателя, насос охлаждающей жидкости, термостат, соединительные шланги и радиатор с вентилятором.

К системе охлаждения подсоединен теплообменник отопителя. У некоторых двигателей охлаждающая жидкость используется еще и для обогрева дроссельного узла. Также у моторов с системой наддува встречается подача охлаждающей жидкости в жидкостно-воздушные интеркулеры или в сам турбокомпрессор для снижения его температуры.

Работает система охлаждения довольно просто. После запуска холодного двигателя охлаждающая жидкость начинает с помощью насоса циркулировать по малому кругу. Она проходит по рубашке охлаждения блока и головки цилиндров двигателя и возвращается в насос через байпасные (обходные) патрубки. Параллельно (на подавляющем большинстве современных автомобилей) жидкость постоянно циркулирует через теплообменник отопителя. Как только температура достигнет заданной величины, обычно около 80–90 ˚С, начинает открываться термостат. Его основной клапан направляет поток в радиатор, где жидкость охлаждается встречным потоком воздуха. Если обдува воздухом недостаточно, то вступает в работу вентилятор системы охлаждения, в большинстве случаев имеющий электропривод. Движение жидкости во всех остальных узлах системы охлаждения продолжается. Зачастую исключением является байпасный канал, но он закрывается не на всех автомобилях.

Схемы систем охлаждения в последние годы стали очень похожи одна на другую. Но осталось два принципиальных различия. Первое — это расположение термостата до и после радиатора (по ходу движения жидкости). Второе различие — это использование циркуляционного расширительного бачка под давлением, либо бачка без давления, являющегося простым резервным объемом.

На примере трех схем систем охлаждения покажем разницу между этими вариантами.

Система охлаждения внедорожника Great Wall Hover (сейчас он известен на нашем рынке под именем Derways DW Hower h4). Термостат стоит перед радиатором на выходе из головки блока цилиндров. Расширительный бачок подсоединен после пробки радиатора и не подвержен действию высоких температур и давлений. 1 — расширительный бачок; 2 — атмосферный шланг расширительного бачка; 3 — подводящий шланг радиатора отопителя; 4 — отводящий шланг радиатора отопителя; 5 — радиатор отопителя; 6 — подводящая труба насоса охлаждающей жидкости; 7 — отводящий шланг от рубашки подогрева дроссельного узла; 8 — подводящий шланг к рубашке подогрева дроссельного узла; 9 — крышка термостата; 10 — подводящий шланг радиатора системы охлаждения; 11 — пробка заливной горловины радиатора системы охлаждения; 12 — радиатор системы охлаждения; 13 — кожух вентилятора; 14 — насос охлаждающей жидкости; 15 — отводящий шланг радиатора системы охлаждения; 16 — шланг, соединяющий радиатор системы охлаждения и расширительный бачок.

Система охлаждения внедорожника Great Wall Hover (сейчас он известен на нашем рынке под именем Derways DW Hower h4). Термостат стоит перед радиатором на выходе из головки блока цилиндров. Расширительный бачок подсоединен после пробки радиатора и не подвержен действию высоких температур и давлений. 1 — расширительный бачок; 2 — атмосферный шланг расширительного бачка; 3 — подводящий шланг радиатора отопителя; 4 — отводящий шланг радиатора отопителя; 5 — радиатор отопителя; 6 — подводящая труба насоса охлаждающей жидкости; 7 — отводящий шланг от рубашки подогрева дроссельного узла; 8 — подводящий шланг к рубашке подогрева дроссельного узла; 9 — крышка термостата; 10 — подводящий шланг радиатора системы охлаждения; 11 — пробка заливной горловины радиатора системы охлаждения; 12 — радиатор системы охлаждения; 13 — кожух вентилятора; 14 — насос охлаждающей жидкости; 15 — отводящий шланг радиатора системы охлаждения; 16 — шланг, соединяющий радиатор системы охлаждения и расширительный бачок.

Система охлаждения двигателя Hyundai Solaris первого поколения. Термостат стоит на выходе из радиатора, а расширительный бачок размещен прямо на радиаторе и выполнен по схеме «без давления». 1 — отводящий шланг радиатора; 2 — шкив насоса охлаждающей жидкости; 3 — крышка термостата; 4 — шланг, соединяющий расширительный бачок; 5 — пробка заливной горловины; 6 — подводящий шланг радиатора; 7 — радиатор; 8 — расширительный бачок.

Система охлаждения двигателя Hyundai Solaris первого поколения. Термостат стоит на выходе из радиатора, а расширительный бачок размещен прямо на радиаторе и выполнен по схеме «без давления». 1 — отводящий шланг радиатора; 2 — шкив насоса охлаждающей жидкости; 3 — крышка термостата; 4 — шланг, соединяющий расширительный бачок; 5 — пробка заливной горловины; 6 — подводящий шланг радиатора; 7 — радиатор; 8 — расширительный бачок.

Система охлаждения восьмиклапанного двигателя Лады Гранты. Термостат стоит перед радиатором. Расширительный бачок циркуляционного типа находится под давлением, имеет герметичную пробку. Через него постоянно проходит охлаждающая жидкость. 1 — расширительный бачок; 2 — пароотводящий шланг радиатора системы охлаждения; 3 — отводящий шланг радиатора системы охлаждения; 4 — датчик температуры охлаждающей жидкости; 5 — корпус термостата; 6 — вентилятор; 7 — головка блока цилиндров; 8 — радиатор системы охлаждения; 9 — подводящий шланг радиатора системы охлаждения; 10 — насос охлаждающей жидкости; 11 — блок цилиндров; 12 — подводящая труба насоса; 13 — отводящий шланг радиатора отопителя; 14 — радиатор отопителя; 15 — подводящий шланг радиатора отопителя; 16 — наливной шланг.

Система охлаждения восьмиклапанного двигателя Лады Гранты. Термостат стоит перед радиатором. Расширительный бачок циркуляционного типа находится под давлением, имеет герметичную пробку. Через него постоянно проходит охлаждающая жидкость. 1 — расширительный бачок; 2 — пароотводящий шланг радиатора системы охлаждения; 3 — отводящий шланг радиатора системы охлаждения; 4 — датчик температуры охлаждающей жидкости; 5 — корпус термостата; 6 — вентилятор; 7 — головка блока цилиндров; 8 — радиатор системы охлаждения; 9 — подводящий шланг радиатора системы охлаждения; 10 — насос охлаждающей жидкости; 11 — блок цилиндров; 12 — подводящая труба насоса; 13 — отводящий шланг радиатора отопителя; 14 — радиатор отопителя; 15 — подводящий шланг радиатора отопителя; 16 — наливной шланг.

Компоненты

Рубашка головки и блока цилиндров представляют собой каналы, отлитые в алюминиевом или чугунном изделии. Каналы герметичны, а стык блока и головки цилиндров уплотнен прокладкой.

Насос охлаждающей жидкости лопастной, центробежного типа. Приводится во вращение либо ремнем ГРМ, либо ремнем привода вспомогательных агрегатов.

Насос охлаждающей жидкости двигателя Chevrolet Lacetti

Насос охлаждающей жидкости двигателя Chevrolet Lacetti

Термостат представляет собой автоматический клапан, срабатывающий при достижении определенной температуры. Он открывается, и часть горячей жидкости сбрасывается в радиатор, где и остывает. В последнее время стали применять электронное управление этим простым устройством. Охлаждающую жидкость начали подогревать специальным ТЭНом для более раннего открытия термостата в случае потребности.

Термостат двигателя Chevrolet Cruze: 1 — патрубок подвода жидкости к радиатору системы охлаждения; 2 — электрический разъем нагревательного элемента термостата; 3 — корпус; 4 — уплотнительное кольцо в соединении модуля с распределителем жидкости; 5 — основной клапан термостата; 6 — пружина термостата; 7 — баллон с термочувствительным наполнителем; 8 — дополнительный клапан термостата; 9 — шток термостата.

Термостат двигателя Chevrolet Cruze: 1 — патрубок подвода жидкости к радиатору системы охлаждения; 2 — электрический разъем нагревательного элемента термостата; 3 — корпус; 4 — уплотнительное кольцо в соединении модуля с распределителем жидкости; 5 — основной клапан термостата; 6 — пружина термостата; 7 — баллон с термочувствительным наполнителем; 8 — дополнительный клапан термостата; 9 — шток термостата.

Радиатор представляет собой теплообменник, содержащий два бачка (входной и выходной), соединенных множеством алюминиевых трубок, по которым проходит охлаждающая жидкость. Для увеличения теплообмена к трубкам присоединены тонкие пластины, во много раз увеличивающие поверхность теплообмена. Для улучшения теплоотвода воздух протягивается через радиатор принудительно с помощью электровентилятора.

Радиатор и вентилятор системы охлаждения двигателя Лады Ларгус: 1 — дополнительный резистор; 2 — кожух; 3 — электродвигатель; 4 — крыльчатка; 5 — радиатор.

Радиатор и вентилятор системы охлаждения двигателя Лады Ларгус: 1 — дополнительный резистор; 2 — кожух; 3 — электродвигатель; 4 — крыльчатка; 5 — радиатор.

Радиатор отопителя выполняет функцию нагревания воздуха, поступающего в салон автомобиля. Краны отопителя сейчас не устанавливают, а потому радиатор этот нагрет всегда, когда прогрет двигатель, и только воздушные заслонки не дают летом поступать горячему воздуху в салон автомобиля.

Радиатор отопителя кроссовера Renault Duster.

Радиатор отопителя кроссовера Renault Duster.

Расширительный бачок это хранилище резерва жидкости. Но в зависимости от типа системы охлаждения (см. выше) он может быть циркуляционным или тупиковым. Соответственно, находиться под давлением или без него.

Пробка, обеспечивающая герметичность системы, может быть установлена либо прямо на радиаторе, либо на расширительном бачке. Вне зависимости от места установки пробка обеспечивает повышенное давление в системе охлаждения. Такое давление (достигающее 1,1–1,3 бара) повышает температуру кипения жидкости, улучшает теплопередачу, предотвращает кавитацию насоса.

Пробка радиатора Лады 4х4.

Пробка радиатора Лады 4х4.


Пробка расширительного бачка Chevrolet Cruze.

Пробка расширительного бачка Chevrolet Cruze.


И главный компонент системы — это сама рабочая жидкость. Идеальной с точки зрения теплотехники была бы вода, но она вызывает коррозию и замерзает зимой. Поэтому применяют антифризы с низкой температурой замерзания (-40°C или — 65°C) и присадками, снижающими коррозию, пенообразование и т.д.

Неисправности системы охлаждения

Все, что может потечь, рано или поздно потечет. Это не только одна из интерпретаций закона Мерфи, но и четкое описание главной неисправности системы охлаждения. Система, включающая в себя порой более 10 резиновых шлангов, постепенно старея, начинает терять герметичность. Текут сами шланги, пропуская жидкость через нитяное армирование, текут хомутовые соединения. Со временем под воздействием противогололедных реагентов и летящих с дороги камней теряет герметичность радиатор. Особенно он страдает на автомобилях без кондиционера, где его не прикрывает теплообменник этой системы. Также радиатор принимает на себя все «удары судьбы» даже при небольших авариях. Течь теплообменника отопителя, хотя он и стоит в более «защищенном» от внешнего воздействия месте, также встречается нередко. Тот же антифриз, просочившийся сквозь сальниковое уплотнение насоса, выводит из строя подшипник, и — «Здравствуй, замена помпы». И хорошо, если вовремя уследите за признаками выхода из строя насоса, а то его поломка приведет или к обрыву ремня ГРМ и аварии двигателя, или к невозможности двигаться дальше на автомобилях, где установлен цепной привод газораспределительного механизма.

Термостат, этот маленький точный приборчик, тоже может начать хандрить. Его клапан может зависнуть или в закрытом, или в открытом состоянии. В первом случае неминуем перегрев двигателя даже в холодную погоду, а во втором двигатель не будет прогреваться до рабочей температуры. Повышенные износ мотора и расход топлива, негреющая печка — вот что гарантирует нам постоянно открытый термостат. Еще остается расширительный бачок. Течь его встречается только в схеме системы охлаждения, где он находится под рабочим давлением.

И последний узел, который может терять герметичность, — это пробка радиатора или расширительного бачка. И хотя жидкость через нее сразу не потечет, но это произойдет после первого же закипания двигателя. А закипит он быстро. Помните назначение пробки? Правильно: обеспечивать повышение температуры кипения жидкости. Ни один современный мотор не может работать без герметичной пробки, кроме случаев очень низкой температуры окружающей среды и небольшой нагрузки на двигатель.

Интересный тест на знание причин перегрева можно пройти здесь

Замена жидкости и промывка

Если не пришлось заменять какой-либо узел в системе охлаждения раньше, то инструкции рекомендуют менять антифриз не реже чем в 5–10 лет. Если вам не приходилось доливать в систему воду из канистры, а еще хуже — из придорожной канавы, то при замене жидкости систему можно не промывать.

Для удаления охлаждающей жидкости в нижней части радиатора предусмотрено сливное отверстие с пробкой.

Для удаления охлаждающей жидкости в нижней части радиатора предусмотрено сливное отверстие с пробкой.

А вот если автомобиль многое повидал на своем веку, то при замене жидкости полезно произвести промывку системы охлаждения. Разомкнув в нескольких местах систему можно струей воды из шланга тщательно ее прополоскать. Либо просто слить старую жидкость и залить чистую, кипяченую воду. Запустить двигатель и прогреть до рабочей температуры. Выждав, пока система остынет, чтобы не обжечься, слить воду. Затем продуть воздухом систему и залить свежий антифриз.

Промывку системы охлаждения обычно затевают в двух случаях: когда перегревается двигатель (проявляется это прежде всего в летний период) и когда перестает греть печка зимой. В первом случае причина кроется в заросших грязью снаружи и засоренных изнутри трубках радиатора. Во втором — проблема в том, что забились отложениями трубки радиатора отопителя. Поэтому при плановой смене жидкости и при замене компонентов системы охлаждения не упускайте возможности хорошенько промыть все узлы.

Расскажите, с какими неисправностями системы охлаждения сталкивались вы. И желаю вам жаркого отопителя зимой и хорошего охлаждения летом.

какая схема лучше, как подключить батареи наиболее оптимально

Для поддержания тепла в зданиях используют системы отопления. Большинство включают радиаторы, которые монтируют несколькими способами. Варианты зависят от строения обвязки и используемых батарей.

Различий в схемах, на первый взгляд, немного, но выбор лучше предоставить профессионалу. Специалист поможет составить грамотный проект, который не только учтёт пожелания владельца, но также будет качественно работать.

Как подключить радиаторы к однотрубной системе отопления

Широко распространена благодаря дешевизне и простоте монтажа. В большинстве многоквартирных домов обвязка выполнена именно этим способом. В частных строениях она встречается реже. Радиаторы включают в разводку последовательно. Теплоноситель совершает круг из котла, по очереди посещая каждую батарею. Из крайнего участка цепи жидкость возвращается в обратный вход.

Подобная система обладает парой недостатков:

  1. Невозможность регулировки отдельных радиаторов. Установка контролёра возможна, но управлению поддаётся только полная цепь.
  2. Последовательное подключение ведёт к ухудшению прогрева в дальних участках обвязки, поскольку рабочая жидкость теряет тепло в пути.

Лучшие и худшие черты двухтрубной системы

В отличие от напарника, имеет прямую и обратную трубы, цель которых, соответственно: подать горячую, вернуть остывшую воду. Каждую батарею системы подключают параллельно. Это увеличивает прогрев дальних участков цепи. Две трубы позволяют устанавливать регуляторы перед каждым радиатором, с помощью которых настраивают необходимую температуру.

Недостатком является сложность монтажа и рост затрат.

Справка. Стоимость увеличивается практически вдвое, в сравнении с однотрубной системой отопления.

Какая схема подключения батареи самая эффективная?

Различают три способа установки радиатора.

Диагональная

Считается наиболее эффективной и используется в большинстве случаев.

Фото 1. Четыре варианта диагонального подключения радиатора к отоплению, для однотрубной и двухтрубной систем.

Это связано с высоким КПД:

  1. Теплоноситель поступает в батарею из верхнего угла.
  2. Жидкость расходится по всему доступному объёму.
  3. Вытекает в противоположной точке.

По этой схеме проводят испытания систем на фабриках.

Нижняя

Встречается реже прочих, поскольку обладает меньшим коэффициентом полезного действия. Обе трубы подключают к нижней части батареи. Средние потери составляют 15%.

Фото 2. Однотрубный и двухтрубный способ нижнего подключения батареи отопления. Во втором случае нужно больше материалов.

Из плюсов следует выделить возможность монтажа в полу, что скрывает обвязку. А для компенсации низкого КПД рекомендуется устанавливать более мощный радиатор.

Не следует использовать подобную схему в обвязке без насоса, поскольку возникает явление вихря. Поток разогревает поверхность труб, увеличивая теплоотдачу при естественной циркуляции воды. Явление пока не изучено, поэтому непонятны возможные последствия.

Боковая или односторонняя

Соответствуя названию, трубы включают с одного бока: у верхнего и нижнего углов. Подобный вариант установки используют в домах с вертикальными магистралями, например, в многоквартирных. Эта схема не применяется при подводке теплоносителя снизу, поскольку значительно усложняется монтаж.

Фото 3. И однотрубная, и двухтрубная системы позволяют выполнить боковое подключение батареи. В первом случае обязателен байпас.

Обладает высоким КПД, чуть меньшим, чем диагональная схема. Это касается радиаторов с 10 и менее секциями. Длинные батареи хуже прогреваются, поскольку рабочей жидкости приходится совершать долгий путь в одну сторону.

Важно! Этот фактор не затрагивает панельные теплообменники, в которые ставят специальные стержни, улучшающие подачу.

Полезное видео

В видео разбираются особенности разных популярных схем подключения радиаторов.

Как сделать наиболее оптимальный выбор

В частных домах рекомендуется использовать двухтрубную обвязку, хотя она дороже и сложнее в установке. Среди схем подключения радиаторов нужно выбирать по желаемому результату. Лучший прогрев обеспечивает диагональная, а с эстетической стороны лидирует нижняя.

Схема подключения алюминиевого радиатора отопления Rifar

возможно вас интересуют:

 

Схемы подключения секций из алюминия могут быть различными, но стоит познакомиться с каждой из них.

1) К примеру, это может быть диагональная схема, которая иногда может именоваться боковой перекрестной. В этом случае, подача воды в обязательном порядке должна быть осуществлена именно сверху. В таком случае, обратка, в которую будет уходить теплоноситель, должна находиться снизу. Подключение наоборот может принести потери в теплоотдаче в целых 50%, так что выдумывать ничего не стоит. Дело в том, что тёплая вода будет стремиться подниматься вверх, так что именно подача сверх позволит создать опускание потока вниз, равномерное перемешивание и равномерное распределение нагрева. Эта конфигурация является одной из самых оптимальных и эффективных, но используется не так уж часто.


2) Вторым методом подключения тепловых элементов будет боковая односторонняя схема. Здесь вода тоже должна подаваться сверху, но выходить она должна не в том же направлении, что и поступает, но внизу и в противоположном. Эта установка очень удобна особенно при большом количестве секций, ведь вода явно не успеет остыть, а вот прогрев будет просто потрясающим. Некоторые параметры будут зависеть от скорости циркуляции и температуры теплоносителя, но всё-таки такой выбор продолжает оставаться одним из самых надёжных. Именно такое оборудование встречается очень часто, очень популярным является в загородных домах и дачах, где обычно большая площадь помещения и обогрев нужен предельно эффективный.

3) Следующей будет нижняя схема соединения. Такой вариант иногда именуется серповидным или седельной схемой. Согласно научным данным, теплоотдача при таком способе на 7% ниже, чем при использовании диагонального способа. Но у такого способа, конечно же, есть своё преимущество — именно от позволяет эффективно скрывать конструкцию в стенах или под плинтусом, если другие способы сделать это не позволяют. Именно нижняя схема подключения позволит позаботиться о создании более стильного и интересного интерьера, но этот вопрос, конечно же, продолжает оставаться сугубо индивидуальным.

4) Далее следует нижний или, как он часто именуется, напольный вид соединения радиаторов отопления. Обычно это относится только к специализированны, именно с нижним подключением. Оба канала пропуска будут направлен вертикально в пол. Именно такое оборудование устанавливается при помощи специальных сантехнических узлов, что не всегда удобно. С другой стороны, такой выбор обеспечивает максимальную теплоотдачу.


 

 

 

Схемы подключения радиаторов отопления и области их применения

Схема подключения радиаторов существенно влияет на эффективность работы системы отопления.

Неправильное подключение отопительных приборов приводит к необходимости увеличения давления в системе и удорожанию монтажа, затрудняет регулировку температуры, ухудшает интерьер помещения.

Варианты подключения

Существуют несколько способов подключения радиаторов отопления:

  • диагональная
  • боковая
  • нижняя

Поскольку двигаясь по отопительным приборам вода охлаждается, при этом ее объем уменьшается и жидкость становится тяжелее, оптимальным при любой схеме считается направление движения теплоносителя сверху вниз, то есть подвод горячей воды должен осуществляться к верхней точке отопительного прибора, отвод – от нижней.

При неправильном выборе системы подключения радиаторов теплоотдача может уменьшается до 50%.

Комплект для подключения радиатора

Чтобы подключить радиатор к сети отопления, необходимо иметь радиаторную арматуру.

Часть ее поставляется вместе с отопительными приборами, остальное можно купить по отдельности или в составе комплектов.

Универсальные комплекты, комплекты для бокового, нижнего, диагонального подключения имеются в продаже.

В набор для подключения радиаторов входят:

  • термостатические головки
  • термостаты и термовентили для автоматической регулировки температуры
  • запорные краны
  • краны Маевского
  • заглушки и другие детали для подключения радиаторов.

Прочитайте обзор: Радиатор отопления какой лучше? И множество вопросов отпадут сами собой.

Хорошая статья о том как сделать водяное отопление частного дома своими руками

Диагональное подключение

Диагональное подключение радиаторов больше подходит для горизонтального расположения подводящих труб, поскольку места подключения расположены с противоположных сторон батарей (например: подвод воды – слева вверху, отвод – справа внизу).

Теплоноситель равномерно распределяется внутри батарей отопления, поэтому способ достаточно эффективен, особенно для отопительных приборов с большим количеством секций (до 24-х секций против 12-ти при боковом подключении).

Несимметричное подключение радиаторов выглядит не эстетично.

Оно является неудобным и не экономичным при подключении к вертикальным стоякам (требуется повышенный расход труб), поэтому редко используется в многоэтажных домах.

Нижняя разводка

При монтаже радиаторов отопления с нижним подключением, резко понижается кпд отопления.

Но данный способ позволяет сделать разводку труб незаметной и не портящей интерьер помещения.

Попытки добиться компромисса привели к созданию радиаторов отопления с нижним подключением.

В действительности такие радиаторы выполнены по схеме бокового или диагонального подключения, но вертикальный патрубок подвода теплоносителя скрыт под декоративными элементами.

Перед монтажом радиаторов следует приобрести наборы с узлами нижнего подключения радиатора и уплотнениями.

Узлы подключения радиатора состоят из шаровых запорных кранов с устройствами подключения к радиаторам и имеют различную конструкцию в зависимости от модели отопительных приборов, поэтому при их приобретении нужно быть внимательным.

Радиаторы нижнего подключения обладают высокой теплоотдачей и становятся все более популярными из-за отличного дизайна и возможности спрятать трубы в полах, коробах или стенах.

Прокладку труб следует осуществлять на первой стадии капитального ремонта.

Боковое подключение

Боковое подключение радиаторов отопления применяется чаще всего, при этом способе трубы присоединяются к одной из сторон радиатора.

При наличии вертикальных стояков или расположении подающей трубы выше батарей обеспечивается естественная циркуляция воды, что важно при автономном отоплении.

Данный способ позволяет оптимально расположить приборы регулирования.

При боковом подключении в случае недостаточного давления в системе последние секции батарей нагреваются меньше предыдущих. Оптимальное с точки зрения эффективности отопления расположение труб делает их слишком заметными.

Подача горячей воды осуществляется через терморегулятор (термостатическую головку), на обратной трубе размещается запорный кран.

С противоположной стороны радиатора сверху устанавливается клапан для отвода воздуха или кран Маевского, с нижней – заглушка. При необходимости между трубами подвода и отвода теплоносителя врезается перемычка – байпас.

Выбор схемы подключения

Из вышесказанного понятно, что каждая из схем подключения радиаторов подходит для определенных условий.

Монтаж бокового подключения стоит дешевле из-за малого расхода труб, оно оптимально подходит и для квартир в многоэтажных домах и для коттеджей, оснащенных автономной системой отопления.

Диагональное подключение радиаторов применимо для отопления одноэтажных домов.

Возможность использования радиаторов с большим количеством секций позволяет отапливать помещения значительного объема.

Любителям изысканного дизайна подойдут радиаторы с нижним подключением, но такие отопительные приборы стоят недешево. Выбирайте способ подключения исходя из своих условий и в вашем доме будет тепло.

Все, что вам когда-либо понадобится знать о балансировке радиаторов

Балансировка некоторых систем отопления может стать настоящим кошмаром, независимо от того, сколько вы с этим боретесь, вы просто не можете добиться этого сразу!

Обычно это используется в более крупных системах, и многие скажут, что это означает, что вам, вероятно, необходимо гидравлическое разделение. Тем не менее, у нас есть несколько советов, которые мы усвоили по ходу дела, которые сэкономят ТОННУ времени на балансировке в конце работы. Сделать те системы, которые невозможно сбалансировать, очень просто !!

Итак, что такое балансировка системы отопления?

Для балансировки системы отопления необходимо просто убедиться, что все радиаторы или излучатели нагреваются равномерно.Для систем, использующих погодную компенсацию или компенсацию нагрузки, это гарантирует, что у вас в каждой комнате объекта будет точная температура, а не в некоторых комнатах слишком жарко, а в некоторых слишком холодно. Слишком большой поток к радиаторам приведет к перегреву помещения, меньший поток — к нагреву помещения.

В более старых системах включения / выключения это было бы больше связано со временем нагрева и, возможно, меньшей проблемой при условии, что у вас есть TRV и ваша эталонная комната (комната с термостатом) немного сбалансирована. Эта статья, как и все статьи Heat Geek, на самом деле не о системах включения / выключения, а больше о современных модулирующих системах отопления, которые должны быть стандартом.

Балансировка НЕ ​​увеличивает конденсацию на котле вопреки распространенному мнению. Правильный перепад температуры в системе достигается за счет управления скоростью насоса. Если у вас нет насоса на высокой настройке и вы не ограничиваете все свои клапаны, чтобы замедлить обратный поток, однако это было бы экспоненциально расточительно с энергией насоса. Главное — не задушить насос и не тратить энергию впустую. У вас всегда должен быть хотя бы один полностью открытый клапан.

Неправильная балансировка или ее отсутствие снижает мощность системы в целом, это будет выглядеть как меньшая дельта Т для котлов, работающих только на отопление, где насосы не связаны с горелкой. Подробнее в нашей статье повышает ли балансировка КПД котла?

Почему балансировать некоторые системы отопления так БОЛЬНО?

Есть несколько основных причин, по которым балансировка становится сложной, и понимание того, почему является вашим первым шагом. Вот краткий обзор со ссылками на дополнительную информацию.

Первая и основная причина заключается в том, что в системе присутствует высокий перепад давления. Это может быть связано с использованием трубопроводов меньшего диаметра или с тем, что система просто большая / имеет большие протяженности. Чтобы понять больше, взгляните на «взаимосвязь давления и потока».

Есть два способа обойти эту проблему;

Мы можем использовать один из множества доступных нам методов компоновки трубопроводов, чтобы минимизировать перепады давления. Более подробная информация об этом приведена в конце статьи, и мы можем использовать более совершенные балансировочные клапаны!

Мы не можем переоценить это обстоятельство, поскольку неправильная установка запорных клапанов может вызвать у вас полную головную боль, и большинство из них не подозревают, что есть какая-то разница! Что вы не знаете о статье о замках.

Другие причины могут быть связаны с используемым методом балансировки.

Например, некоторые инженеры пытаются добиться идеального перепада температур (или DT) 20 ° C на каждом радиаторе. На наш взгляд, это не нужно и сложно.

Еще одна проблема заключается в том, что некоторые инженеры при балансировке выставляют котел на полную мощность (режим трубочиста). Это заставит котел попытаться ввести максимальную мощность котла в систему, которая, скорее всего, будет иметь мощность радиатора только часть размера котла.Это всегда будет приводить к крошечной дельте t, поскольку система не может переносить тепло. Это, в свою очередь, также не будет иметь точного расхода, когда котел вернется в нормальный режим работы, и означает, что вы будете балансировать для сценария, который никогда не произойдет.

Наконец, хотя в большинстве случаев они могут быть достаточно хорошими, они могут использовать совершенно неправильные клапаны! Обратите внимание, прежде чем мы сказали, что клапаны лучше, однако некоторые запорные клапаны вообще не предназначены для балансировки !! Опять же подробнее… или может быть вариант получше, описанный ниже…

как бы мы посоветовали сбалансировать систему отопления?

Перво-наперво, чтобы получить правильную скорость потока вокруг каждого излучателя / радиатора, вам необходимо получить правильную скорость потока во всей системе.Для этого нам нужно отрегулировать производительность насоса в соответствии с системой.

Слишком низкая скорость потока будет означать, что объекту может быть сложно нагреться до нужной температуры, поскольку средняя (средняя) температура радиаторов слишком низкая. Если насос работает слишком быстро, это приведет к экспоненциальной потере мощности, а также уменьшит эффект конденсации в котле за счет повышения температуры обратной магистрали. У инженеров может возникнуть соблазн задушить насос, перекрыв клапаны, чтобы замедлить скорость потока, это снова приводит к потере еще большей мощности.

К счастью, почти все современные модулирующие котлы имеют управление насосом, связанным с горелкой. Это постоянно регулирует скорость насоса, чтобы обеспечить правильный расход относительно подводимого тепла. Быстро проверьте свой источник тепла, чтобы убедиться, что он имеет приблизительную правильную DT / скорость потока, для получения дополнительной информации по уточнению и настройке скорости вашего насоса щелкните здесь. Не волнуйтесь, если ваше DT выходит из строя на 10-20%, это действительно не имеет большого значения на данном этапе, и установщики могут тратить время зря и зацикливаться на достижении этого.

Подробнее об этом в нашей статье «Ложь DT20». Однако более точным ориентиром является DT, который составляет около 30% от температуры подачи.

Например; Если у нас температура подачи 70 ° C (70 x 0,3), получаем DT 21 ° C. Если ваша температура подачи составляет 50 ° C, это даст DT 15 ° C (50 X 0,3) и так далее. Это не совсем точно, просто чтобы получить правильную скорость потока. Вы можете использовать более сложные суммы, но мы не будем терять время зря.

Как бы то ни было, теперь ваш расход находится в правильном положении, пришло время, наконец, сбалансировать радиаторы.

Как сбалансировать радиаторы

Здесь мы можем использовать несколько различных методов, но, что важно, ни один из них не является правильным или неправильным в разумных пределах. Просто некоторые методы займут больше времени, чем другие, а некоторые позволят достичь более точной комнатной температуры! Также предположим, что мы балансируем модулирующий котел без гидравлического разделения.

Два основных способа балансировки радиаторов (если вообще используются) инженеры-теплотехники — это либо «измерить среднюю температуру радиатора», либо отрегулировать запорный щиток до тех пор, пока они не почувствуют одинаковую среднюю температуру.На другом конце спектра они используют датчики температуры на каждом конце радиатора (подающей и обратной линии) и балансируют для определенного перепада температуры.

Подключение термометра к патрубкам подачи и возврата радиаторов и регулировка запорных клапанов для обеспечения одинакового перепада температуры обеспечивает правильность расхода по отношению к конкретному размеру или мощности радиатора.

Однако, если у вас есть некоторый перепад температуры вдоль подающей трубы перед радиатором, это даст вам другую «среднюю температуру» на каждом радиаторе.Средняя температура представляет собой среднее значение температуры подачи и возврата. Чтобы решить эту проблему, добавьте температуру потока к температуре возврата и разделите на 2.

Мы не видим большой проблемы с немного разными средними температурами, но это будет означать, что вы потратили довольно много времени на то, что не является точный в любом случае, так как реальные выходы радиаторов будут отличаться.

При использовании модулирующих элементов управления мы снова не видим особых проблем с использованием сенсорного экрана, а не термометра, при условии, что температура в комнате достигает точной температуры с любым TRV, установленным на максимум.Т.е. температура подачи нацелена на комнатную температуру, а не на TRV, так как это потенциально может привести к перегреву котла.

Как описано выше, вместо этого вы могли бы сбалансировать, чтобы обеспечить одинаковую «среднюю» температуру на каждом радиаторе. Для этого определите среднюю температуру источника тепла (примерно) и отрегулируйте каждый запорный клапан, пока у вас не будет одинаковой средней температуры на каждом радиаторе.

По сути, это приведет к разному падению DT / температуры на всех радиаторах, но средняя температура радиатора будет одинаковой.Это сработает, но опять же может занять много времени и будет неудобно, если ваш котел включится. Важно отметить, что это может не дать вам идеального баланса, в конце концов, наша цель — это точная комнатная температура, а не точная температура радиатора.

Расчеты теплопотерь неточны, и даже если бы они были, они могли быть выброшены множеством вещей, например, отсутствием изоляции, ошибками расчетов, использованием помещения или неправильным выбором радиатора. Лично мы думаем, что оба приведенных выше варианта — занятие неблагодарное.

Балансировка температуры обратного потока

Вместо этого мы предлагаем сделать так, чтобы после установки максимального значения TRV вы просто ощущали (или измеряли, если хотите) температуру обратного потока радиатора, пока система находится на «расчетной температуре подачи» ( температура должна составлять около 2 ° C на улице) и следить за тем, чтобы в комнатах не превышалась температура 20/21 ° C. По крайней мере, для начала.

В подавляющем большинстве систем температура подачи к каждому радиатору будет примерно одинаковой, нет смысла вообще их измерять.Прикосновение к радиатору для определения средней температуры также оставляет небольшую погрешность. Однако измерение температуры обратного теплоносителя имеет, безусловно, наибольшую погрешность.

Чтобы уточнить, предположим, что котел с температурой DT 20 ish, возврат радиатора с выходом 8 ° C будет иметь среднюю температуру на выходе всего 4 ° C.

Рис. 1

В то время как, если бы мы чувствовали среднюю температуру радиатора и делали ту же ошибку 8 ° C, у нас было бы совершенно разных DT , и, в свою очередь, сильно менялись бы скорости потока через каждый излучатель.

Например.

Рис. 2

Поскольку измерение температуры обратного трубопровода является более важной переменной, многие системы могут быть достаточно близкими, просто нащупав обратный трубопровод рукой. Хотя для большей точности вы можете использовать термометр определенного описания или их комбинацию, это первая точка, в которой вы значительно увеличите скорость и точность балансировки.

Точность не обязательно должна быть идеальной прямо сейчас, постарайтесь добиться того, чтобы все температуры вашего обратного потока приблизительно совпадали.

В более крупных системах вы можете обнаружить, что вам пришлось настолько ограничить ближайшие радиаторы, что вам нужно было увеличить скорость насоса. Это связано с тем, что перепад давления на подаче и обратной линии намного больше в более крупных системах, чтобы получить достаточно высокий расход. Подробнее об этом в понимании давления и расхода.

Вернитесь к насосу и измерьте DT на источнике тепла и приблизительно отрегулируйте производительность насоса, если необходимо, но это маловероятно для большинства систем.

Опять же, точное соответствие температуры обратки не требуется. Размер радиатора никогда не будет точным, так как радиатор будет увеличен или уменьшен до ближайшего радиатора, а также — комнаты разделяют тепло.

Это не должно было занять много времени. Теперь вы можете попросить пассажира следить за температурой в помещении, и, если она немного высока, вы можете немного позже уравновесить или показать их. Если в комнате немного низкая температура, увеличьте расход (уменьшите DT), чтобы увеличить мощность радиатора, хотя, по нашему опыту, это маловероятно.

Мы понимаем, что в большинстве систем по-прежнему используется управление включением / выключением вместо модулирующего управления, такого как погодная компенсация или компенсация помещения. Для этого мы бы посоветовали ориентировочно установить температуру обратки, уравновесить эталонную комнату (комнату с термостатом) до чуть более широкого DT, а затем позволить TRV делать свое дело. В качестве альтернативы используйте автоматические балансировочные клапаны, предлагаемые IMI, Honeywell или Danfoss.

, однако, если вы приверженец точности, вы можете перейти на следующий уровень…

Закройте все внутренние и внешние двери, окна и занавески (для предотвращения солнечного излучения) в собственности и установите плавное регулирование, чтобы нацелить самая высокая температура, при которой вам комфортно работать.

Затем вам нужно будет измерить температуру в каждой комнате индивидуально и отрегулировать запорный экран, чтобы в каждой комнате была одинаковая температура. Пойдите в каждую комнату и при необходимости настройте каждую запорную заслонку, приоткройте запорный вентиль очень немного, если в комнате прохладнее, чем ваша целевая температура, и закройте его, если в комнате слишком жарко.

Это гораздо более эффективное использование вашего времени, чем установка одного и того же DT для каждого радиатора, поскольку мы нацелены на комнатную температуру , а не на температуру радиатора.

При этом помните о других переменных, таких как усиление солнечной энергии. Также обратите внимание, что чем шире разница между внутренним и внешним пространством, тем более точным будет этот метод. Этого можно добиться, либо дождавшись более холодного дня, либо увеличив регулирующий термостат на более высокое значение, либо и то, и другое. Эта последняя регулировка, скорее всего, просто покажет вам, насколько проста ваша система и что собственность разделяет большую часть ее тепла.

После того, как балансировка будет завершена и вы будете довольны кривой нагрева (при необходимости), вы можете вернуть TRV обратно, чтобы ограничить внутреннее усиление.

Быстрая подсказка . Если вы балансируете полотенцесушители (клапаны полотенцесушителей открываются очень быстро), закрывайте обе стороны, а не только одну. Закрыв одну сторону, а затем другую, вы увеличите вращение клапана для меньшего изменения потока, что фактически означает, что вы улучшите характеристику открытия.

Как уже упоминалось, это предложение по балансировке предполагает, что вы балансируете только современный модулирующий котел. Это будет работать и для всех других типов систем, но есть и другие варианты, если ваш модулирующий котел не контролирует скорость потока в вашей системе.

Перед чтением следующего раздела было бы полезно понять давление и расход!

Насос какого типа вы пытаетесь сбалансировать?

Если у вас старый котел, нет модулирующего управления или гидравлического разделения в вашей системе, также доступны другие методы балансировки. ИЛИ вам может даже не понадобиться использовать запорные клапаны для балансировки!

В коммерческом мире, например, необходимо знать, как вы собираетесь управлять каждым контуром. Затем вы выберете тип управления насосом в сочетании с типом клапана, который дополняет его, чтобы эффективно распределять поток.

В насосах используются разные методы управления потоком и экономии энергии. У вас может быть подключенная горелка, управление DT, регулировка перепада давления, контроль внешнего датчика, постоянное давление, постоянная скорость, пропорциональное давление и многое другое (статья по этому поводу).

Но обычно их можно разбить на 2 группы: насосы, которые изменяют скорость до заданного давления, и насосы, которые изменяют давление для достижения заданной скорости. Затем вы должны выбрать конкретный тип клапана, который будет дополнять его.

Проблема современных отечественных модулирующих котлов в том, что они изменяют как давление, так и расход. Это может быть очень сложно управлять, и поэтому единственный оставшийся вариант — уравновесить скромный замок, которого более чем достаточно для дома, мы могли бы добавить. Однако для балансировки не все замки одинаковы! Чего вы не знали о запорных клапанах!

Система Grunfos Alpha2

Система Grundfos Alpha2 будет работать с любой из этих логических схем насоса или с любым клапаном.Однако вы должны использовать их помпу Alpha 3.

После заполнения системы и очистки от воздуха вы подключаете внешний модуль Bluetooth к телефону и помпе. Затем ваш телефон проинструктирует вас, насколько необходимо отрегулировать запорный экран или какие предустановленные значения TRV, ограничивающие поток, следует отрегулировать. После завершения будет создан отчет, показывающий, что вы выполнили баланс, который может быть полезен для предстоящего принятия закона о балансировании.

Автоматические балансировочные клапаны

Для насосов, которые устанавливают фиксированное давление и изменяют поток, я бы рекомендовал TRV с ограничением потока или автоматическую балансировку TRV.

Автоматические балансировочные клапаны, также известные как независимое от давления управление (PIC), обычно представляют собой коммерческие клапаны со встроенным ограничителем потока, и это просто их версии TRV. Они включают в себя селектор расхода под головкой TRV и пронумерованы, скажем, от 1 до 5. Каждое число соответствует расходу, который будет в инструкциях производителя, просто выберите требуемый расход и отрегулируйте! БОЛЬШОЙ!

Мы настоятельно рекомендуем осторожно настраивать насос с их помощью.Если насос рассчитывает, что установленный перепад давления на клапане ниже 1 метра напора, они не смогут полностью контролировать ситуацию, и другие радиаторы могут столкнуться с проблемами. Тем не менее, эти клапаны обычно имеют ограничительные пути небольшого диаметра (и повышенный авторитет клапана), поэтому это маловероятно. Однако обратите внимание: если вы запустите насос при более высоком перепаде давления, чем требуемый минимум, потребляемая мощность вашего насоса увеличится.

Например, если вы можете получить достаточный поток к радиаторам с напором 3 метра, но насос оставлен на высоте 6 м, вы увеличите вдвое, ваше энергопотребление.Вы должны обязательно поэкспериментировать с понижением скорости насоса, пока поток не начнет ухудшаться. Если вы удвоите свое сопротивление, вы удвоите потребление энергии, это прямая линейная зависимость. Подробнее ..

Если ваша помпа нацелена на скорость, вам нужно быть еще более осторожным. Если установленная скорость даже немного превышает ваш общий предел потока через все клапаны вместе взятые, то клапаны будут оказывать экспоненциально большее сопротивление насосу, и насос увеличится до максимального перепада давления для компенсации.Это потребует максимальной мощности для данного расхода. По этой причине мы всегда советуем оставлять один байпасный радиатор для прохождения любого избыточного потока при использовании этих клапанов.

Мы не рекомендуем эти клапаны для использования с современным модулирующим котлом, который изменяет давление и расход по причинам, описанным выше, или с насосом, управляемым DT. Вот небольшое объяснение.

Автоматическая балансировка trvs

У вас также есть доступные клапаны PIC (независимое от давления), которые работают в соответствии с трубопроводом, однако ожидается, что они будут использоваться только с более крупными коммерческими системами.

Единственный другой совет, который мы могли бы дать, когда дело доходит до выбора клапана, — это знать и понимать авторитет клапана и «характеристики открытия» клапана. Это полностью описано в нашей статье «Что вы не знали о lockshield».

Другая переменная погодных условий, требующая дополнительного времени для балансировки или различных типов клапанов, зависит от того, как в вашей системе прокладывается трубопровод, и может быть легче решена путем регулировки при замене котла или установке немного другим способом с самого начала.Компоновка системы также определяет, какую настройку насоса вам следует использовать в идеале.

Схема системы

Установка или регулировка трубопроводов немного другим способом при установке нового котла может обеспечить простую балансировку и даже полностью избавить от необходимости балансировать систему!

Как описано в разделе «Давление и расход», когда вы уравновешиваете систему отопления, вы фактически заставляете каждую цепь иметь одинаковое или подобное сопротивление друг другу. Основная причина того, что системы не сбалансированы и имеют разное сопротивление, — это коммунальные трубопроводы.Это общий трубопровод, который у них всех.

Более близкие радиаторы (или более короткие цепи) будут использовать меньше общих трубопроводов и, следовательно, будут иметь меньшее сопротивление потоку, чем радиаторы, расположенные дальше по линии. Таким образом, вода идет по пути наименьшего сопротивления.

A = ОЧЕНЬ ВЫСОКИЙ ПОТОК B = ВЫСОКИЙ ПОТОК C = ПРАВИЛЬНЫЙ ПОТОК D = СЛИШКОМ МЕДЛЕННЫЙ E = СЛИШКОМ МЕДЛЕННЫЙ

Есть два способа решить эту проблему. Первый — сделать коммунальные трубопроводы большими.Обеспечение более крупных общих трубопроводов означает, что большая часть сопротивления находится в пределах отдельных участков трубы, а перепады давления становятся намного ближе «из коробки» и даже до того, как вы уравновесите. В отличие от рисунка выше.

Это также увеличивает авторитет клапана вашей системы, так как большая часть относительной потери давления приходится на клапан .. win win!

Многие могут говорить об опасностях низкой скорости. Это никогда не было проблемой для нас в домашних системах, и ваши трубопроводы в любом случае будут иметь негабаритный размер 99% в год, поскольку система модулируется (мы надеемся).Еще одна статья, чтобы разобраться в этом в другой раз.

Второй способ — сделать коммунальные трубопроводы короткими.

Коллекторные системы

Коллекторные системы относятся к тому месту, где вы запускаете поток и возвращаете его в коллектор. Подобно коллектору под полом или, возможно, созданному вами самому. Он может быть расположен в любом месте собственности, но в идеале в центре, а затем разделен на отдельные участки для каждого радиатора или излучателя.

Установка от Дэйва Чорли Сантехника и отопление

Это гарантирует, что все радиаторы имеют одинаковое сопротивление общей трубопроводной сети, и если / когда один из излучателей отключается, воздействие давления на каждый из других излучателей одинаково / похоже.

Коллекторная система позволяет легко балансировать (если это вообще необходимо), поскольку все это находится в одной легкодоступной точке.

Система обратного возврата

Первый пришел последним — это термин, обычно используемый в торговле. Это то же самое, что и традиционная двухтрубная система, однако первый радиатор, который питает подающая труба, является последним радиатором в вашем обратном контуре. Это приводит к тому, что все ваши радиаторные цепи имеют одинаковое сопротивление.

Возможно, вам это покажется непрактичным, однако существует столько версий всех этих методов, сколько позволяет ваше воображение.

Например, вместо того, чтобы запускать поток и возвращаться к первому радиатору, затем последовательно ко второму и т. Д. Вы можете запустить поток и вернуться за первый рад к центру собственности, а затем выйти, как на диаграмме паука. Затем снова выполните тройник, увеличивая размер первичного трубопровода.

Чем больше вы можете создать подобное сопротивление, тем больше подойдет режим постоянного давления. Для малоразмерной и плохо спланированной системы лучше выбрать настройку пропорционального давления.Подробнее об этом в другой раз

Ничего из этого не является важным знанием, однако, как только вы поймете теорию, это поможет в процессе принятия решений позже, так что вы сможете принять решение на лету. И, как уже было упомянуто несколько раз, все это действительно может помочь более крупным системам.

Возможно, это будет один из последних материалов, которые мы будем публиковать здесь в течение некоторого времени, поскольку мы усерднее работаем над нашим онлайн-видеокурсом, который в настоящее время находится в стадии разработки.

Радиаторная система в виде принципиальной схемы.

Контекст 1

… Изучите влияние различных высот (h 0 и h 1), удобно обрабатывать систему в виде принципиальной схемы. На рис.9 показана схема на основе упрощенной системы с четырьмя стояками. Каждый клапан в контуре помечен значением k v и эквивалентен потерям давления в трубах, радиаторах и радиаторных клапанах, балансировочных клапанах и HEX. Дифференциальные давления, возникающие из-за разницы температур, обозначаются насосами. Теперь мы используем расширение…

Контекст 2

… оценка модели, сравнение полевого исследования и моделирования приведены на Рисунке 9. …

Контекст 3

… по характеристикам В разных радиаторных системах условия различаются, насколько хорошо может работать турбинный насос. На рисунке 9 ниже показано, как соотношение между первичным и вторичным потоком обычно различается между разными типами радиаторных систем. Наилучшие условия достигаются в системе с низким расходом, 80/35 ° C на рисунке, где расход через радиатор значительно ниже, чем в системе 60/40 ° C….

Контекст 4

… мы видим потенциал: до 2,5 раз в зависимости от необходимого напора насоса. Однако если сравнить это с кривыми на Рисунке 9, то окажется, что такой коэффициент расхода недостаточен для работы радиаторного контура, рассчитанного в соответствии с температурной программой 60/40 ° C, за исключением очень низких наружных температур. Однако ситуация намного лучше в случае системы с низким расходом, 80/30 ° C. …

Контекст 5

… Из Рисунка 9 ясно, что турбинный насос с обсуждаемой конструкцией никогда не сможет запустить контур радиатора во всем рабочем диапазоне, поскольку первичный поток становится очень маленьким при низких нагрузках. Поэтому при умеренных температурах наружного воздуха всегда потребуется какая-то помощь. …

Контекст 6

… средняя температура немного снизилась, примерно на 0,2 ° C, скорее всего, из-за падения температуры наружного воздуха примерно на 3 ° C во время испытания, в то время как подача тепла оставалась постоянной.9 показаны температуры подачи и возврата, измеренные на четырех самых удаленных стояках от подстанции во время испытания. Постоянное сопоставление с измерениями на стояках дает хорошее указание на то, что оптимизация не повлияла на распределение потока в системе. …

Радиатор радиатора — Склад печников

Ранее я упоминал, что первичный контур в конечном итоге нагревает воду в цилиндре. Цилиндры изолированы, поэтому тепло не может уйти.Через некоторое время температура воды в цилиндре будет близка к температуре воды в первичном контуре. На этом этапе гравитационная циркуляция замедляется (горячая вода не поднимается через горячую воду). Если он достаточно замедлится, плита может закипеть. Кипение по своей сути не опасно, если в системе есть вентиляция (если вентиляции нет, печь или контур взорвутся). Однако кипение является шумным и, конечно, неприемлемым (если вы когда-нибудь столкнетесь с системой кипячения, запустите любые горячие краны, так как это охлаждает воду в цилиндре, а также охлаждает змеевик, а затем и первичный контур).

<<< Вернуться к главному меню, к Руководству по монтажу печки и многим другим статьям

Превосходный метод подключения радиатора к радиатору, поскольку радиатор самовыводит весь воздух (воздух в радиаторе быстро препятствует его работе).

Итак, что мы должны сделать, это добавить радиатор В ПЕРВИЧНУЮ ЦЕПЬ. Радиаторы не изолированы, поэтому они пропускают тепло в комнату, в которой находятся (следовательно, их можно назвать радиаторами утечки тепла, а не радиаторами радиатора). Идея состоит в том, что радиатор всегда будет терять немного тепла и, следовательно, всегда будет холоднее, чем вода в подающей трубе, и поэтому горячая вода из подающей трубы «падает через радиатор», и первичный контур никогда не перестанет течь.Чем больше радиатор, тем больше тепла он теряет и, следовательно, тем эффективнее поддерживает скорость первичного контура.

Радиатор радиатора должен составлять по крайней мере 10% мощности в кВт от «максимальной мощности по воде» печи (больше, если это указано в руководстве по эксплуатации печи, и я видел цифры до 20%). Таким образом, если максимальная мощность печи для воды составляет 10 кВт, то мощность радиатора радиатора должна быть не менее 1 кВт.

Радиаторы

также желательны, так как они предотвращают «отключение печи с термостатическим управлением из-за перегретой воды» (люди в комнате, где находится печь, могут быть холодными и недовольными из-за того, что плита отключилась — все из-за радиаторов, в другом случае). комнаты, слишком жарко).

Обратите внимание, что радиатор радиатора всегда включен, когда печь горит, и некоторое время после того, как огонь затухает, и поэтому лучше всего использовать это тепло в комнате, где можно использовать это тепло. Ванные комнаты идеальны, так как полотенца можно сушить. Спальни не очень хороши, так как радиатор может оставаться включенным в течение длительного времени после того, как люди ложатся спать (в комнате становится слишком жарко). Посадки хорошие. Конечно, из-за соображений трубопровода у вас может не быть большого выбора (место расположения радиатора — часто самая сложная проблема, с которой я сталкиваюсь при проектировании влажной системы).

Чтобы радиатор радиатора работал правильно, он должен иметь правильный размер и правильно установлен. Как предполагалось ранее, первичный контур, скорее всего, будет выполнен из медной трубы диаметром 28 мм. Длина трубы к радиатору радиатора от первичного контура должна быть 22 мм, хотя можно использовать 15 мм на последних 30 см рядом с радиатором. На радиаторе не должно быть никаких клапанов (я использую латунные компрессионные фитинги с наружной резьбой 1/2 ″ bsp до сжатия 15 мм). Сантехника — это верхний нижний противоположный конец TBOE. Другими словами, ПОТОК идет вверх, а ВОЗВРАТ — в противоположный нижний угол.

На рисунке выше показаны трубы от печи, идущие вверх по правой стороне дымохода. Две трубы отходят близко к горизонтальной головке через стену в радиатор радиатора на противоположной стороне стены. Для тех, кого интересуют трубы, идущие на чердак, это две трубы радиатора с насосом и одна вентиляционная труба (в этой работе цилиндра нет).

Вверху изображен радиатор радиатора с другой стороны этой стены. Обратите внимание, что труба диаметром 22 мм меняется на 15 мм рядом с радиатором.

Выше представлен немного более эстетичный вариант радиатора радиатора, но он не обеспечивает самостоятельной вентиляции воздуха. Я всегда буду использовать автоматический воздухоотводчик, но не все сантехники. Обратите внимание, что если в радиатор радиатора попадет воздух (они могут, и я расскажу об этом в другой статье), он перестанет работать, так как через него не будет циркуляции воды. Вместо автоматического вентиляционного отверстия (верхнее правое отверстие на радаре на рисунке выше) можно установить 15-миллиметровую медную трубу, которая петляет над напорным баком, как хоккейная клюшка.

Если у вас большая печь-бойлер и вы не желаете иметь требуемый большой радиатор радиатора, ничто не мешает вам иметь два или даже три отдельных радиатора радиатора.

На рисунке ниже показана схема без цилиндра. Можно иметь только радиатор радиатора, если он подходящего размера.

Этот радиатор также «самовентилирует воздух» из верхней левой радиаторной трубы

<<< Вернуться к главному меню, к Руководству по монтажу печки и многим другим статьям

Приобрести вещи можно здесь:

https: // магазин.newarkcoppercylinder.co.uk/single-coil-gravity-cylinders

https://shop.newarkcoppercylinder.co.uk/header-tanks

http://www.newarkcoppercylinder.co.uk/

Децентрализованные циркуляционные насосы — Каждый радиатор и каждый контур теплого пола имеет свой собственный циркуляционный насос

В Европе многие дома оборудованы централизованными системами отопления. Обычно они состоят из одного или нескольких центрально расположенных насосов, которые направляют горячую воду к радиаторам или системам теплого пола.Однако появляется относительно новая технология. В нем используются небольшие децентрализованные циркуляционные насосы. Каждый радиатор и каждый контур теплого пола имеет свой циркуляционный насос.

Большим преимуществом этой системы является то, что она обеспечивает зональный обогрев, а также снижает затраты энергии на топливо и электричество. Общий комфорт для пользователя увеличивается, поскольку температура в каждой комнате регулируется отдельно, а также из центра.

Традиционная система центрального отопления

До недавнего времени дома и квартиры, как правило, оснащались одним центральным насосом для циркуляции горячей воды.В больших домах и зданиях будет несколько насосов. В большинстве случаев эти насосы работают непрерывно, даже когда потребность в тепле невысока.

Децентрализованные насосы

Это можно сделать иначе, установив небольшие децентрализованные насосы. Они такие маленькие, что умещаются на ладони. Каждый радиатор и каждый контур теплого пола оснащены одним радиатором. Соединение RJ45 соединяет их с модулем рулевого управления, расположенным внутри стены. При желании этот модуль управления может управлять несколькими радиаторами в одном помещении.Медная проводка соединяет модуль рулевого управления с модулем управления. В каждой комнате есть как минимум один модуль управления. Все модули управления соединены с Шиной через медную проводку, которая также связана с интеллектуальным модулем или сервером.

Экономия энергии

Некоторое время назад Институт Фраунгофера по заказу Wilo провел сравнительное исследование в двух соседних отдельно стоящих домах. Один дом был оборудован центральным циркуляционным насосом, другой — децентрализованными микронасосами и электронной системой управления.Оба дома были пустыми, так что никакого влияния человека на них не было.

За весь период измерений с октября по апрель децентрализованные насосы позволили сэкономить 19% топлива (газа). Экономия электроэнергии была еще более значительной — 53%.

В пересчете на первичную энергию общая экономия дома с децентрализованными насосами составила до 21%. Разумеется, это впечатляющие цифры.

Комфорт и удобство использования

В децентрализованных насосах пользователь может устанавливать температуру в помещении с помощью местных блоков управления.Центральный блок управления позволяет пользователю управлять настройками отдельных комнат на расстоянии. Кроме того, можно ввести периоды нагрева.

Выйдя из дома, пользователь может задействовать центральный блок управления, чтобы установить все отопление дома в эко-режим или ночной режим. Это может быть достигнуто без необходимости посещать каждую комнату отдельно, как в случае с традиционной установкой с одним циркуляционным насосом и термостатическими клапанами. Децентрализованная насосная система может значительно повысить экономию энергии.По возвращении домой отопление в отдельных комнатах можно установить на комфортный режим с помощью центрального пульта управления.

Первоначальные затраты на установку будут выше, чем при традиционной установке. Однако из-за значительной экономии энергии стоит рассмотреть такую ​​систему для новостроек и проектов капитального ремонта.

Крышка радиатора

Circuit Sports — Nissan — Import Image Racing

Возврат
После возврата товара размер вашего возмещения и способ его получения будут зависеть от состояния товара и общего срока действия заказа.Возврат будет произведен за вычетом любых сборов, указанных представителем службы поддержки клиентов после получения номера RMA и информации о возврате. Если не указано иное, плата за отмену будет полностью возмещена.
Примечание. Получение, проверка и обработка возврата может занять 3-5 рабочих дней.

Как производится возврат:
Возврат будет осуществлен в зависимости от используемого метода оплаты. Import Image Racing не возмещает средства на счет, который у нас отсутствует, или на какие-либо другие отдельные счета.
• Возврат средств с помощью кредитной карты отображается в течение 3-5 рабочих дней на стороне клиента.
• Возврат через PayPal отображается на стороне клиента в течение 1-2 рабочих дней.
• Для активации возврата с помощью подарочной карты требуется 1-2 рабочих дня.

Плата за частичный возврат и пополнение запасов:
Как указано в нашей Политике возврата, покупатель несет ответственность за все транспортные расходы при возврате. Все возвраты подлежат пополнению запасов, пожалуйста, не забудьте спросить своего представителя службы поддержки клиентов. о комиссии за возврат.За поврежденные, отсутствующие детали, не в исходном состоянии или имеющие явные признаки использования по причинам, не связанным с ошибкой Import Image Racing, будет взиматься полная плата за возврат в размере 15%.

Возврат
Любой возврат для обмена или возврата будет разрешен в течение 30 дней с момента получения вашего заказа и должен быть авторизован до отправки с номером RMA (разрешение на возврат товара). Чтобы получить инструкции по возврату и номер RMA, напишите в службу поддержки @ importimageracing.com, и мы свяжемся с вами в ближайшее время! После получения инструкций по возврату отправьте товар как можно скорее и сообщите номер для отслеживания представителю службы поддержки клиентов. Заказчик несет ответственность за все транспортные расходы. Перед отправкой продукта обратно убедитесь, что вы упаковали его точно так, как вы его получили, и во всей оригинальной упаковке. Все предметы должны быть в новом состоянии, пригодном для перепродажи. Как только товар будет получен, он будет проверен, и вам будет предоставлен соответствующий кредит.При возврате взимается комиссия за возврат в размере 15%. Любой возврат, полученный без RMA #, будет отклонен.

БЕЗ ВОЗВРАТА:

  • Предметы, не покупаемые в МИР
  • Пункты выдачи
  • Открытых объектов
  • Б / у или установленные элементы
  • Позиции специального заказа
  • Незавершенные товары
  • Предметы с неполной или поврежденной упаковкой
  • Внутреннее устройство двигателя
  • Электроника
  • Колесные проставки
Крышка радиатора с клапаном высокого давления

— Circuit Hero

В крышке радиатора высокого давления

Circuit Hero используется 1.Пружина 3 кгс / см² для повышения температуры кипения охлаждающей жидкости / антифриза и защиты двигателя.

Дополнительный бонус, который мы добавили, — это встроенный кнопочный клапан. Чтобы избежать нагнетания горячего тепла, всегда нажимайте кнопку, чтобы убедиться, что в радиаторе нет горячих паров, прежде чем открывать крышку. Нажатие кнопки также позволяет горячим парам выходить для более быстрого охлаждения.

* НИКОГДА НЕ ОТКРЫВАЙТЕ КРЫШКУ РАДИАТОРА В ГОРЯЧИМ РЕЖИМЕ.

Характеристики

  • Пружина высокого давления для повышения температуры кипения двигателя.
  • Кнопка безопасности для уменьшения вероятности получения ожога.
  • Выпустить горячие пары для более быстрого охлаждения двигателя.

Приложения для транспортных средств типа A

  • Подходит для большинства радиаторов вторичного рынка
  • Подходит для радиаторов Blox Racing
  • 1988-1991 Honda Civic
  • 1988-1991 Honda CRX
  • 1992-2001 Honda Prelude
  • 2016+ Honda Civic 1.5 т
  • 2017+ Honda Civic Type-R
  • 1990-1993 Acura Integra
  • 2003-2007 Mitsubishi Evolution VIII, IX
  • Модель
  • 2008+ Mitsubishi Evolution X
  • 2002+ Subaru WRX, STi

Применения транспортных средств типа B

  • Подходит для большинства заводских и некоторых радиаторов вторичного рынка
  • Подходит для заливных горловин K-Tuned
  • 2007-2008 Honda Fit
  • 1992-1995 Honda Civic (все)
  • 1992-1997 Honda Del Sol (все)
  • 1996-2000 Honda Civic (все)
  • 2000-2009 Honda S2000 (все)
  • 2002-2005 Honda Civic Si
  • 2006-2011 Honda Civic (все)
  • 2012-2015 Honda Civic
  • 2003-2008 Хонда Элемент
  • 1990-1997 Honda Accord
  • 1994-2001 Acura Integra (все)
  • 2002-2006 Acura RSX (все)
  • 2004-2008 Acura TSX
  • 2013+ Тойота 86
  • 2013+ Subaru BRZ

* На некоторых радиаторах вторичного рынка не используется заводская крышка.Например, Koyo использует тип A на большинстве своих радиаторов независимо от области применения. Пожалуйста, проверьте свой перед заказом.

** Обратите внимание, что наши крышки радиатора имеют очень плотную посадку.

Номера деталей: CH-RCA-S, CH-RCA-B, CH-RCB-S, CH-RCB-B

Путаница — Системы с одной зоной

Однозонные системы предназначены для управления площадями различного размера от 10 до 100 м2. В нашем магазине вы увидите 2 разных типа однозонной системы: стандартная комната и высокая производительность, единственная разница между этими двумя вариантами — это количество трубы, которое вы получаете с комплектом.

  • Что следует учитывать
    • Размер заказанного вами комплекта будет определять тип насоса / смесительного клапана, который вы получите в комплекте.
    • Обратите внимание, что расстояние между трубами определяет количество квадратных метров, которые вы можете покрыть.
    • Самый длинный отрезок трубы, который у вас может быть, составляет 100 м.
    • Стандартный комплект с шагом 250 мм между трубами покрывает площадь 30 м2.
    • Комплект с высокой производительностью с шагом 200 мм между трубами покрыл бы площадь 24 м2.

Насос может управляться 2 способами — опция 1

Самый простой способ — подключить подающую и обратную линии от существующего радиаторного контура (например, отводя от радиаторных труб), это означает, что когда ваши существующие радиаторы запрограммированы на включение (обычно это ваши часы времени рядом с котлом), пол с подогревом насос также включится, при условии, что и ваш радиаторный термостат, и термостат теплого пола требуют тепла (обратите внимание — насос теплого пола не будет работать, пока температура воды в трубах не достигнет 40 градусов).

Любой стандартный комплект для помещения площадью до 30 м2 будет поставляться с предварительно собранным насосом Grundfoss для одной зоны и смесительным клапаном.

Комплект 30 м2 содержит 120 м трубопроводов, что является максимальным количеством труб, разрешенным для любого однозонного насоса, более того, это приведет к понижению температуры воды в трубе, прежде чем она потечет обратно в насос.

Любой стандартный комплект помещения площадью более 30 м2 будет поставляться с предварительно собранным насосом коллектора и смесительным клапаном Grundfoss

Разница между этими двумя системами заключается в том, что коллектор, присоединенный к насосу, может обрабатывать больше зон.Преимущество коллектора означает, что вы можете добавить больше зон в систему и обогреть большие площади (каждый порт коллектора может контролировать до 100 м трубы). Каждая зона включается одновременно, когда система требует тепла (то есть когда ваш термостат настроен на включение).

Например

Стандартный комплект 50 м2 будет поставляться с 3-х канальным коллектором. Это означает, что у вас может быть либо 1 большая площадь 50м2, снабженная 3 зонами труб, либо у вас может быть 3 разных помещения 20м2 + 20м2 + 10м2, снабжаемых одним и тем же комплектом.

Что следует учитывать
  • Все 3 комнаты будут управляться одним и тем же термостатом.
  • Ни одна зона не может использовать более 100 м трубы.
  • Длина участка трубопровода от коллектора до помещения.

Вариант 1 (системный котел не комбинированный)

Всегда уточняйте у установщика, поскольку конфигурация котла может отличаться от показанной, это стандартное руководство по установке для типичных настроек.

Если вы хотите иметь возможность включать полы с подогревом независимо от радиаторной системы, вам нужно будет отключить отопительный контур на котле, это означает установку нового 2-ходового клапана в системе типа S, чтобы самостоятельно контролировать новую зону теплых полов.

Клапан управляется термостатом из прилагаемого набора, мы рекомендуем использовать цифровой термостат, а не ручной термостат со шкалой, поскольку цифровые термостаты могут программировать время его включения и выключения.

Преимущество такой установки в том, что у вас есть независимое управление системой теплого пола.

Однокомнатная двухконтурная система

(электропроводка не показана) Не для использования в системе с Y-образной схемой .

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *